

1. Learning Classifier Systems

- 1. Learning Classifier Systems
 - 1. Basic Components
 - 2. Genetic Algorithms and Reinforcement Learning
 - 3. Facetwise Theory and Design
- The XCS Classifier System
- 3. Performance Demonstration
- 4. Towards Future Applications
- 5. Summary & Conclusions

The XCS Learning Classifier System: From Theory to Application

Overview

- 1. Learning Classifier Systems
- 2. The XCS Classifier System
- 3. Performance Demonstration
- 4. Towards Future Applications
- 5. Summary & Conclusions

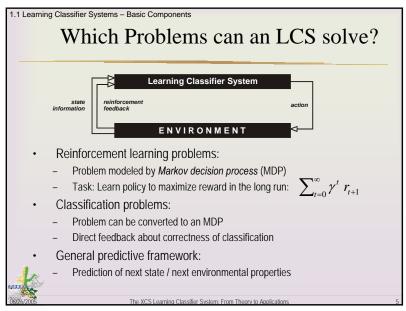
The XCS Learning Classifier System: From Theory to Application:

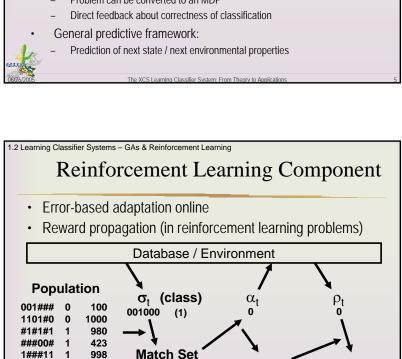
1.1 Learning Classifier Systems - Basic Components

What is an LCS?

- · Characteristics:
 - Knowledge is represented by a population of classifiers (that is, a set of rules).
 - Classifiers have three main parts: condition, action, prediction.
 - Classifiers are evaluated online using reinforcement learning techniques (delta-rule).
 - New classifiers are generated online using evolutionary algorithms.
- ➤ An LCS is...:

A predictive, online generalizing evolutionary learning system.





##10##

521

001### 0 100

###00# 1 423

##10## 0 521

0##### 0 509

Updated A.Set

001### 0 90

##10## 0 469

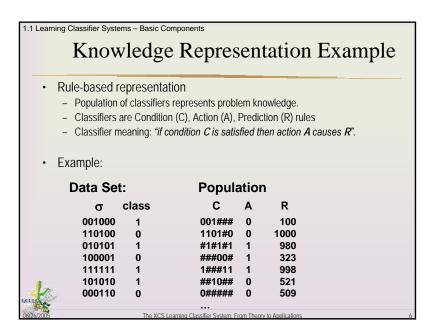
0##### 0 458

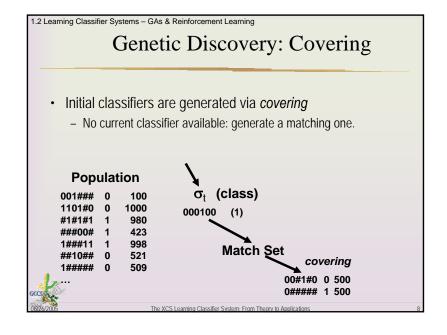
Action Set

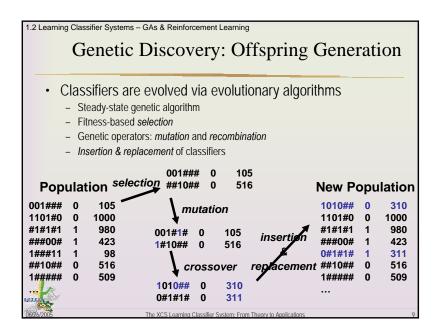
001### 0 100

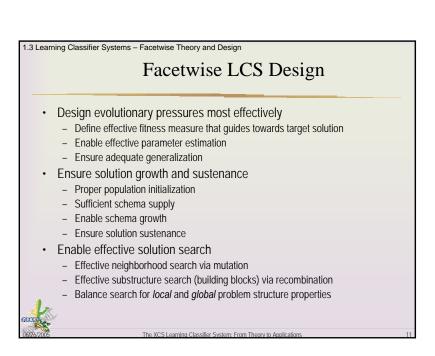
##10## 0 521

0##### 0 509









1.3 Learning Classifier Systems – Facetwise Theory and Design

How Does an LCS Work?

- · Parameter estimation via gradient-based methods
 - Goal: Fast identification of current best classifiers
 - Fast and maximally accurate parameter estimates
 - · Fast adaptation to population and environment dynamics
- Rule structure evolution via evolutionary methods
 - Goal: Effective search through promising solution subspaces
 - Effective selection
 - · Effective local neighborhood search
 - · Effective substructure propagation

The XCS Learning Classifier System: From Theory to Applications

1.3 Learning Classifier Systems - Facetwise Theory and Design

Additional Multistep Challenges

- Effective reward propagation
 - Use reinforcement learning based reward propagation.
 - Disable disruptive effects due to over-general classifiers.
- Effective behavior in environment
 - Ensure balanced problem exploration
 - Ensure effective knowledge exploitation (task dependent)
- Sampling reconsiderations
 - Unbalanced environment may cause skewed subspace occurrences

2. The XCS Classifier System

- Learning Classifier Systems
- The XCS Classifier System
 - 1. Framework
 - 2. Evolutionary Pressures
 - 3. Computational Complexity
 - 4. General Learning Intuition
- Performance Demonstration
- **Towards Future Applications**
- **Summary & Conclusions**

2.1 The XCS Classifier System - Framework

The XCS Classifier System

- Learning classifier system
- Major differences:
 - Q-learning based reinforcement learning
 - Relative accuracy-based fitness
 - Action-set restricted selection (niche selection)
 - Panmictic (population-wide) deletion

Goal:

Learn the complete *maximally accurate*, maximally general representation of the reward map of the problem.

2.1 The XCS Classifier System - Framework

Classifiers

- Condition Part C
 - → When classifier is applicable
- Action Part A
 - → Which action to execute
- Reward Prediction R
 - → Expected average reward
- Prediction Error a
 - → Estimate of mean absolute deviation of R
- Fitness F
 - → Estimate of average action-set-relative accuracy of R

2.1 The XCS Classifier System - Framework

Parameter Updates

classifier cl condition part C action part A reward pred. R prediction error $\boldsymbol{\varepsilon}$

fitness F

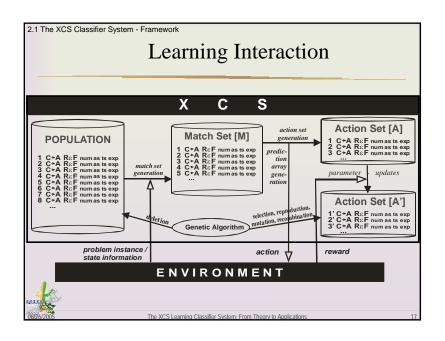
reward R(S,A,S,1) learn. rate β discount factor y min. error ε_0 accuracy modifiers a, n

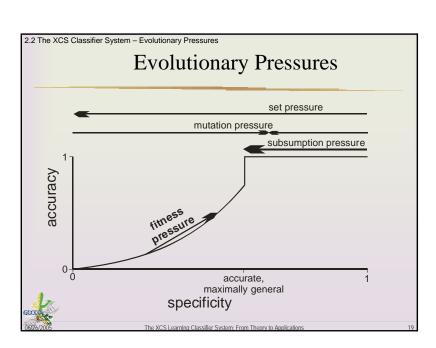
 $cl.R \leftarrow cl.R + \beta(P(S, A) - cl.R) \left[\frac{cl.F}{\sum\limits_{c \in A(S, A)]} cl.F} \right] \qquad P(S, A) = \sum\limits_{A_{i,1}} \frac{cl.F \cdot cl.R}{\sum\limits_{A_{i,1}} cl.F} \frac{cl.F \cdot cl.R}{\sum\limits_{Cl.F} cl.F}$

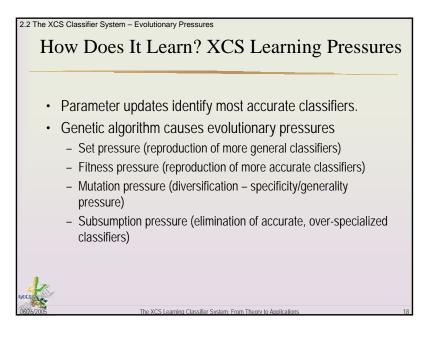
 $cl.\varepsilon \leftarrow cl.\varepsilon + \beta[|cl.R - P(S, A)| - cl.\varepsilon]$

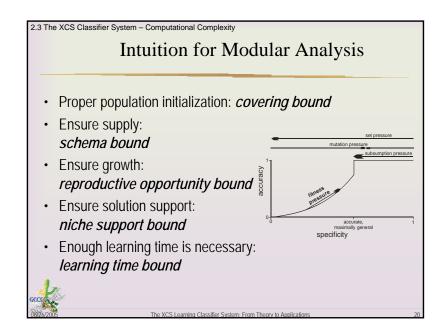
 $cl.\kappa = \begin{cases} \alpha (cl.\varepsilon / \varepsilon_0)^{-\eta} & \text{if } cl.\varepsilon > \varepsilon_0 \\ 1 & \text{otherwise} \end{cases} \qquad cl.\kappa' = \frac{cl.\kappa}{\sum_{c \in [A(S,A)]} cl.\kappa'}$

 $cl.F \leftarrow cl.F + \beta[cl.\kappa' - cl.F]$









2.3 The XCS Classifier System - Computational Complexity

Ensuring Problem Bounds

- · Problem bounds can be assured by
 - Setting initial specificity sufficiently low
 - Setting population size sufficiently high (problem difficulty)
 - Setting mutation properly (controlling specificity and search time)
 - Allowing enough learning iterations (time)
- · PAC learning in k-DNF
 - Additional restrictions:
 - Uniform problem sampling (to ensure sufficient niching)
 - · Balanced outcomes (to ensure accuracy guidance)
 - Linear in irrelevant attributes (given accuracy guidance) and minimal order complexity one

The XCS Learning Classifier System: From Theory to Applications

2.4 The XCS Classifier System - General Learning Intuition

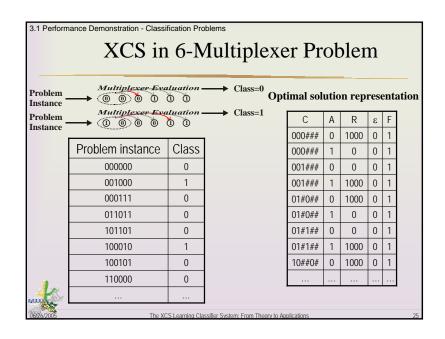
Learning Suitability

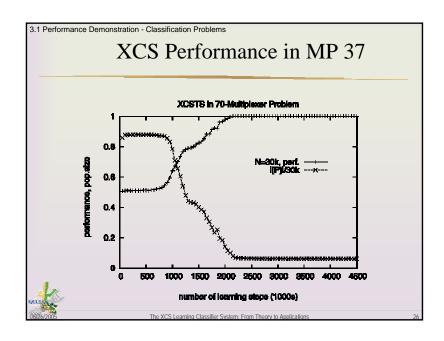
- XCS represents its solution by a collection of sub-solutions (that is, the population of classifiers).
- XCS learns an effective problem-dependent space partitioning in its conditions.
- Subspaces evolve to enable maximally accurate predictions.
 - Accuracy can be bounded (error threshold $\epsilon_{\rm 0}$ and population size relation).
 - Basically any form of prediction is possible (e.g. reward, next sensory input, function value).

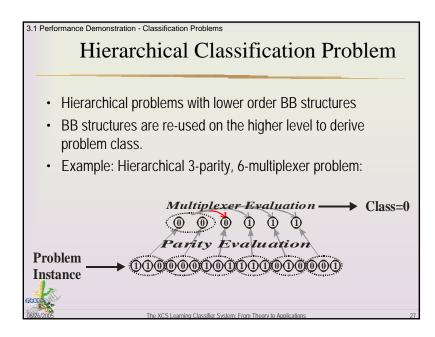
The XCS Learning Classifier System: From Theory to Applications

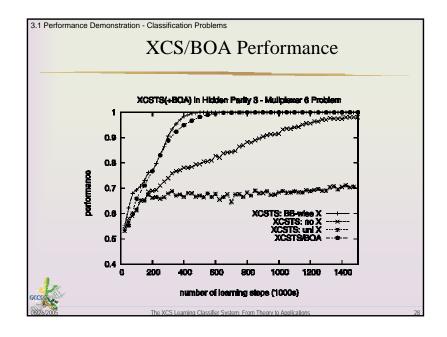
3. Performance Demonstration

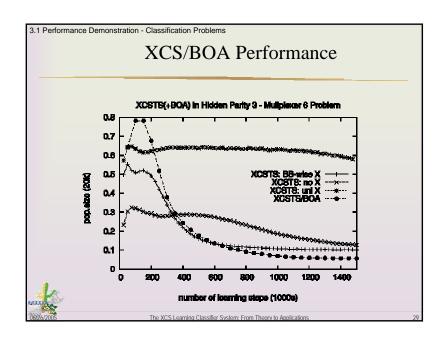
- 1. Learning Classifier Systems
- 2. The XCS Classifier System
- 3. Performance Demonstration
 - 1. Classification Problems
 - 2. Function Approximation Problems
 - 3. (Multistep) Reinforcement Learning Problems
- 4. Towards Future Applications
- 5. Summary & Conclusions

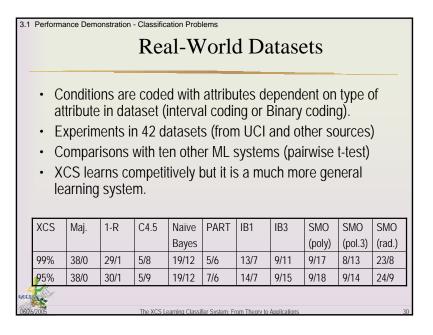


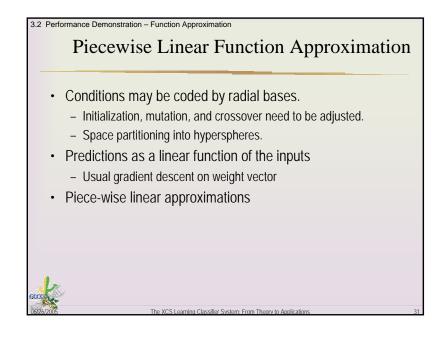


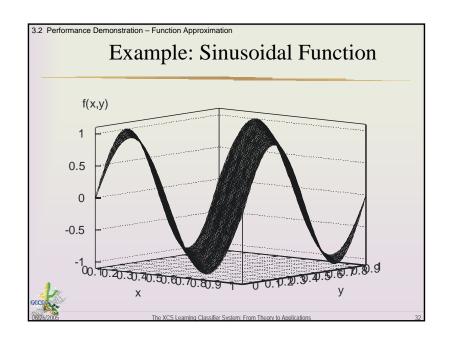


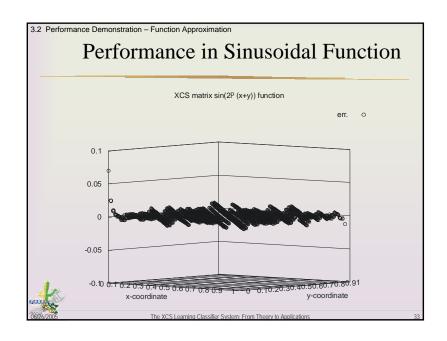


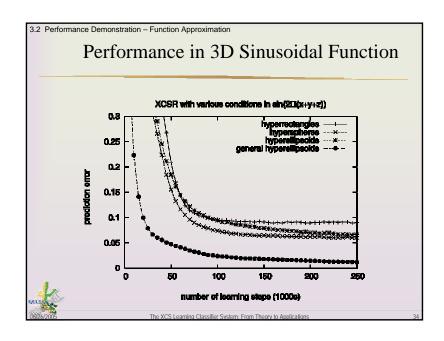


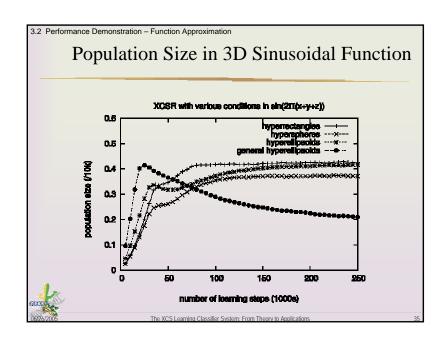


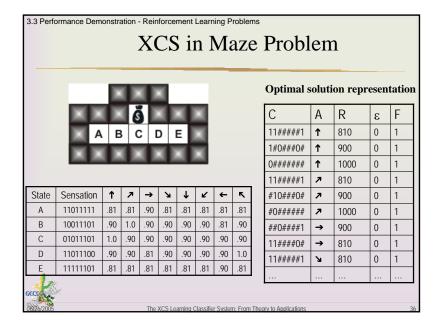


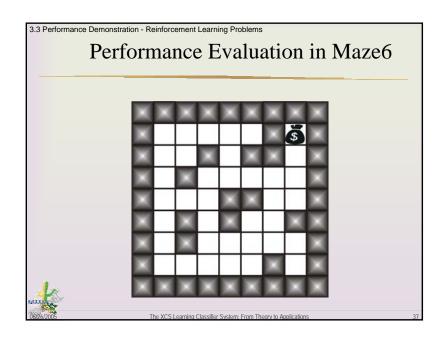


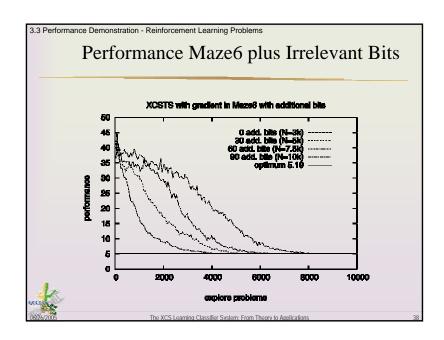


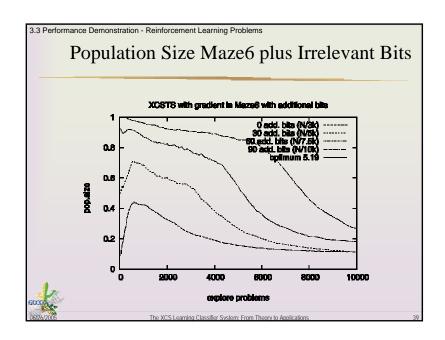


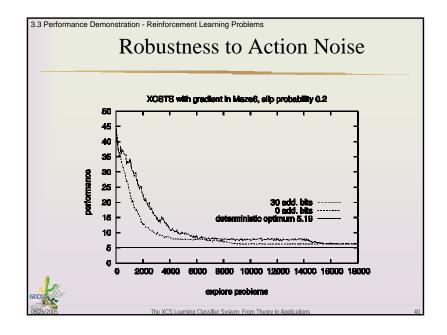












4. Towards Future Applications

- 1. Learning Classifier Systems
- 2. The XCS Classifier System
- 3. Performance Demonstration
- 4. Towards Future Applications
 - 1. XCS Potential
 - 2. Design Considerations
- 5. Summary & Conclusions

The XCS Learning Classifier System: From Theory to Applications

4.1 Towards Future Applications – XCS Potential

XCS: A General Predictive Learner

- Space-partitioning / feature extraction for accurate predictions
- Piece-wise (constant, linear, etc.) predictions
- · Predictions endowed with confidence measure
- · Distinction possible between
 - space partitioning (conditions evolved by GAs)
 - generation of prediction (learned by gradient methods)

The XCS Learning Classifier System: From Theory to Applications

4.2 Towards Future Applications - Design Considerations

Design of XCS Structure

- Know the problem space
 - Which space partitioning should work best?
 - Radial bases
 - Hyper-rectangles
 - · General ellipsoids
 - · Gabor-filters
- Know the transition space
 - Which prediction type should work best?
 - Constant
 - · Linear, polynomial, ... prediction

The XCS Learning Classifier System: From Theory to Applications

4.2 Towards Future Applications - Design Considerations

Choice of Parameters and Operators

- Estimate problem complexity for population size
 - How crisp should the conditions be?
 - · Probability of subspace occurrence
 - · Expected complexity of accurate solution
 - How difficult will be the initialization?
- Design genetic operators accordingly
 - Which are promising neighborhoods of condition structures?
 - · Design mutation operator accordingly
 - · Consider effect on specificity and scale accordingly
 - How are conditions recombined most effectively?
 - · Crossover constraints
 - · Estimation of distribution algorithms

4.2 Towards Future Applications – Design Considerations

Multistep Considerations

- · Choose effective exploration strategy
 - Random behavior during exploration
 - Additional exploratory behavior (choose action with highest information gain)
 - Learning only during exploration
- · Ensure effective reward propagation
 - Use residual gradient information
- POMDP
 - Currently a big challenge
 - Detection of aliasing states might be possible

The XCS Learning Classifier System: From Theory to Applications

6.1 Summary and Conclusions - Summary

Summary

- XCS Classifier System is...
 an online generalizing, structure extracting gradient-based and evolutionary-based learning system.
- XCS represents its problem solution... by possibly partially overlapping sub-solutions.
- XCS can solve...
 classification, function approximation, generalizing
 reinforcement learning, and general prediction problems.
- · Thus, XCS does:
 - Clustering for accurate predictions
 - Online learning and generalization

The XCS Learning Classifier System: From Theory to Applications

5. Summary and Conclusions

- 1. Learning Classifier Systems
- The XCS Classifier System
- Performance Demonstration
- 4. Towards Future Applications
- 5. Summary & Conclusions

The XCS Learning Classifier System: From Theory to Applications

6.2 Summary and Conclusions - Conclusions

Conclusions

- XCS is an effective online space partitioning system.
- It is expected to be applied most effectively to problems with some of the following properties:
 - Online learning necessary, potentially with sparse reward.
 - Problem space sampling is approximately uniform.
 - Mainly non-overlapping partitions are adequate for accurate predictions.
 - Many features are expected to be irrelevant.
 - Conditionally linear (potentially action-dependent) predictions are expected.

A.1 Additional Material - Other Representations for Conditions

Representation of Condition

- Original XCS for binary input
 - Current complexity analysis for binary input
 - Complexity analysis extendable to other representations
- · Representation "independence"
 - XCS for symbolic inputs (Messy XCS, Lanzi, 1999)
 - XCS for real valued input (XCSR, Wilson, 1999)
 - XCS with integer inputs (XCSI, Wilson, 2000)
 - XCS with S-expressions (XCSL, Lanzi, 1999-2001)
 - XCS as a general function approximation tool (Wilson, 2001)

The XCS Learning Classifier System: From Theory to Applications

A.2 Additional Material – Computational Complexity

Covering Bound

- · Covering-deletion loop needs to be prevented.
- · Matching probability needs to be large enough.
- Specificity needs to be sufficiently small.
- Setting specificity to 1/I, population size needs to be sufficiently large.

$$\sigma[P] < 2(1-N^{-1/l})$$
 $N > -\log(1-P(\text{cov.})) \exp^{n/2}$

The VCS Learning Classifier System: From Theory to Applications

A.2 Additional Material - Computational Complexity

Schema Bound

Schema notion:

Example:

Schema: 10**0* (order k=3, defining length d=4)

Classifier representatives:

10##0#,10##00, 10#000, 100000,101000,...,100#0#,101#0#

- Schema representatives of minimal order need to be present (problem dependent).
- Bounds specificity (needs to be sufficiently large).
- Population size needs to be sufficiently large.

$$\sigma[P] \ge 2n^{1/k_m} \left(1 - \left(1 - P(\text{representative})\right)^{1/N}\right)^{1/k_m} \approx 2\left(\frac{n}{N}\right)^{1/k_m}$$

 $N \ge -n(\frac{2}{\sigma[P]})^{k_m} \log(1 - P(\text{representative}))$

A.2 Additional Material - Computational Complexity

Reproductive Opportunity Bound

- Representatives need to be reproduced before being deleted with high probability.
- Minimal order \mathbf{k}_{m} schemata need to be processed in representatives.
- Given the required specificity behaves in 1/l, the population size bound yields:

$$N(\log_2 N)^{k_m} > nl^{k_m} \qquad N: O(l^{k_m})$$

The XCS Learning Classifier System: From Theory to Applications

A.2 Additional Material - Computational Complexity

Time Bound

- Given the other bounds are satisfied, we know that a solution will evolve and will be sustained.
- How long does it take to find the maximally accurate, maximally general classifiers?
 - Starting from the over-general side;
 - Assuming domino convergence (one attribute after another);
 - Need to consider:
 - · Time until reproduction
 - Time until production of next best classifier (analysis considers mutation only)
 - Then, estimate time until maximally accurate solution (of order k_{rl}) is evolved with high probability:

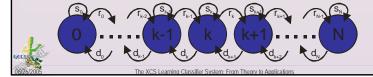
The VCS Learning Classifier System: From Theory to Applications

A.2 Additional Material - Computational Complexity

Niche Support Bound

- · Learned problem representation needs to be maintained.
- Each niche underlies a Markov process of reproduction and deletion.
 - Given a niche, the number of representatives is between zero and N (maximal population size).
 - The state of a niche is its number of representatives.
- · Steady-state of Markov chain can be derived.
- Probability of zero state corresponds to probability of niche loss.

$$u_k = \binom{N}{k} p^k (1-p)^{N-k}$$
 $u_0 = (1-p)^k$



54