Evolving Neural Networks

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
http://www.cs.utexas.edu/users/risto
Why Neuroevolution?

- Neural nets powerful in many statistical domains
 - E.g. control, pattern recognition, prediction, decision making
 - No good theory of the domain exists
- Good supervised training algorithms exist
 - Learn a nonlinear function that matches the examples
- What if correct outputs are not known?
Sequential Decision Tasks

- POMDP: Sequence of decisions creates a sequence of states
- No targets: Performance evaluated after several decisions
- Many important real-world domains:
 - Robot/vehicle/traffic control
 - Computer/manufacturing/process optimization
 - Game playing
Forming Decision Strategies

- Traditionally designed by hand
 - Too complex: Hard to anticipate all scenarios
 - Too inflexible: Cannot adapt on-line

- Need to discover through exploration
 - Based on sparse reinforcement
 - Associate actions with outcomes
Standard Reinforcement Learning

- AHC, Q-learning, Temporal Differences
 - Generate targets through prediction errors
 - Learn when successive predictions differ

- Predictions represented as a value function
 - Values of alternatives at each state

- Difficult with large/continuous state and action spaces
- Difficult with hidden states
Neuroevolution (NE) Reinforcement Learning

NE = constructing neural networks with evolutionary algorithms

- Direct nonlinear mapping from sensors to actions

- Large/continuous states and actions easy
 - Generalization in neural networks

- Hidden states disambiguated through memory
 - Recurrency in neural networks
How well does it work?

- Difficult RL benchmark: Non-Markov Pole Balancing
- NE 2 orders of magnitude faster than standard RL
- NE can solve harder problems

<table>
<thead>
<tr>
<th>Poles</th>
<th>Method</th>
<th>Evals</th>
<th>Succ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>VAPS</td>
<td>500,000</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>SARSA</td>
<td>13,562</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td>Q-MLP</td>
<td>11,331</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NE</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>NE</td>
<td>24,543</td>
<td></td>
</tr>
</tbody>
</table>
Role of Neuroevolution

- Powerful method for sequential decision tasks
 - Optimizing existing tasks
 - Discovering novel solutions
 - Making new applications possible

- Also may be useful in supervised tasks
 - Especially when network topology important

- Unique model of biological adaptation and development
Outline

- Basic neuroevolution techniques
- Advanced techniques
 - E.g. combining learning and evolution
- Extensions to applications
- Application examples
 - Control, Robotics, Artificial Life, Games
Neuroevolution Decision Strategies

- Input variables describe the state
- Output variables describe actions
- Network between input and output
 - Hidden nodes
 - Weighted connections
- Execution:
 - Numerical activation of input
 - Nonlinear weighted sums
- Performs a nonlinear mapping
 - Memory in recurrent connections
- Connection weights and structure evolved
Conventional Neuroevolution (CNE)

- Evolving connection weights in a population of networks

- Chromosomes are strings of weights (bits or real)
 - E.g. 10010110101100101111001
 - Usually fully connected, fixed topology
 - Initially random

31, 65, 66
Conventional Neuroevolution (2)

- Each NN evaluated in the task
 - Good NN reproduce through crossover, mutation
 - Bad thrown away
 - Over time, NNs evolve that solve the task

- Natural mapping between genotype and phenotype

- GA and NN are a good match!
Problems with CNE

- Evolution converges the population (as usual with EAs)
 - Diversity is lost; progress stagnates
- Competing conventions
 - Different, incompatible encodings for the same solution
- Too many parameters to be optimized simultaneously
 - Thousands of weight values at once
Evolving individual neurons to cooperate in networks (Agogino GECCO’05)

E.g. Enforced Sub-Populations (ESP)
 – Each (hidden) neuron in a separate subpopulation
 – Fully connected; weights of each neuron evolved
 – Populations learn compatible subtasks
Evolving Neurons with ESP

- Evolution encourages diversity automatically
 - Good networks require different kinds of neurons
- Evolution discourages competing conventions
 - Neurons optimized for compatible roles
- Large search space divided into subtasks
 - Optimize compatible neurons
Advanced NE 2: Evolutionary Strategies

- Evolving complete networks with ES (CMA-ES25)
- Small populations, no crossover
- Instead, intelligent mutations
 - Adapt covariance matrix of mutation distribution
 - Take into account correlations between weights
- Smaller space, less convergence, fewer conventions
Advanced NE 3: Evolving Topologies

- Optimizing connection weights and network topology
- E.g. Neuroevolution of Augmenting Topologies (NEAT)
- Based on *Complexification*

- Of networks:
 - Mutations to add nodes and connections

- Of behavior:
 - Elaborates on earlier behaviors
How Can Crossover be Implemented?

- Problem: Structures do not match

- Solution: Utilize historical markings

Genome (Genotype)

<table>
<thead>
<tr>
<th>Node</th>
<th>Genes</th>
<th>Connect. Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>Sensor</td>
<td>In 1 Out 4 Weight 0.7 Enabled Innov 1</td>
</tr>
<tr>
<td>Node 2</td>
<td>Sensor</td>
<td>In 2 Out 4 Weight -0.5 Disabled Innov 2</td>
</tr>
<tr>
<td>Node 3</td>
<td>Sensor</td>
<td>In 3 Out 4 Weight 0.5 Enabled Innov 3</td>
</tr>
<tr>
<td>Node 4</td>
<td>Output</td>
<td>In 2 Out 5 Weight 0.2 Enabled Innov 4</td>
</tr>
<tr>
<td>Node 5</td>
<td>Hidden</td>
<td>In 5 Out 4 Weight 0.4 Enabled Innov 5</td>
</tr>
</tbody>
</table>

Network (Phenotype)
How can Innovation Survive?

- Problem: Innovations have initially low fitness

- Solution: Speciate the population
 - Innovations have time to optimize
 - Mitigates competing conventions
 - Promotes diversity
How Can We Search in Large Spaces?

- Need to optimize not just weights but also topologies

- Solution: Start with minimal structure and complexify
 - Hidden nodes, connections, input features

(Whiteson GECCO’05)
• Instructions for constructing the network evolved
 – Instead of specifying each unit and connection

• E.g. Cellular Encoding (CE22)

• Grammar tree describes construction
 – Sequential and parallel cell division
 – Changing thresholds, weights
 – A “developmental” process that results in a network
Properties of Indirect Encodings

• Smaller search space
• Avoids competing conventions
• Describes classes of networks efficiently
• Modularity, reuse of structures
 – Recurrency symbol in CE: XOR \rightarrow parity
 – Useful for evolving morphology
• Not all that powerful (yet)
• Much future work needed
 – More general L-systems
 – Developmental codings, embryogeny
How Do the NE Methods Compare?

<table>
<thead>
<tr>
<th>Poles</th>
<th>Method</th>
<th>Evals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-1</td>
<td>CE</td>
<td>(840,000)</td>
</tr>
<tr>
<td></td>
<td>CNE</td>
<td>87,623</td>
</tr>
<tr>
<td></td>
<td>ESP</td>
<td>26,342</td>
</tr>
<tr>
<td></td>
<td>NEAT</td>
<td>24,543</td>
</tr>
<tr>
<td>Two-2</td>
<td>CMA-ES</td>
<td>6,061 - 25,254</td>
</tr>
<tr>
<td></td>
<td>NEAT</td>
<td>6,929</td>
</tr>
</tbody>
</table>

Two poles, no velocities, 2 different setups:

- Advanced methods better than CNE
- Advanced methods about equal
- Indirect encodings future work
- DEMO
Further NE Techniques

- Incremental evolution
 - 19, 57, 66
- Utilizing population culture
 - 4, 29
- Evolving ensembles of NNs
 - 26, 40, 63
 (Pardoe GECCO’05)
- Evolving neural modules
 - 42
- Evolving transfer functions and learning rules
 - 6, 43, 56
- Combining learning and evolution
Combining Learning and Evolution

- Good learning algorithms exist for NN
 - Why not use them as well?

- Evolution provides structure and initial weights

- Fine tune the weights by learning

- Lamarckian evolution is possible
 - Coding weight changes back to chromosome

- Difficult to make it work
 - Diversity reduced; progress stagnates
Learning can guide Darwinian evolution
- Makes fitness evaluations more accurate

With learning, more likely to find the optimum if close

Can select between good and bad individuals better
- Lamarckian not necessary

How can we implement it?
- How to obtain training targets?
Learning in a related task is sufficient

E.g. foraging for food in a microworld

- Network sees the state, outputs motor commands
- Trained with backprop to predict the next input
- Training emphasizes useful hidden-layer representations
- Allows more accurate evaluations
Evolving the Targets

- Evolve extra outputs to provide targets
- E.g. in the foraging task
 - Motor outputs and targets with separate hidden layers
 - Motor weights trained with backprop, targets evolved
 - Targets do not correspond to optimal performance: Direct system towards useful learning experiences
Targets from the Population

- Train new offspring to imitate parents/champion
 - Trained in population “culture”

- Local search around good individuals
 - Limited training: 8-20 backprop iterations

- Becomes part of the evaluation
 - Individuals evolve to anticipate training
 - Perform poorly at birth, well after training

- Evolution discovers optimal starting points for learning!
No Targets: Unsupervised Learning

- Hebbian adaptation during performance

- E.g. handwritten character recognition (Valsalam GECCO’05)
 - Evolution determines the starting point
 - Competitive learning finishes the design

- Starting points are poor recognizers
 - Only bias learning away from local minima

- Synergetic effect: Evolution utilizes learning

- Future work: Constructing developmental systems
Extending NE to Applications

- Evolving composite decision makers
- Evolving teams of agents
- Utilizing coevolution
- Real-time neuroevolution
- Combining human knowledge with evolution
Applications to Control

• Pole-balancing benchmark
 – Originates from the 1960s
 – Original 1-pole version too easy
 – Several extensions: acrobat, jointed, 2-pole, particle chasing

• Good surrogate for other control tasks
 – Vehicles and other physical devices
 – Process control
Controlling a Finless Rocket

Task: Stabilize a finless version of the Interorbital Systems RSX-2 sounding rocket

- Scientific measurements in the upper atmosphere
- 4 liquid-fueled engines with variable thrust
- Without fins will fly much higher for same amount of fuel
Active Rocket Guidance

- Used on large scale launch vehicles (Saturn, Titan)
- Typically based on classical linear feedback control
- High level of domain knowledge required
- Expensive, heavy
Rocket Stability

(a) Fins: stable

(b) Finless: unstable
Simulation Environment: JSBSim

- General rocket simulator
- Models complex interaction between airframe, propulsion, aerodynamics, and atmosphere
- Used by IOS in testing their rocket designs
- Accurate geometric model of the RSX-2
Rocket Guidance Network

pitch
yaw
roll
pitch rate
yaw rate
roll rate
\(\alpha \)
\(\beta \)
throttle 1
throttle 2
throttle 3
throttle 4
altitude
volecity

throttle commands
SCALE
\(u_1 \)
\(u_2 \)
\(u_3 \)
\(u_4 \)
Results: Control Policy
Results: Apogee

- Altitude: ft. x 1000
- Time: seconds

Graph showing altitude over time for different conditions:
- Full fins
- 1/4 fins
- Finless

Maximum altitude reached:
- 20.2 miles
- 16.3 miles

Legend:
- DEMO
Driving and Collision Warning

- Goal: evolve a collision warning system
 - Looking over the driver’s shoulder
 - Adapting to drivers and conditions
 - Collaboration with Toyota (Stanley GECCO’05)
The RARS Domain

- RARS: Robot Auto Racing Simulator
 - Internet racing community
 - Hand-designed cars and drivers
 - First step towards real traffic
Evolving Good Drivers

- Evolving to drive fast without crashing (off road, obstacles)
- Discovers optimal driving strategies (e.g. how to take curves)
- Works from range-finder & radar inputs
- Works from raw visual inputs
- DEMO
Evolving Warnings

- Evolving to estimate probability of crash
- Predicts based on subtle cues (e.g. skidding off the road)
- Compensates for disabled drivers
- Human drivers learn to drive with it!
- DEMO
Applications to Robotics

• Controlling a robot arm\(^{34}\)
 – Compensates for an inop motor

• Robot walking\(^{24,45}\)
 – Various physical platforms

• Mobile robots\(^{9,12,38}\)
 – Transfers from simulation to physical robots
 – Evolution possible on physical robots
Personal Satellite Assistant

● Floating robot assistant to an astronaut
 – Needs to stay close but not crash
 – Two thrusters: Difficult to control

● Novel control strategies can be evolved
 – Stop on a spot by making a circle! (Sit GECCO’05)

● DEMO
Robotic Soccer

- E.g. robocup soccer “Keepaway” task
- Three keepers, one (algorithmic) taker
- Includes many behaviors:
 Get-Open, Intercept, Evaluate-Pass, Pass...
Direct Evolution

- Mapping sensors directly to actions
 - Difficult to separate behaviors
 - Ineffective combinations evolve

- DEMO
Cooperative Coevolution

- Evolve multiple actions
 - Each one in a separate network
 - Decision tree to decide on actions
 - Or evolve a decision network
Cooperative Coevolution (2)

- Networks learn individual tasks
- Learn to anticipate other tasks
 - Lining up for a pass
- Cooperative coevolution of composite behavior
- DEMO
Applications to Artificial Life

- Gaining insight into neural structure
 - E.g. evolving a command neuron
- Emergence of behaviors
 - Signaling, herding, hunting...
- Future challenges
 - Emergence of language
 - Emergence of community behavior
Emergence of Cooperation

Multi-Agent ESP68

- Natural extension of ESP to multiple networks
- Each network constructed from its own subpopulations
- Example: A team catching a fast prey
 - 3 predators, toroidal world
 - Prey as fast, runs away from nearest agent
 - Need to coordinate an approach
Communication-based Cooperation

- Individual controllers for each agent
 - Observe the prey and the other predators
 - Develop flexible roles

- Distributed control works better than central control
 - Subtasking through global fitness
Role-Based Cooperation

- Each controller only sees the prey
 - Coordination through stigmergy
 - Develop efficient roles
- More effective than communication-based
 - Works like a well-practiced soccer team!
- Multiagent NE powerful in discovering team behaviors
Competitive Coevolution

- Evolution requires an opponent to beat
- Such opponents are not always available
- Co-evolve two populations to outdo each other
- How to maintain an arms race?
Competitive Coevolution with NEAT

- Complexification elaborates instead of alters
 - Adding more complexity to existing behaviors

- Can establish a coevolutionary arms race
 - Two populations continually outdo each other
 - Absolute progress, not just tricks
Robot Duel Domain

- Two Khepera-like robots forage, pursue, evade
 - Collect food to gain energy
 - Win by crashing to a weaker robot
Early Strategies

- Crash when higher energy
- Collect food by accident
- DEMO
Mature Strategies

- Collect food to gain energy
- Avoid moving to lose energy
- Standoff: Difficult to predict outcome
- DEMO
Sophisticated Strategy

- “Fake” a move up, force away from last piece
- Win by making a dash to last piece
- Complexification \rightarrow arms race
- DEMO
Applications to Games

- Good research platform
 - Controlled domains, clear performance, safe
 - Economically important; training games possible

- Board games: beyond limits of search
 - Evaluation functions in checkers, chess
 - Filtering information in go, othello
Discovering Novel Strategies in Othello

- Players take turns placing pieces
- Each move must flank opponent’s piece
- Surrounded pieces are flipped
- Player with most pieces wins
Strategies in Othello

- Positional
 - Number of pieces and their positions
 - Typical novice strategy

- Mobility
 - Number of available moves: force a bad move
 - Much more powerful, but counterintuitive
 - Discovered in 1970’s in Japan
- Network sees the board, suggests moves by ranking
- Networks maximize piece counts throughout the game
- A positional strategy emerges
- Achieved 97% winning percentage
Evolving Against an α-β Program

- Iago’s positional strategy destroyed networks at first
- Evolution turned low piece count into an advantage
- Mobility strategy emerged!
- Achieved 70% winning percentage
Example game

- Black’s positions strong, but mobility weak
- White (the network) moves to f2
- Black’s available moves b2, g2, and g7 each will surrender a corner
- The network wins by forcing a bad move
Neuroevolution discovered a strategy novel to us

“Evolution works by tinkering”

– So does neuroevolution

– Initial disadvantage turns into novel advantage
Video Games

- Economically and socially important

- Adaptation an important future goal
 - More challenging, more fun games
 - Possible to use for training people

- How to make evolution run in real time?
Real-time NEAT

• A parallel, continuous version of NEAT49

• Individuals created and replaced every n ticks

• Parents selected probabilistically, weighted by fitness

• Long-term evolution equivalent to generational NEAT

49
NERO: A Complex Game Platform

- Teams of agents trained to battle each other
 - Player trains agents through exercises
 - Agents evolve in real time
- New genre: Learning is the game
- Challenging platform for reinforcement learning
 - Real time, open ended, requires discovery
- DEMO
Future Challenge: Utilizing Knowledge

- Given a problem, NE discovers a solution by exploring
 - Sometimes you already know (roughly) what works
 - Sometimes random initial behavior is not acceptable

- How can domain knowledge be utilized?
 - By incorporating rules
 - By learning from examples
Incorporating Rules into NE

E.g. how to go around a wall in NERO

• Specify as a rule:
 – `wall_ahead`: move_forward, turn_right
 – `wall_45deg_left`, move_forward, turn_right_slightly

• Convert into a network with KBANN

\[27\]
Incorporating Rules into NE (2)

- KBANN network added to NEAT networks
 - Treated as complexification
 - Continues to evolve
 - If advice is useful, it stays

- Initial behaviors, on-line advice
- Injecting human knowledge as rules
- DEMO
Lessons from NERO

- NEAT is a strong method for real-time adaptation
 - Complex team behaviors can be constructed
 - Novel strategies can be discovered
- Problem solving with human guidance
- Coevolutionary arms race
- NE makes a new genre of games possible!
Numerous Other Applications

- Creating art, music
- Theorem proving
- Time-series prediction
- Computer system optimization
- Manufacturing optimization
- Process control optimization
- Etc.
Evaluation of Applications

- Neuroevolution strengths
 - Can work very fast, even in real-time
 - Potential for arms race, discovery
 - Effective in continuous, non-Markov domains

- Requires many evaluations
 - Requires an interactive domain for feedback
 - Best when parallel evaluations possible
 - Works with a simulator & transfer to domain
Conclusion

- NE is a powerful technology for sequential decision tasks
 - Evolutionary computation and neural nets are a good match
 - Lends itself to many extensions
 - Powerful in applications

- Easy to adapt to applications
 - Control, robotics, optimization
 - Artificial life, biology
 - Gaming: entertainment, training

- Lots of future work opportunities
 - Theory not well developed
 - Indirect encodings
 - Learning and evolution
 - Knowledge and interaction
References

Machine Learning (In press).

