In Vitro Molecular Evolution

GECCO-2005 Tutorial June 26, 2005, Washington, D.C.

Tak Zhang

Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Seoul 151-742, Korea

> btzhang@cse.snu.ac.kr http://bi.snu.ac.kr/

Scope of This Tutorial

- What is "in vitro evolution"?
- How do we exploit this as EC technology, i.e. for molecular evolutionary computation (MEC)?
- What new opportunities this offers to EC research ers?
 - ♦ In theory and in applications
 - ♦ In science and in technology
- What challenges the new applications face?
- Where can I find more materials?

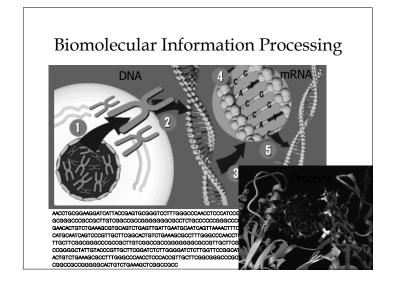
Natural Computation

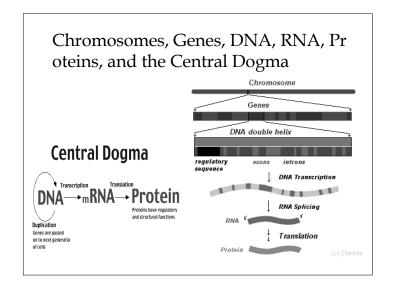
- Neural Computation
 - ♦ A network of neurons
- Evolutionary Computation
 - ◆ A population of chromosomes
- Molecular Computation
 - ♦ A test tube of molecules
- Molecular Evolutionary Computation ← This tutorial
 - ♦ A test tube of "evolving" molecules
 - ♦ "In vitro molecular evolution"

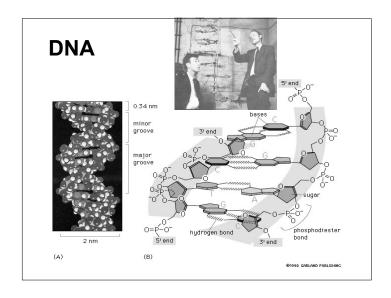
Overview

Molecular Computation (without Evolution)
◆ Benett, Conrad, Adleman
 Molecular Computing Examples
In Vitro Evolution (without Computation)
◆ Eigen's Molecular Theory of Evolution
◆ In Vitro Molecular Evolution
Molecular Evolutionary Computation (MEC) in Vitro: Theory
◆ The Theory of Bayesian Evolution
◆ The Probabilistic Library Model (PLM)
 Molecular Programming (MP): In Vitro Evolution of Genetic Programs 68
◆ Evolving Genetic Programs in a Test Tube
◆ Empirical Results
New Issues for EC Researchers96
♦ Research Issues
♦ New Applications
Books and Web Sites

Molecular Computation (without Evolution)





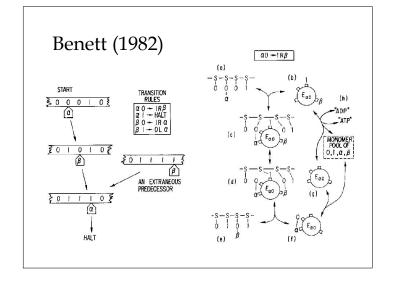


Molecular Computing: A Brief History

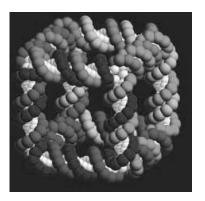
- Feynman (1959)
 - ◆ Potential of molecules
- Benett (1982)
 - ♦ DNA and thermodynamic computation
- Seeman (1991)
 - ♦ Self-assembly of a DNA cube
- Conrad (1992)
 - ♦ Lock-and-key paradigm for molecular computing
- Adleman (1994)
 - ♦ Experimental demonstration of DNA computing

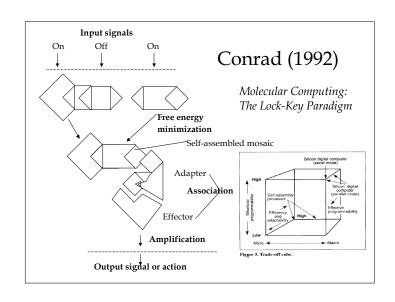
Feynman (1959)

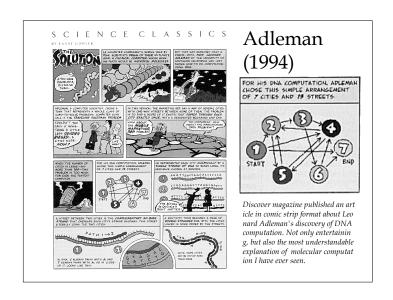
- "There's Plenty of Room at the Bott om"
- Biological molecules can carry enor mous amounts of information in an e xceedingly small space.
 - → Inborn computing power!

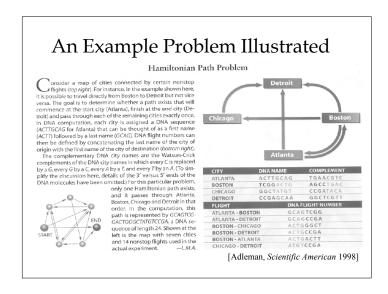


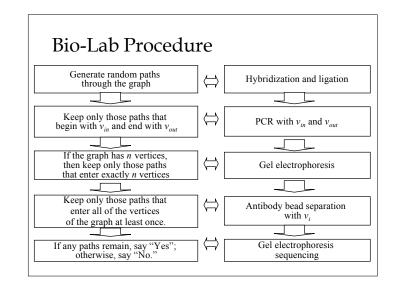
Seeman (1991)

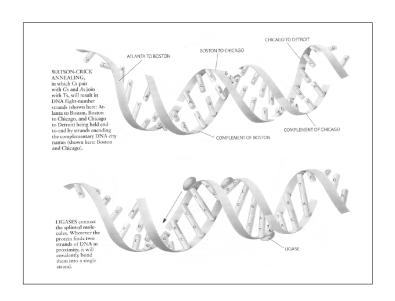


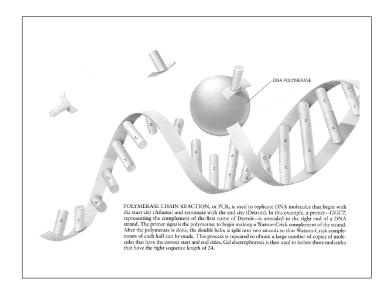


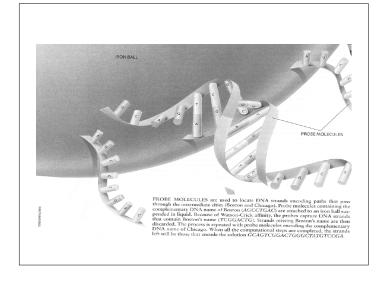










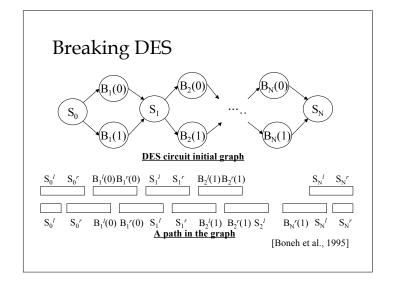


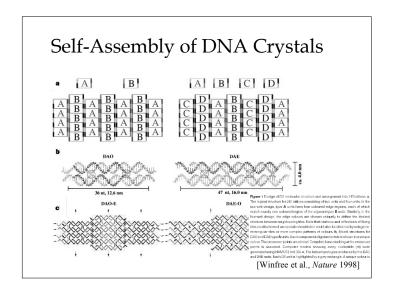
Basic Ideas in DNA Computing

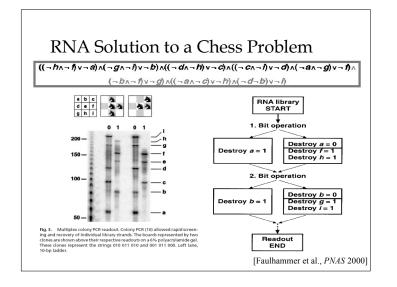
- Exhaustive search
- Parallelism
- Density
- Miniaturization
- Energy efficiency

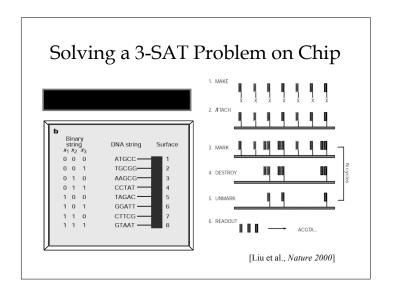
Recent Applications

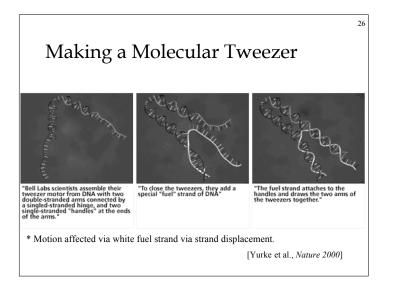
- Computational
 - ◆ Cryptography (Boneh et al., 1995)
 - ◆ Chess (Landweber et al., PNAS 2000)
 - ◆ 20-var 3-SAT (Adleman, Science 2002)
 - ◆ Tic-Tac-Toe (Stojanovic, Nature Biotech 2004)
- Biology and Medicine
 - ◆ Genetic switch (Weiss et al., PNAS 2002)
 - ♦ Gene control (Benenson et al., Nature 2004)
- Nanotechnology
 - ◆ DNA crystals (Winfree & Seeman et al., *Nature* 1998)
 - ♦ Molecular tweezer (Yurke & Turberfield et al., *Nature* 2000)
 - ◆ TX complexes (Reif & Seeman et al, Nature 2000)
 - ◆ Tiles (LaBean & Reif, 2003)

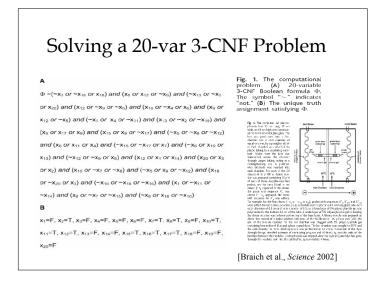


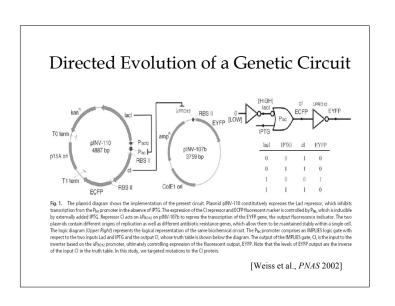


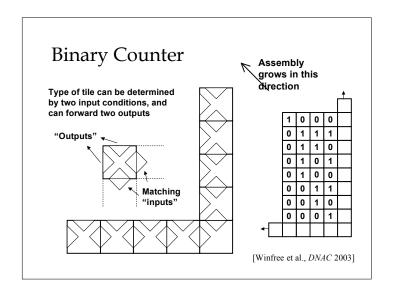


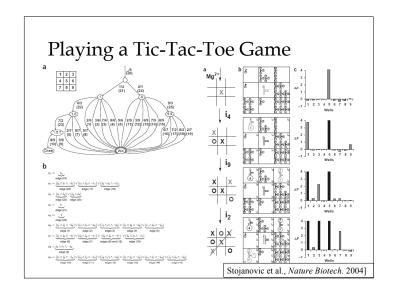


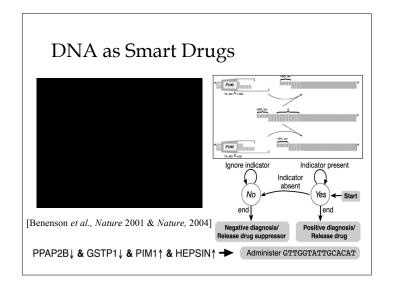








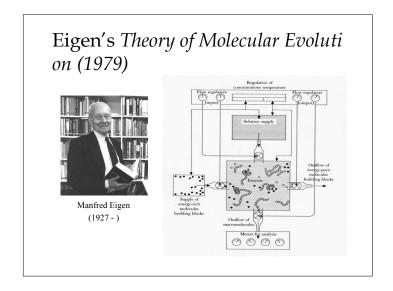


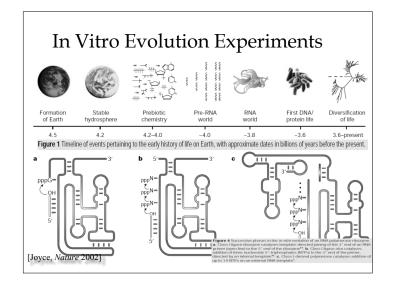


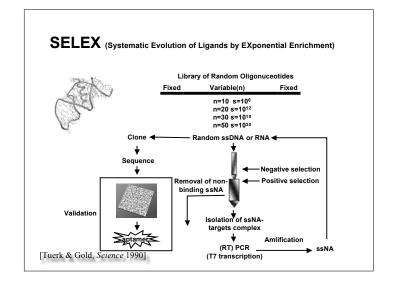
Difficulties in Current Molecular Computing Paradigms

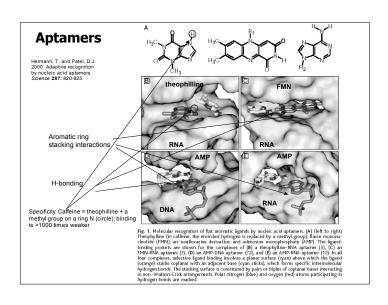
- Scalability
 - ♦ For big problems, exhaustive search is not effective.
- Reliability
 - ♦ DNA reaction is error-prone.
- Fault tolerance
 - ♦ What if a single molecule malfunctions?
- Design
 - ♦ How to design the decision (or diagnosis) rules?

In Vitro Evolution (without Computation)









Insights into the prebiotic earth

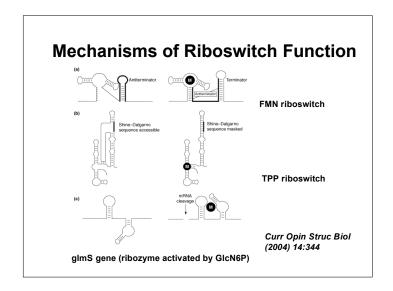
 Identification of the catalytic potential of RNA and DNA; Selection for enzymatic functions (ligase, polymerase, RNase, peptide bond formation, Diels-Alder reaction)

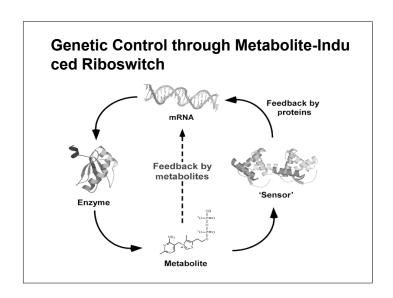
Applied (Medical) research

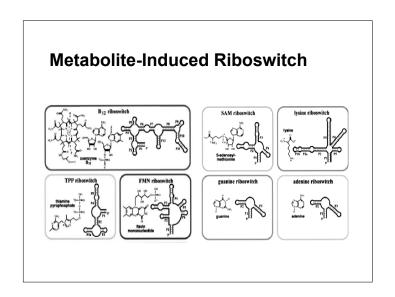
• diagnostic (ELISA, FACS) and therapeutic use of aptamers as replacement and or extension to antibodies (K,'s in the pM to nM range)

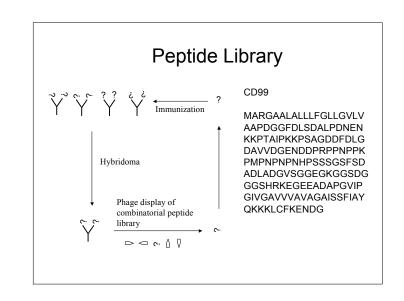
Genomic SELEX and regulatory loops

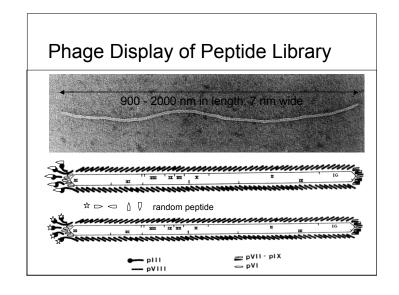
 random integration of genomic sequences into SELEX oligonucleotides; selection for unidentified binding sites to regulatory proteins (MetJ; MS2 coat protein, U1A protein)

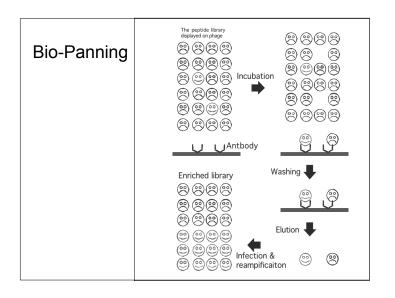


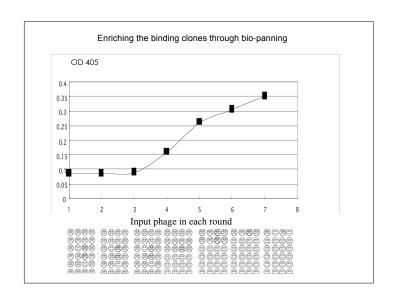


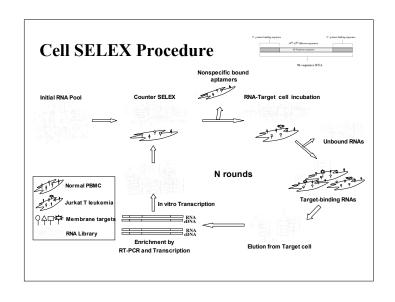


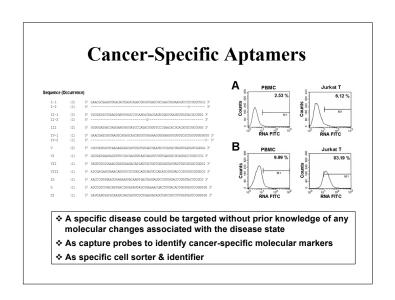


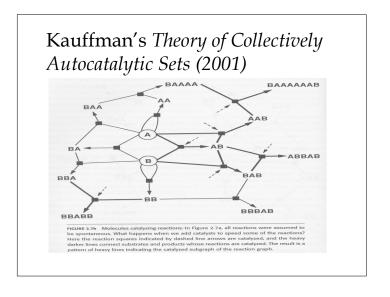












In Vitro (Molecular) Evolution: Syno nyms

- In vitro selection
- Directed evolution
- In vitro evolution
- Molecular evolution
- SELEX
- Bio-panning
- "In vitro molecular evolution"

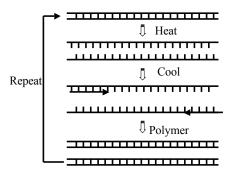
Molecular Evolutionary Computatio n (MEC) in Vitro: Theory

Motivation: In Vitro Evolution as EC Te chnology

- Each DNA molecule represents an individual at na noscale
- A huge population of up to Avogadro number (6 x 10²³) molecules
- Molecular recognition by chemistry
- Exponential self-replication by PCR
- Massively parallel variation-selection operators
- Ultra-low energy consumption
- Evolvable "wet" "molecular" hardware



Self-Replication



Why Try Molecular EC?

- 6.022×10^{23} molecules / mole
- · Massively Parallel Search
 - ◆ Desktop: 109 operations / sec
 - ◆ Supercomputer: 10¹² operations / sec
 - 1 μ mol of DNA: 10²⁶ reactions
- Favorable Energetics: Gibbs Free Energy
 - 1 J for 2×10^{19} operations
- Storage Capacity: 1 bit per cubic nanometer
- The fastest supercomputer vs. DNA computer
 - ♦ 10⁶ op/sec vs. 10¹⁴ op/sec
 - ♦ 10⁹ op/J vs. 10¹⁹ op/J (in ligation step)
 - ♦ 1bit per 10¹² nm³ vs. 1 bit per 1 nm³ (video tape vs. molecules)

In Vitro Evolutionary Computation

- Problems in Existing DNA Computing Paradigms: Revisited
 - ♦ Scalability
 - For big problems, exhaustive search does not work.
 - ♦ Reliability
 - DNA reaction is error-prone.
 - ♦ Fault tolerance
 - What if a single molecule malfunctions?
 - ♦ Desig
 - How to design the decision (or diagnosis) rules?
- In Vitro Evolution + Molecular Computation
 - = Molecular Evolutionary Computation (MEC)
 - = Bayesian Evolution + Probabilistic Library Model

The Theory of Bayesian Evolution

- Evolution as a Bayesian inference process
- Evolutionary computation (EC) is viewed as an ite rative process of *generating the individuals of ever higher posterior probabilities* from the priors and t he observed data.

Bayesian Formulation of EC

• Bayes' rule for combining priors and likelihoods:

$$P(A \mid D) = \frac{P(D \mid A)P(A)}{P(D)} = \frac{P(D \mid A)P(A)}{\int_{A} P(D \mid A)P(A)}$$

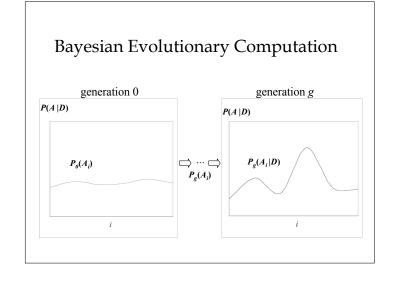
• Evolutionary computation (EC) can estimate the posterior probability of model A_i using the population A(g):

$$P_{g}(A_{i} \mid D) = \frac{P(D \mid A_{i})P_{g-1}(A_{i})}{\sum_{A_{j} \in A(g)} P(D \mid A_{j})P_{g-1}(A_{j})}$$

• The fittest model for the Bayesian EC to find is:

$$A_{MAP}^{g} = \min_{g \le g_{\max}} \underset{A_{i} \in A(g)}{\operatorname{arg max}} \{ P_{g}(A_{i} \mid D) \}$$

[Zhang, CEC-99]



Bayesian Evolutionary Algorithm (BEA)

- 1. Sample M individuals A_i (i=1,...,M) from $P_o(A)$. Set g=1.
- 2. Compute the posterior fitness $P_i(g) = P_g(A_i|D)$ for i=1,...,M:

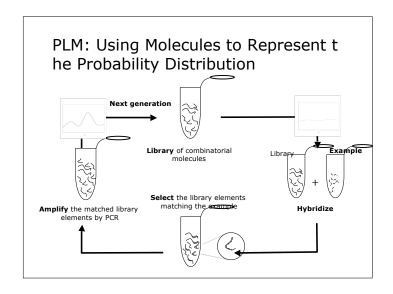
$$P_{g}(A_{i} \mid D) = \frac{P(D \mid A_{i})P_{g-1}(A_{i})}{\sum_{A_{j} \in A(g)} P(D \mid A_{j})P_{g-1}(A_{j})}$$

3. Generate offspring A_i by sampling from the posterior distribution using variation op erators, such as mutation and recombination:

$$P_{g+1}'(A_i^{'}\mid D) = \sum_{A_i\in\mathcal{A}(g)} P_g(A_i\mid D) P(A_i^{'}\mid A_i)$$
 4. Select the individuals into the next generation with acceptance probability

$$a_{g}(A_{i}^{'}|A_{i}) = \min \left\{ 1, \frac{P_{g}(A_{i}^{'}|D)}{P_{g}(A_{i}|D)} \right\}$$

5. Revise the priors $P_{\sigma}(A) = h(P_{\sigma-1}(A), P_{\sigma}(A \mid D))$. Set g=g+1 and go to step 2.



The Probabilistic Library Model (PLM)

- A library of DNA molecules represents the empirical distribution of data variables.
- Each library element consists of *n* variables, $X_1, ..., X_n$.
- A big number of molecules are maintained in the library.
 - **♦** $L = \{ \mathbf{x}_i | i = 1,...,N \}$
 - ♦ N: typically 10¹⁵ with 10 nM
- Duplications of elements are allowed. And the number of d uplications is proportional to the strength of the element.
- The library is so maintained that it represents the joint prob ability distribution of the data variables.

$$P(X) = P(X_1, \dots, X_n)$$

[Zhang, DNAC-2004]

The PLM as a Pattern Classifier

- Assume L contains sequence patterns x_i with kn own labels y_i (training set)

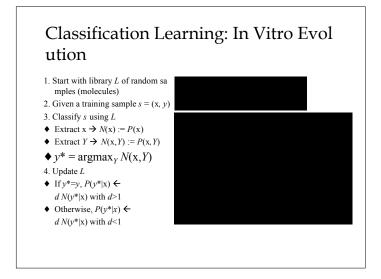
 - $x_i = \{A, T, G, C\}^n$: observable input, e.g. DNA sequenc e
 - $y_i = \{0, 1\}$, observable output, e.g. cancer or normal
- Given a query sequence x_a
 - ◆ Put -x_a into the test tube -x: complementary to x
- Find the correct class y_a for x_a (classification)
 - $\oint y_q = 1$: cancer
 - ϕ $y_a = 0$: normal

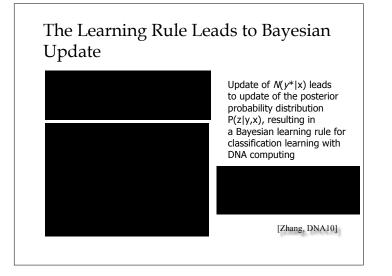
The PLM (cont'd)

- The probability of variable X_k having value x_k is computed chemically by putting in the library the complementary seq uence -x_k of the query sequence x_k and extracting the hybri dized sequences followed by normalization.
 - \bullet $P(X_k=x_k) \sim c(x_k)/|L|$
- Conditional probabilities are computed by the relative freq uencies of the molecules.
 - $P(X_i|X_k) = P(X_i,X_k) / P(X_k)$
 - \bullet Here $P(X_i = x_i, X_k = x_k) \sim c(x_i, x_k)/|L|$ and $P(X_k = x_k) \sim c(x_k)/|L|$
- The library as an ensemble
- Probabilistic computation
- Massively parallel computation of probabilities

Classification Decision: Probabilistic Formulation

- *P*(*X*): Probability of observing protein sequence *X*
- P(X,Y): Probability of sequence X being in class Y
- P(X,Y,Z): Probability of se quence X being in class Y with some parameter Z
- P(Y|X): Conditional probability of class Y given X





PLM vs. Probabilistic Model-Buildin g GAs (or EDAs)

- Some recent genetic and evolutionary algorithms build explicit probabilistic models for the population.
- These distribution-estimation algorithms (EDAs) generate of fspring by sampling from the probabilistic model rather than using crossover and mutation.
- Like EDAs, the probabilistic library model (PLM) generates the offspring by sampling from a probability distribution.
- Unlike in EDAs, in PLM no extra probabilistic model is buil t. The PLM itself represents a probability distribution.
- The use of a huge number of molecules (10¹⁵ or more) enables the test tube to represent the empirical probability distribution.

Molecular Programming (MP): In Vitro Evolution of Genetic Progr ams

Molecular Programming (MP): Evolving Genetic Programs in a Test Tube

- Theory
 - ♦ Bayesian evolution [Zhang, CEC-99; Zhang, Handbook-2003]
- Model
 - ◆ Probabilistic library model [Zhang, DNA10 & DNA11]
- Algorithm
 - ♦ Molecular algorithms [Zhang, GP-98]
- Representation
 - ◆ Decision lists [Zhang, GECCO-2005]
- Operators
 - ♦ Molecular operators for variation and selection [Zhang, GECCO-2 005]

Step 1: Probability Distribution in the Library

$$D = \{(\mathbf{x}_i, y_i)\}_{i=1}^K \mathbf{x}_i = (x_{i_1}, x_{i_2}, \dots, x_{i_n}) \in \{0,1\}^n$$
$$y_i \in \{0,1\}$$

$$P(X,Y) \approx \frac{1}{|L|} \sum_{i=1}^{|L|} f_i^{(n)}(X_1, X_2, ..., X_n, Y)$$

Step 2: Presentation of an Example (or Query)

$$P(\mathbf{x}_i, y_i | \mathbf{x}_q, y_q) = \frac{\exp(-\Delta G(\mathbf{x}_i, y_i | \mathbf{x}_q, y_q))}{\sum_i \exp(-\Delta G(\mathbf{x}_i, y_i | \mathbf{x}_q, y_q))}$$

Molecular Programming of the PLM

- 1. Let the library L represent the current distribution P(X,Y).
- 2. Get a training example (\mathbf{x}, y) .
- 3. Classify \mathbf{x} using L as follows
 - 3.1 Extract all molecules matching \mathbf{x} into M.
 - 3.2 From M separate the molecules into classes:

 Extract the molecules with label Y=0 into M⁰

 Extract the molecules with label Y=1 into M¹
 - 3.3 Compute $y^* = \operatorname{argmax}_{Y \in \{0,1\}} |M^Y| / |M|$
- 4. Update L

If y^* =y, then $L_n \leftarrow L_{n-l} + \{\Delta \mathbf{c}(\mathbf{u}, \mathbf{v})\}$ for \mathbf{u} =x and \mathbf{v} =y for $(\mathbf{u}, \mathbf{v}) \in L_{n-l}$, If $y^* \neq \mathbf{y}$, then $L_n \leftarrow L_{n-l} - \{\Delta \mathbf{c}(\mathbf{u}, \mathbf{v})\}$ for \mathbf{u} =x and $\mathbf{v} \neq \mathbf{y}$ for $(\mathbf{u}, \mathbf{v}) \in L_{n-l}$

5.Goto step 2 if not terminated.

[Zhang, GECCO-2005]

Step 3: Classify the Example (Decision Making)

$$y^* = \arg \max_{Y \in \{0,1\}} P(Y \mid \mathbf{x})$$

$$= \arg \max_{Y \in \{0,1\}} \frac{P(Y,\mathbf{x})}{P(\mathbf{x})}$$

$$c(\mathbf{x})/|L| = |M|/|L| \approx P(\mathbf{x})$$

$$y^* = \arg \max_{Y \in \{0,1\}} c(Y \mid \mathbf{x})/|M|$$

$$= \arg \max_{Y \in \{0,1\}} c(Y \mid \mathbf{x})$$

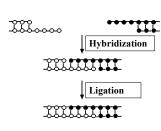
$$c(Y \mid \mathbf{x})/|M| = |M^Y|/|M| \approx P(Y \mid \mathbf{x})$$

$$\approx \arg \max_{Y \in \{0,1\}} P(Y \mid \mathbf{x})$$

Step 4: Update the Library (Learning) $L \leftarrow L + \{(\mathbf{u}, v)\} \quad L \leftarrow L - \{(\mathbf{u}, v)\}$ $P_n(X, Y \mid \mathbf{x}, y) = (1 + \delta)P_{n-1}(X, Y \mid \mathbf{x}, y)$ $\delta = \frac{P(\mathbf{x}, y \mid X, Y) - P(\mathbf{x}, y)}{P(\mathbf{x}, y)}$ $\delta = \frac{\Delta c(\mathbf{x}, y)}{c_{n-1}(\mathbf{x}, y)}$

Variation: Hybridization & Ligation

- Hybridization
 - base-pairing between two c omplementary single-strand molecules to form a double stranded DNA molecule
- Ligation
 - ◆ Joining DNA molecules tog ether
- Usually used for candidate solution generation.



Molecular Operators

- Variation
 - ♦ Ligation
 - ♦ Restriction
 - ♦ Mutation (PCR)
- Selection
 - ♦ Gel electrophoresis
 - ♦ Affinity separation (beads)
 - ◆ Capillary electrophoresis
- Amplification
 - ♦ Polymerase chain reaction (PCR)
 - ♦ Rolling circle amplification (RCA)

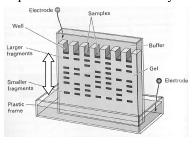
Variation: Restriction

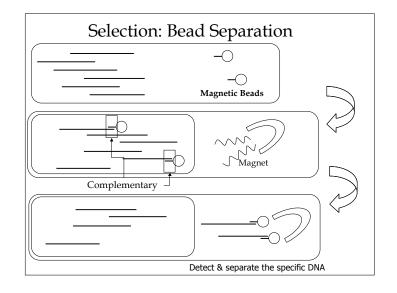
- Cut the specific DNA site.
- Solution detection or filtering step



Selection: Gel Electrophoresis

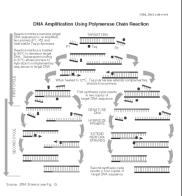
- Detection desired solutions.
- Separate solution molecules by length

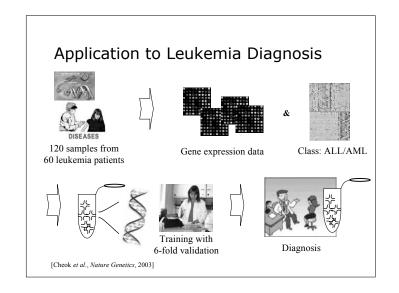




Amplification: PCR

- Polymerase chain reaction
- Amplifies (produces identi cal copies of) selected dsD NA molecules.
- Make 2^n copies (n: numbe r of iteration)
- Used to filter solutions or detection.





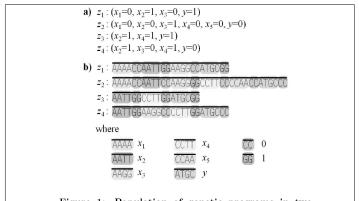
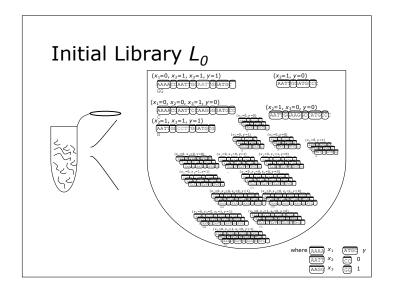
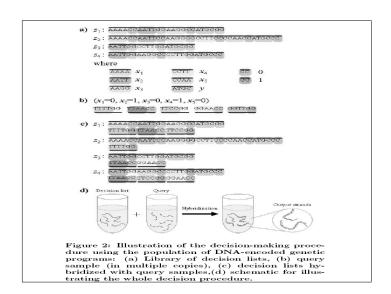
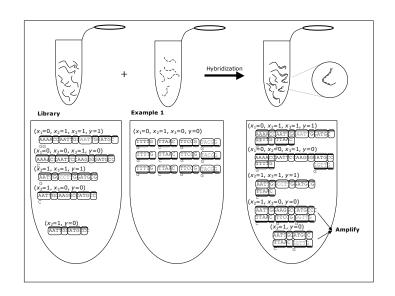
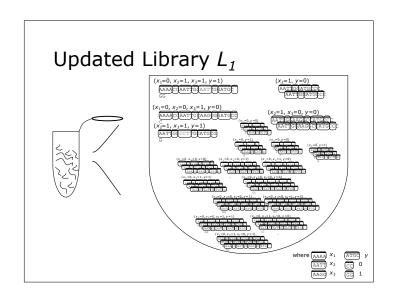


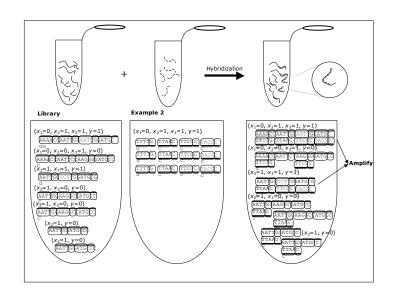
Figure 1: Population of genetic programs in two different representations: (a) set of decision lists, (b) library of DNA molecules corresponding to (a). The DNA code shown are illustration-purposes only and this design does not fully reflect the biochemical properties of the sequences.

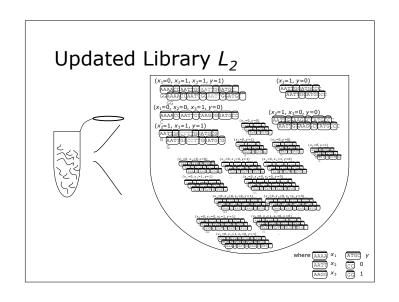


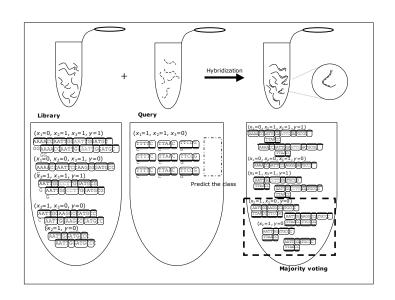












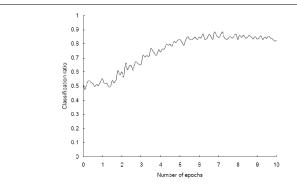


Figure 5: Fitness evolution of the population of molecular genetic programs. Though there are fluctuations the fitness values tend to converge 90 % accuracy. The reproduction rate was 0.01.

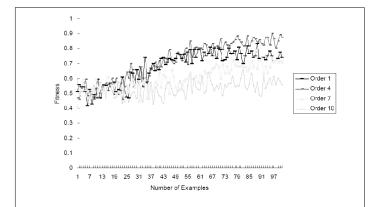


Figure 7: Fitness curve for runs with fixed-size programs. Shown are average fitness values for runs with programs of fixed-order 1, 4, 7, and 10.

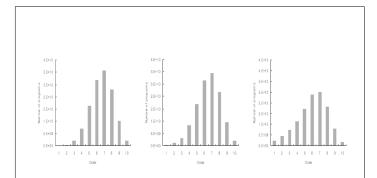


Figure 6: Distribution of the size of genetic programs. Shown are the number of programs of each size in the final population in a run. It shows the tendency that, as generation goes on, smaller programs are used more frequently than larger ones. The reproduction rate was 0.01.

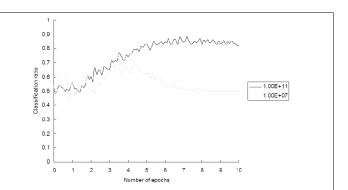


Figure 8: Effect of population size on ensemble performance. Shown are the best-fitness curves for population sizes of 10^{11} (in our experiments) 10^7 and (subsampling case for testing). The results show that too much subsampling degrades the performance.

MP vs. GP

	Genetic Programming (G P)	Molecular Programming (MP)
Representation	Variable-size trees	Variable-length lists
Variation	Random xover, mutation	Combinatorial sampling
Selection	Proportional selection	Amplification (PCR)
Population size	~ O(10 ⁴)	~ O(10 ¹⁵)
Parallelism	Can be parallelized	Inherently parallel
Solution	Single individual	Ensemble of individuals
Interaction	2D matrix	3D collision
Material	Silicon (dry, hard)	Carbon (wet, soft)

• Scalability

◆ *Problem:* For big problems, exhaustive search does not work.

◆ Solution: Evolutionary search

Reliability

◆ *Problem:* DNA reaction is error-prone.

♦ Solution: Probabilistic formulation

Fault tolerance

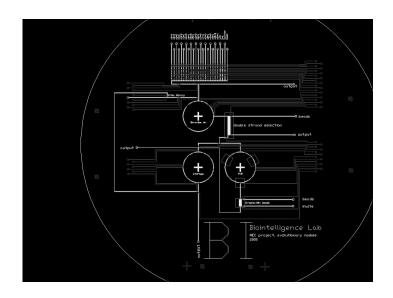
◆ *Problem:* What if a single molecule malfunctions?

◆ *Solution:* Ensemble machine approach

Design

◆ *Problem:* How to design the decision (or diagnosis) rules?

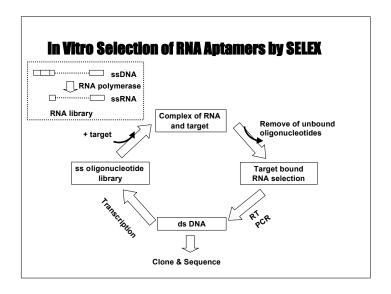
♦ Solution: Evolutionary learning from examples



New Issues for the EC Researchers

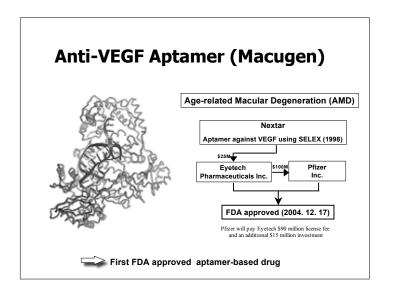
In Vitro Evolution vs. In Silico Evolution

	In Vitro Evolution	In Silico Evolution
Processing	Ballistic	Hardwired
Medium	Liquid (wet)	Solid (dry)
Communication	3D collision	2D switching
Configuration	Amorphous (asynchronous)	Fixed (synchronous)
Parallelism	Massively parallel	Sequential
Speed	Fast (millisec)	Ultra-fast (nanosec)
Reliability	Low	High
Density	Ultrahigh	Very high
Reproducibility	Probabilistic	Deterministic



New Research Issues

- Representation
 - ◆ New representation schemes under molecular constraints
 - ◆ 2D and 3D structures for molecular genetic programs
 - Parsimony/bloat issues
- Operators
 - New molecular operators under thermodynamic constraints
 - ♦ Biochemical wet operators
 - ♦ Physical implementation of operators (e.g. physical simulated annealing)
- Theory
 - ◆ The role of a huge population size
 - ◆ Theory for guiding experimental procedures (e.g., SELEX)
- ◆ EC theories of the origins of life
- Applications
 - ♦ Physical evolution
 - ♦ Bio, pharma, medicine
 - ◆ Nanotechnology
 - ♦ Molecular electronics
 - ♦ Molecular robotics



RNA Aptamers into Therapeutics

- Easily screened
- High affinity and specificity
- Reduced in size and chemically synthesized
- Easily modified for bioavailability or delivery
- Reversible antagonist: regulatable
- Highly expressed
- May not induce immune response
- 1) As drug leads lessen form VEGF₁₆₅
- 2) As gene therapy

Applications for SELEX

Insights into the prebiotic earth

• Identification of the catalytic potential of RNA and DNA; Selection for enzymatic functions (ligase, polymerase, RNase, peptide bond formation, Diels-Alder reaction)

Applied (Medical) research

• diagnostic (ELISA, FACS) and therapeutic use of aptamers as replacement and or extension to antibodies (K_d's in the pM to nM range)

Genomic SELEX and regulatory loops

• random integration of genomic sequences into SELEX oligonucleotides; selection for unidentified binding sites to regulatory proteins (MetJ; MS2 coat protein, U1A protein)

RNA Aptamers into Diagnostics

- Molecular ligand to variable molecules including carbohydrates and lipids
- High affinity and specificity
- Spot onto solid surface with high density
- Mass production with low cost, rapidity and high purity
- Reversible denaturation: stable and long storage
- Fixed with variable reporter

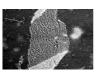
(John Reif, Duke)

Rivalry to Antibody Nanochip/biosensor

Programmable Patterning of DNA Lattices

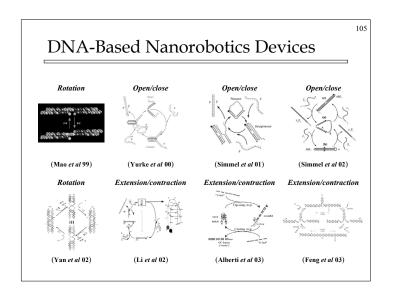
A New, Powerful Technology

- for the construction of molecular scale structures
- for Rendering Patterns at the Molecular Level.
- A 2D DNA lattice is constructed by a self-assembly process:
- -Begins with the assembly of DNA tile nanostructures:
 DNA tiles of size 14 x 7 nanometers
 - Composed of short DNA strands with Holliday junctions
- These DNA tiles self-assemble to form a 2D lattice:



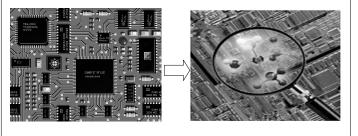
- -The Assembly is Programmable:
 - -Tiles have sticky ends that provide programming for the patterns to be formed. -Alternatively, tiles self-assemble around segments of a DNA strand encoding a 2D pattern.
- Patterning: Each of these tiles has a surface perturbation depending on the pixel intensity.
 - -pixel distances 7 to 14 nar
 - -not diffraction limited

Key Applications: Assembly of molecular electronic components & circuits, molecular robotic c omponents, image rendering, cryptography, mutation detection.



Evolvable Biomolecular Hardware

• Sequence programmable and evolvable molecular systems c an be constructed as cell-free chemical systems using biom olecules such as DNA and proteins.



Acknowledgements

Collaborating Labs

- Biointelligence Laboratory, Seoul National University
- Biochemistry Lab, Seoul National Univ. Medical School
- Cell and Microbiology Lab, Seoul National University
- Advanced Proteomics Lab, Hanyang University
- DigitalGenomics, Inc.
- GenoProt, Inc.

Supported by

- National Research Lab Program of Min. of Sci. & Tech.
- Next Generation Tech. Program of Min. of Ind. & Comm.

More Information at

- http://bi.snu.ac.kr/MEC/
- http://cbit.snu.ac.kr/

Books and Web Sites

Books (General)

- Calude, C.S., Casti, J. and Dinneen, M.J. (Eds.) Unconventional Models of Computation, Springer, 1998.
- Eigen, M. and Winkler, R., Laws of the Game: How the Principles of Nature G overn Chance, Princeton University Press, 1993 (English translation).
- Kauffman, S.A., The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, 1993.
- Kueppers, B.-O.. Molecular Theory of Evolution: Outline of a Physico-Chemic al Theory of the Origin of Life, Springer, 1983.
- Landweber, L.F., Winfree, E. (Eds.) Evolution as Computation, Springer, 200
 3,
- Page, R.D.M and Holmes, E.C., Molecular Evolution: A Phylogenetic Approach, Blackwell Science, 1998.
- Scheutz, M. (Ed.) Computationalism: New Directions, MIT Press, 2000.
- Sienko, T., Adamatzky, A., Rambidi, N.G., and Conrad, M. (Eds.) Molecular Computing, MIT Press, 2003.

Web Sites

- California Inst. of Tech. http://www.dna.caltech.edu/ (Erik Winfree)
- Duke Univ. http://www.cs.duke.edu/~reif/ (John Reif)
- Harvard Univ. http://genetics.mgh.harvard.edu/szostakweb/ (Jack Szostak)
- New York Univ. http://seemanlab4.chem.nyu.edu/ (Ned Seeman)
- Scripps Res. Inst. http://exobio.ucsd.edu/joyce.htm/ (Gerald Joyce)
- Seoul National Univ. http://bi.snu.ac.kr/ (Tak Zhang)
- Univ. of Bonn http://famulok.chemie.uni-bonn.de/ (Michael Famulok)
- Univ. of Tokyo http://nicosia.is.s.u-tokyo.ac.jp/ (Masami Hagiya)
- Univ. of Southern California http://www.usc.edu/dept/molecular-science/ (Leon Adleman)
- Univ. of Vienna http://www.tbi.univie.ac.at/ (Peter Schuster)
- Weizmann Inst. of Tech. http://www.weizmann.ac.il/mathusers/lbn/ (Ehud Shapiro)

Some References

- Adleman, L., "Computing with DNA," Scientific American, 34-41, 1998.
- Conrad, M., "Molecular computing: The lock-key paradigm," *IEEE Computer*, 25(1): 11-20, 1992.
- Joyce, G. F. "The antiquity of RNA-based evolution," Nature, 418: 214-221, 2 002
- Seeman, N. C., "Biochemistry and structural DNA nanotechnology: An evolvi ng symbiotic relationship," *Biochemistry*, 42(24): 7259-7269, 2003.
- Tuerk, C. and Gold, L., "Systematic evolution of ligands by exponential enrich ment: RNA ligands to bacteriophage T4 DNA polymerase," Science, 249(496 8): 505-510, 1990.
- Wright, M. C. and Joyce, G. F., "Continuous in vitro evolution of catalytic function," Science, 276: 614-617, 1997.
- Zhang, B.-T. and Jang, H.-Y., Molecular programming: Evolving genetic programs in a test tube, Proc. Genetic and Evolutionary Computation Conf. (GEC CO-2005), Washington, D.C., 2005 (to appear)
- Zhang, B.-T. and Jang, H.-Y., A Bayesian algorithm for in vitro molecular evo lution of pattern classifiers, Proc. 10th Int. Conf. on DNA Computing, DNA10, LNCS 3384: pp. 458-467, 2005.

28