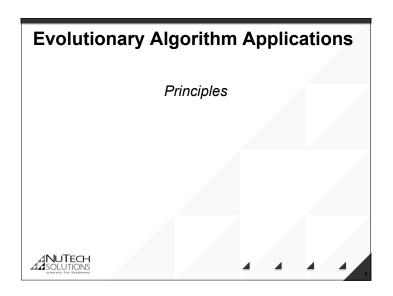
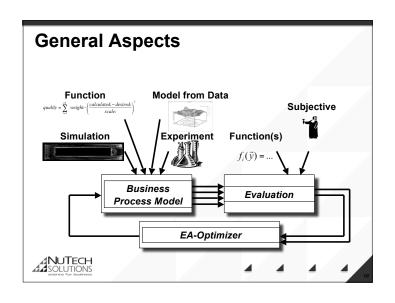
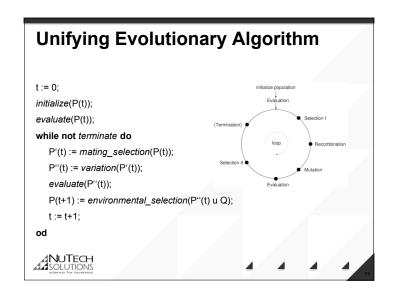


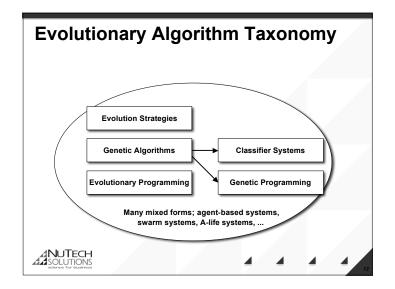
Business Issues

- Supply Chain Optimization
- Scheduling & Timetabling
- ♣ Product Development, R&D
- Management Decision Making, e.g., project portfolio optimization
- Optimization of Marketing Strategies; Channel allocation
- Multicriteria Optimization (cost / quality)





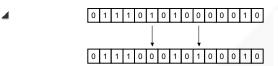




- Genetic Algorithm
 - Binary representation
 - ♣ Fixed mutation rate p_m (= 1/n)
 - Fixed crossover rate p_c
 - Probabilistic selection
 - Identical population size
 - No self-adaptation

- Evolution Strategies
 - Real-valued representation
 - Normally distributed mutations
 - Fixed recombination rate (= 1)
 - Deterministic selection
 - Creation of offspring surplus
 - Self-adaptation of strategy parameters: Variance(s), Covariances

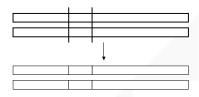
Genetic Algorithms: Mutation



- Mutation by bit inversion with probability pm.

Genetic Algorithms: Crossover

4



- Crossover applied with probability pc.
- ▲ k-point crossover: k points chosen randomly.
- Example: 2-point crossover.

- - λ population size
- Tournament selection:
 - Randomly select $q \ll \lambda$ individuals.

 $f(\bar{a}_i)$

 $\sum f(\vec{a}_j)$

- $\triangleleft q$ is the tournament size (often: q = 2).

Evolution Strategies

An instance of evolutionary algorithms

Evolution Strategies

- Real-valued / discrete / mixed-integer search spaces.
- Emphasis on mutation: n-dimensional, normally distributed, expectation zero.
- Different recombination operators.
- Deterministic selection: (μ, λ) , $(\mu+\lambda)$
- Self-adaptation of strategy parameters.
- **△** Creation of offspring surplus, i.e., $\lambda >> \mu$.

Advantages of Evolution Strategies

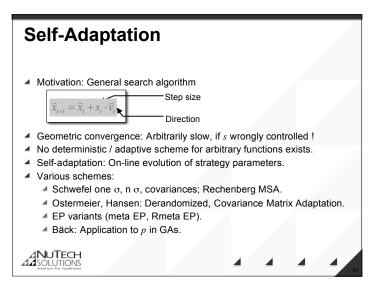
- Self-Adaptation of strategy parameters.
- Direct, global optimizers!
- Extremely good in solution quality.
- Very small number of function evaluations.
- Dynamical optimization problems.
- Design optimization problems.
- ▲ Discrete or mixed-integer problems.
- Experimental design optimisation.
- Combination with Meta-Modeling techniques.

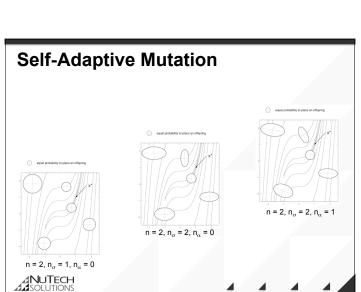
Mutation

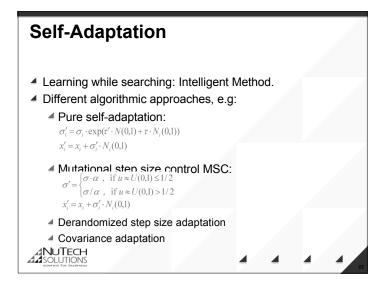
Creation of a new solution:

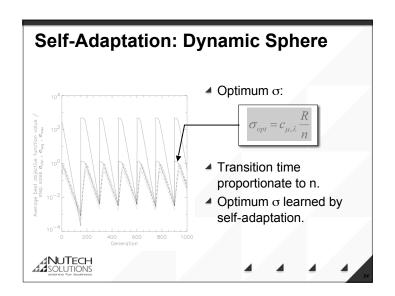
 $x_i' = x_i + \sigma_i' \cdot N_i(0,1)$

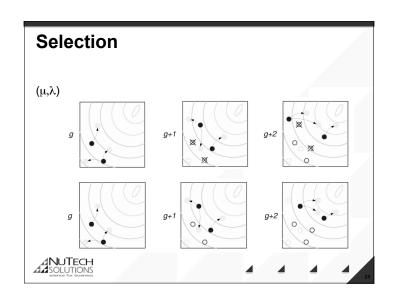
- σ-adaptation by means of
 - 1/5-success rule.
 - Self-adaptation.
- ▲ More complex / powerful strategies:
 - Individual step sizes σ_i.
 - Covariances.
- Convergence speed:
 - \Rightarrow Ca. 10 · n down to 5 · n is possible.

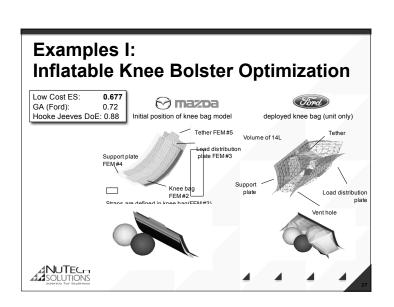






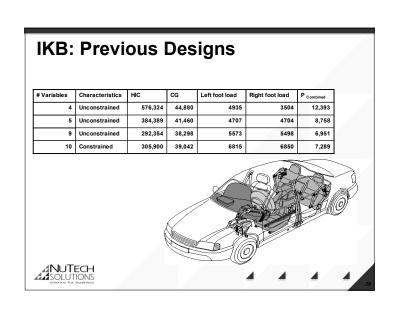




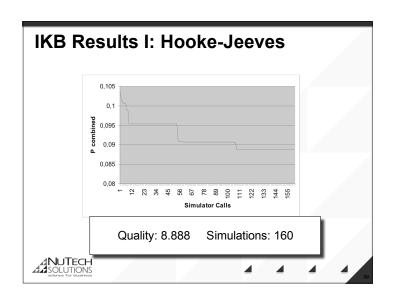


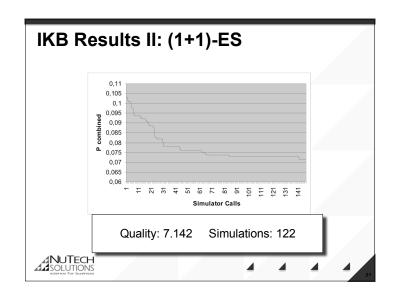
Possible Selection Operators 4 (1+1)-strategy: one parent, one offspring. 4 (1,λ)-strategies: one parent, λ offspring. 4 Example: (1,10)-strategy. 4 Derandomized / self-adaptive / mutative step size control. 4 (μ,λ)-strategies: μ>1 parents, λ>μ offspring 4 Example: (2,15)-strategy. 4 Includes recombination. 4 Can overcome local optima. 4 (μ+λ)-strategies: elitist strategies.

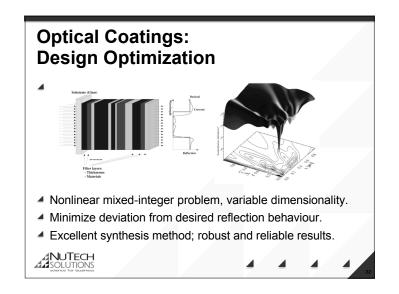
NUTECH

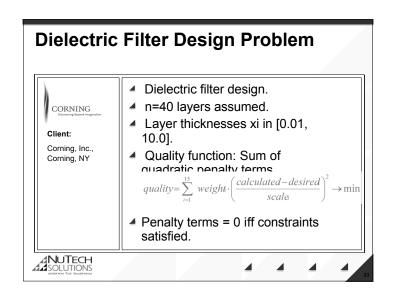


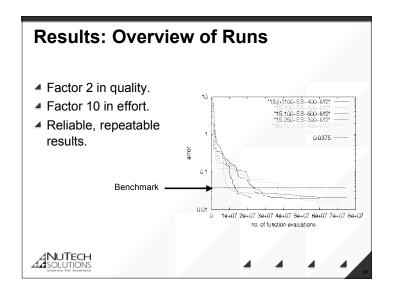
KB: Problem Statement					
Objective: Min Ptotal Subject to:		Left	Femur load <= 7000		
		Right	Femur load <= 7000		
Design Variable	Description	Base Design 1	Base Design 2	GA (Yan Fu)	
dx	IKB center offset x	0	0	0,01	
dz	IKB center offset y	0	0	-0,01	
rcdex	KB venting area ratio	1	1	2	
massrat	KB mass inflow ratio	1	1	1,5	
rcdexd	DB venting area ratio	1	1	2,5	
Dmessratf	DB high output mass inflow ratio	- 1	1	1,1	
Dmessratl	DB low output mass inflow ratio	1	1	1	
dbfire	DB firing time	0	0	-0,003	
dstraprat	DB strap length ratio	1	1	1,5	
em	Load of load limiter (N)	3000	3000	2000	
Performance Response	Description				
NCAP_HIC_50	HIC	590	555.711	305,9	
NCAP_CG_50	CG	47	47.133	39,04	
NCAP_FMLL_50	Left foot load	760	6079	6815	
NCAP_FMRL_50	Right foot load	900	5766	6850	
P combined (Quality)		13.693	13.276	7,289	

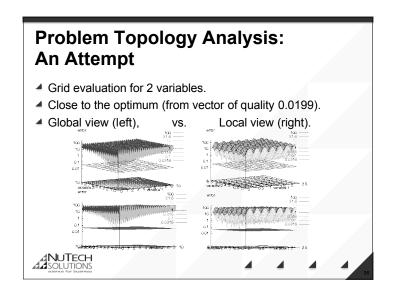


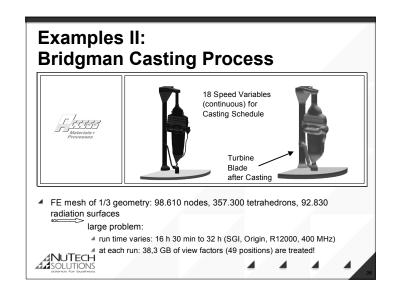


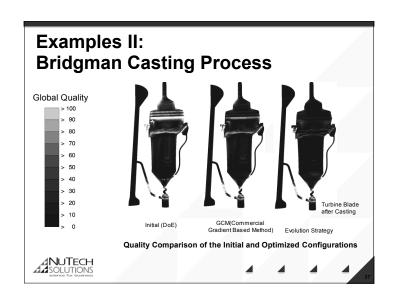


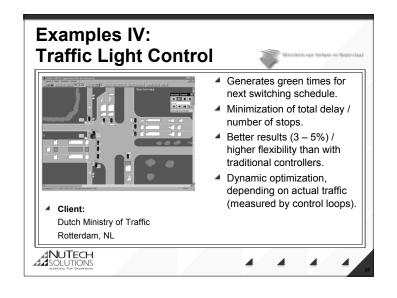


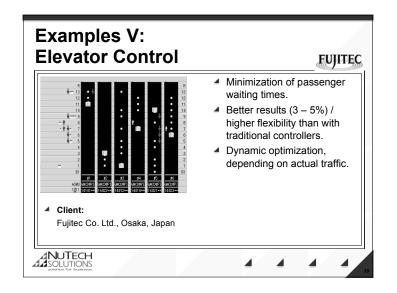


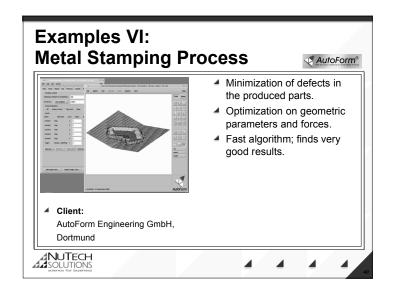


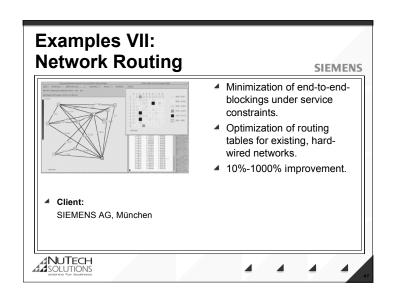


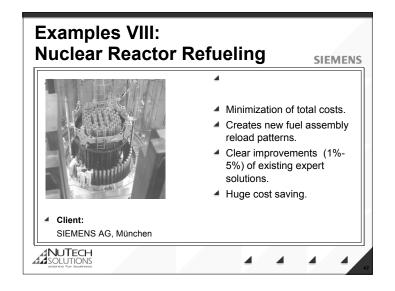


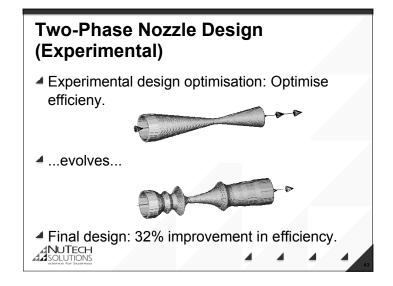












Advantages of Evolution Strategies

- Self-Adaptation of strategy parameters.
- Direct, global optimizers!
- Extremely good in solution quality.
- Very small number of function evaluations.
- Dynamical optimization problems.
- Design optimization problems.
- Discrete or mixed-integer problems.
- Experimental design optimisation.
- Combination with Meta-Modeling techniques.

Multi Criteria Optimization (1)

- Most Problems: More than one aspect to optimise.
- Conflicting Criteria!
- Classical optimization techniques map multiple criteria to one single value, e.g. by weighted sum:

$$f(x) = \sum_{i} w_{i} f_{i}(x)$$

- But: How can optimal weights be determined?
- Evolution Strategies can directly use the concept of Pareto Dominance

Multi Criteria Optimization (3) Alternative Solution Theoretical Pareto Set Weighted Sum Solution Criterion 1

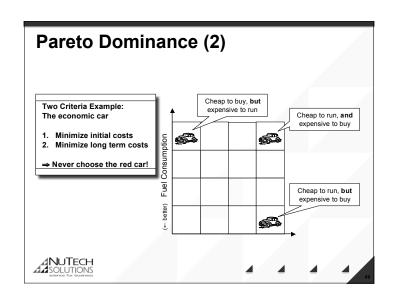
Multi Criteria Optimization (2)

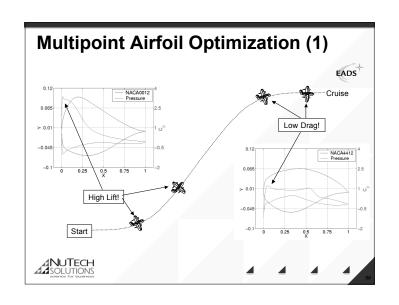
- ▲ Multi Criteria Optimization does not mean:
 - Decide on "What is a good compromise" before optimization (e.g. by choosing weighting factors).
 - Find one single optimal solution.
- Multi Criteria Optimization means:
 - Decide on a compromise after optimization.
 - Find a set of multiple compromise solutions.
- Evolutionary Multi Criteria Optimization means:
 - Use the population structure to represent the set of multiple compromise solutions.
 - Use the concept of Pareto Dominance

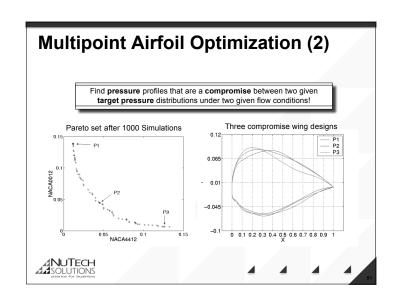
Pareto Dominance

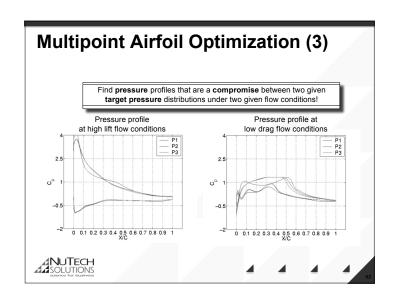
Assume two design solutions a and b with $F(a) = (f_1(a),...,f_k(a)) \text{ and } F(b) = (f_1(b),...,f_k(b))$

- ▲ If all $f_i(a)$ are better than $f_i(b)$, then a dominates b.
- ▲ If all $f_i(b)$ are better than $f_i(a)$, then b dominates a.
- ▲ If there are i and j, such that
 - $\blacktriangleleft f_i(a)$ is better than $f_i(b)$, but
 - f_j (b) is better than f_j(a), then
- a and b do not dominate each other ("are equal", "are incomparable")









Noisy Fitness Functions: Thresholding

- Fitness evaluation is disturbed by noise, e.g.: stochastic distribution of passengers within an elevator system.
- Traffic control problems in general.
- ♣ Probability of generating a <u>real</u> improvement is very small.
- Introduce explicit barrier into the (1+1)-ES to distinguish real improvements from overvalued individuals:

Only accept offspring if it outperforms the parent by at least a value of τ (threshold).

Influence of Thresholding (I) solid lines: normalized progress rate $arphi^*$ $\hat{\tau}^* = \sigma^*$ dashed lines: $\tau^* = 0$ crosses: data measured in ESruns (sphere) noise strength (from top to -0.1 bottom) -0.15 $\sigma_{c}^{*} = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0$ normalized mutation strength σ^* NUTECH SOLUTIONS

Finding the Optimal Threshold

- **▲** For Gaussian noise $\varepsilon \approx N(0, \sigma_{\varepsilon}^2)$
 - General optimal threshold:

$$\hat{\tau}^* = \sigma_{\varepsilon}^{*2}$$

▲ For the sphere model $Q(R) = Q_0 + cR^{\alpha}$ (where R is the distance to the optimum):

