

# **BISC**

The Berkeley Initiative in Soft Computing

Electrical Engineering and Computer Sciences Department



# Neuro-Fuzzy-Evolutionary Computing (NeF-ECom)

Masoud Nikravesh\*

BISC Program, EECS-UCB

ጲ

Life Sciences

Lawrence Berkeley National Laboratory (LBNL)
U.S. Department of Energy (DOE)

http://www-bisc.cs.berkeley.edu/

Email: Nikravesh@cs.berkeley.edu

Tel: (510) 643-4522; Fax: (510) 642-5775

Genetic and Evolutionary Computation Conference
June 25-29
Washington DC





### **Outline**

- BISC Decision Support System
- Neuro-Fuzzy-Evolutionary Computing: NeF-ECom
  - Multi-Criteria Decision Analysis with Uncertain and Incomplete Information
- Application Areas
  - ASIS







#### **OBJECTIVES**

# Develop soft-computing-based techniques for decision analysis

- Tools to assist decision-makers in assessing the consequences of decision made in an environment of imprecision, uncertainty, and partial truth and providing a systematic risk analysis;
- Tools to assist decision-makers answer "What if Questions", examine numerous alternatives very quickly and find the value of the inputs to achieve a desired level of output;
- Tools to be used with human interaction and feedback to achieve a capability to learn and adapt through time;



#### **DECISION ENVIRONMENT**

- Information (Can be uncertain)
- Granular (Scale and Precision)
- Query (Can be imprecise)
- Measure (Similarity)
- Aggregation (Can be fuzzy)
- Ranking (Provide Alternatives)
- Optimization (Multi-Objective & Multi-Criteria)





#### **BISC DSS: Components and Structure**



#### Query (Request): Q

$$Q = f(v_1\{(\mu_1, \mu_2, ...), w_1\}, v_2\{(\mu_1, \mu_2, ...), w_2\},...)$$

 $v_i$ : Variables

 $\mu_i$ : Degree in which  $\nu_i$  belong to a certain grade

 $W_i$ : Preferences

- find if such query exists → degree of match → rank
- → decision (i.e. resource allocation)
- compare queries → rank → decision (task allocation)
- Use Fuzzy Min-Max with degree of preferences

#### **Objective function: Cost Function/ Fitness Function**

$$J = \sum_{k} \left[ \frac{\sum_{i=1}^{n} \left( f(v_{i}\{(\mu_{1}, \mu_{2}, ...), w_{i}\}) \right) \hat{f}(v_{i}\{(\mu_{1}, \mu_{2}, ...), w_{i}\})}{\sum_{i=1}^{n} \left( f(v_{i}\{(\mu_{1}, \mu_{2}, ...), w_{i}\}) \hat{f}(v_{i}\{(\mu_{1}, \mu_{2}, ...), w_{i}\}) \right)} \right]_{k}$$

This may involve multi-objective, multi-criteria optimization with conflict and fuzzy variables. *Therefore, use fuzzy-GA to solve the objective function*.



#### **BISC-DSS Software**

# **Neuro-Fuzzy-Evolutionary Computing**

**Multi-Criteria Decision Analysis with Uncertain and Incomplete Information** 





#### **BISC – DSS Software: Architecture**



#### **Basic concepts**

# **Fuzzy sets/ Membership Functions (MFs)**



#### **Basic concepts**

# **Fuzzy similarity measures**

Simple matching: |X I Y|

Dice: 
$$2\frac{|X I Y|}{|X|+|Y|}$$

Jaccard :  $\frac{|X I Y|}{|X Y Y|}$ 

Cosine:  $\frac{|X I Y|}{|X|^{1/2} \times |Y|^{1/2}}$ 

Overlap:  $\frac{|X I Y|}{\min(|X|,|Y|)}$ 

X and Y are fuzzy measures defined over the same fuzzy sets with MFs:

$$\mu_1, \mu_2, \ldots, \mu_m$$

Norm-Pair operators ∩ et ∪ (norm-conorm)

#### **Basic concepts**

### **Norm-Pairs**

|           | Fuzzy AND [∩]                             | Fuzzy OR [∪]                                                                            |
|-----------|-------------------------------------------|-----------------------------------------------------------------------------------------|
| MinMax    | $\min(x, y)$                              | $\max(x, y)$                                                                            |
| Algebraic | $x \times y$                              | $x + y - x \times y$                                                                    |
| Bounded   | $\max(0, x + y - 1)$                      | $\min(1, x + y)$                                                                        |
| Drastic   | $\int \min(x, y) if \max(x, y) = 1$       | $ \begin{cases} \max(x, y) & \text{if } \min(x, y) = 1 \\ 1 & \text{else} \end{cases} $ |
|           |                                           |                                                                                         |
| Einstein  | $(x \times y)/(2 - (x + y - x \times y))$ | $(x+y)/(1+(x\times y))$ $(x+y-2\times x\times y)/(1-(x\times y))$                       |
| Hamacher  | $(x \times y) / (x \times y)$             | $(x+y-2\times x\times y)/$                                                              |
|           | $(x \times y) / (x + y - x \times y)$     | $/(1-(x\times y))$                                                                      |

x and y are MF values in [0,1].

#### **Basic concepts**

# **Aggregation Operators**

Arithmetic Mean: 
$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

Geometric Mean: 
$$\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$$

Harmonic Mean : 
$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

**Minimum**: 
$$\min(x_1, x_2, \Lambda, x_n)$$

**Maximum**: 
$$\max(x_1, x_2, \Lambda, x_n)$$

#### **Basic concepts**

# **Weighted Aggregation Operators**

**Weighted Mean**: 
$$\sum_{i=1}^{n} w_i \times x_i$$

**Weighted Geometric Mean**: 
$$\prod_{i=1}^{n} x_i^{w_i}$$
 with:  $\sum_{i=1}^{n} w_i = 1$ 

Weighted Harmonic Mean: 
$$\frac{1}{\sum_{i=1}^{n} w_i \times \frac{1}{x_i}}$$

Weighted Minimum: 
$$\min_{i=1}^{n} (\max(1-w_i, x_i))$$
  
Weighted Maximum:  $\max_{i=1}^{n} (\min(w_i, x_i))$   

$$\begin{cases} \text{with: } \max_{i=1}^{n} (w_i) = 1 \\ \text{with: } \max_{i=1}^{n} (w_i) = 1 \end{cases}$$

**Weighted Maximum**: 
$$\max_{i=1}^{n} (\min(w_i, x_i))$$

with: 
$$\sum_{i=1}^{n} w_i = 1$$

$$with: \max_{i=1}^{n} (w_i) = 1$$



#### **Basic concepts**

# **Advanced Multi-Aggregator Model**

#### Parameters

- aggregators
- weights
- tree structure.



**Aggregation tree** 

#### **BISC-DSS Software**



#### **BISC-DSS Software**





#### **EC:** Genetic Algorithms

#### Requirements

- Individual :problem representation
- Fitness function: for evaluation
- Termination criterion

### **Principle:**

- Create randomly an initial population of individuals
- Evolve the population:
  - evaluate and select individuals
  - use them in genetic operators (crossover, mutation)
  - generate new generation
- Stop if termination criterion satisfied

#### **EC:** Genetic Algorithms

### **Genetic Operators**





#### **EC:** Genetic Programming

- Individual = Computer program
- Most common representation : tree encoding (nodes = functions, leaves = terminals)
- Fitness function = returned value by the root node



#### **Mutation**





### **EC:** Genetic Programming







#### **BISC-DSS: Interaction and Optimization**





#### **Multi-Criteria Decision Model (1)**

# Multi-Attribute Query: K attributes $A_1, A_2, ..., A_K$



# **Query Answering**

Ranking based (criteria: number top answers)

Selection based (criteria: threshold)



#### **Multi-Criteria Decision Model (2)**



#### **Multi-Criteria Decision Model (3)**

Data: 
$$X_i = (x_{i1}, x_{i2}, ..., x_{iK}),$$
 Query:  $Q = (y_1, y_2, ..., y_k)$ 

K attributes:  $A_1, A_2, ..., A_K$ 

# For each attribute $A_j$ :

$$r_j$$
 fuzzy sets  $\mu_1(Aj,.), \mu_2(A_j,.),...,\mu_{rj}(A_j,.)$  
$$s_i = similarity(x_{ij}, y_i), \qquad j = 1, 2, ..., K$$

Score = 
$$SIM(Q,X_i)$$
 =  $Aggregation(s_1, s_2, ..., s_k)$ 

#### **First Order Aggregation Model (1)**

- Norm-pair: <u>Min/Max</u>
- Fuzzy similarity measure: <u>Jaccard</u>
- Aggregation operator: <u>Weighted Mean</u>

$$SIM(Q, X_i) = \sum_{j=1}^{M} w_j \times Jaccard(y_j, x_{ij}), \text{ with } \sum_{j=1}^{M} w_j = 1$$

$$Jaccard(y_{j}, x_{ij}) = \frac{|y_{j} \cap x_{ij}|}{|y_{j} \cup x_{ij}|}$$

$$y_{j} \cap x_{ij} = \left[Min(\mu_{k}(A_{j}, y_{j}), \mu_{k}(A_{j}, x_{ij}))\right]_{k=1,\dots,r_{j}}$$
$$y_{j} \cup x_{ij} = \left[Max(\mu_{k}(A_{j}, y_{j}), \mu_{k}(A_{j}, x_{ij}))\right]_{k=1,\dots,r_{j}}$$



#### **First Order Aggregation Model (2)**

Aggregation model = simple weighted aggregation operator

user preferences = attribute weighting
(Degree of importance of each attribute)

Aggregation model parameters = weighting vector

Optimization process: find the optimal weights Using GA.

#### First Order Aggregation Model (3)

Model parameters learning using GA





#### **Advanced Multi-Aggregator Model (1)**

# parameters

- > similarity measures
  - >norm-pairs
- > aggregation operators
  - > weights
- > aggregation model structure



Representation of user/expert preferences



#### **Advanced Multi-Aggregator Model (2)**

# Model description



**Aggregation tree** 



#### **Advanced Multi-Aggregator Model (3)**

Model parameters learning using GP





#### Fitness function combining:

- accuracy rates to <u>maximize</u>
- distance ∆ to maximize
- model structure size to minimize



#### **Other Applications**

# **Application**

# **Description**

**Finance** 

 stock prices and characteristics, credit scoring, credit card ranking

**Military** 

battlefield simulation and decision making

Medicine

diagnosis

Marketing

store and product display

electronic shopping

Internet

 provide knowledge and advice to large numbers of user

**Education** 

university admission

**Banking** 

fraud detection



#### **BISC-DSS-ASIS Software**

# **Automated Sensory Inspection System**





#### **Applications**

#### What can We Do with Time-Series?













#### **Chromosome Representation**





#### **Chromosome Representation**

# Fuzzy Label, Set Value, Scalar & Series Input



- Composed of primitive statistical, fuzzy set, aggregator, similarity, arithmetic, and signal processing operators.
- Each gene (or algorithm) is represented as a tree, accepts both scalar and series input, and outputs scalar features.
- The chromosome produces a feature vector set.

**Scalar & Fuzzy Label Features** 



#### **Front/Back-end Architecture**



#### **Classifier Architecture**





#### Fitness: In-sample Rate



#### **Fitness: N-Fold Cross Valid**









#### **BISC-DSS Clustering-Based ANSIS**









