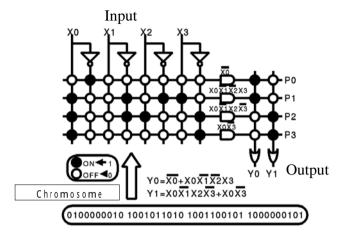
Evolvable Hardware Applications

Tetsuya Higuchi
National Institute of Advanced
Industrial Science and Technology
Japan
t-higuchi@aist.go.jp

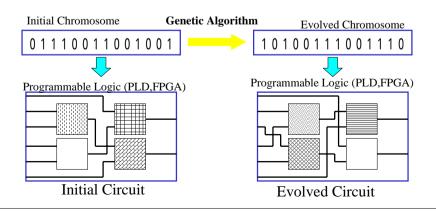
EvolvableHardware =

Evolutionary Computation +
Reconfigurable Hardware

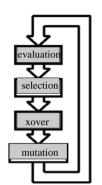

Contents of this talk

- Basic Concept of Evolvable Hardware
- Digital Hardware Evolution
 - EMG prosthetic hand
 - Clock-timing adjustment (Post-fablication adjustment)
 - Data compression for print image data
- Analogue Hardware Evolution
 - Analogue EHW chip for cellular phones
- Mechanical Hardware Evolution
 - Evolvable Femto-second Laser System
 - Evolvable Interferometer
 - Evolutionary fiber alignment

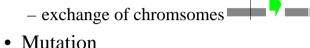
Evolvable Hardware (EHW)


Conventional Hardware	Evolvable Hardware
Specification fixed	Spec. changes dynamically
Architecture fixed	Architecture changeable Hardware circuit is autonomouly synthesized.

PLA (Programmable Logic Array)


Basic idea of Evolvable Hardware

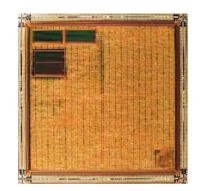
• EHW= Genetic Algorithms + Programmable Logic



GA (Genetic Algorithm)

Bio-inspired robust search and adaptation

- Selection
 - select high-fitness chromosomes
- Crossover

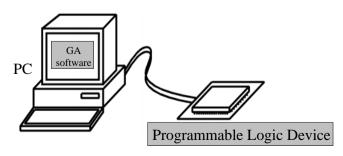

- change of chromsomes

Contents of this talk

- Basic Concept of Evolvable Hardware
- Digital Hardware Evolution
 - EMG prosthetic hand
 - Clock-timing adjustment (Post-fablication adjustment)
 - Data compression for print image data
- Analogue Hardware Evolution
 - Analogue EHW chip for cellular phones
- Mechanical Hardware Evolution
 - Evolvable Femto-second Laser System
 - Evolvable Interferometer
 - Evolutionary fiber alignment

Digital Hardware Evolution

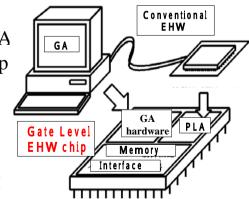
- Chromosome determines:
 - types of hardware components
 - interconnections among hardware components
- Gate-level hardware evolution
 - Hardware components are primitive gates such as AND-gate and OR-gate.
- Function-level hardware evolution
 - Hardware components are higher hardware functions such as adders and multipliers.


Prosthetic Hand

Problems in conventional EHW

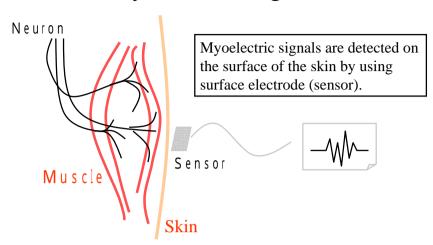
Needs a PC to execute GA — Large Size

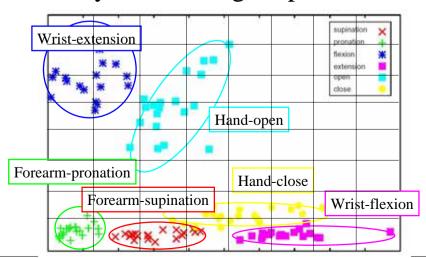
Fitness evaluation and $GA \longrightarrow Slow Speed$ by software



Gate Level EHW Chip

 Integration of GA hardware and a PLA on a single LSI chip

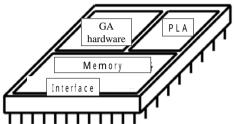

• Compact & Fast


Myoelectric-controlled prosthetic-hand

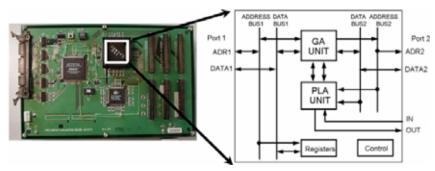
- Myoelectric signals
 - Generated from muscular activation.
 - Detected on the surface of the skin by using surface electrode.
- Myoelectric-controlled prosthetic-hand
 - Controlled by myoelectric signals generated from remnant muscles.

Myoelectric signals

An example of myoelectric signal patterns

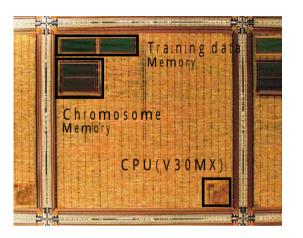


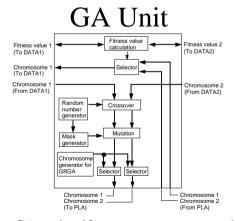
Problems in myoelectric-controllers


- Problem
 - Individuality
 - Characteristics of myoelectric signals differ among individual persons.
 - Difficult to make specification of pattern classification circuit in advance.
- Our solution (1998--)
 - Evolvable hardware
 - An evolvable hardware chip.
 - Programmable hardware + Genetic algorithm

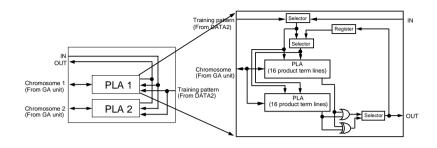
EHW chip architecture

- GA dedicated hardware
- Reconfigurable Hardware(PLA)
- Memory (training data.chromosome)
- Controllogic
- Interface




Gate-Level EHW chip

- Package: 144pins QFP, 20x20mm, Cell base LSI.
- Circuit size: about 80,000 gates.
- Clock frequency: 33MHz.


EHW chip (version 1)

- Steady state GA and uniform crossover are used.
- There are new options for GA. (GRGA, on-line learning etc.)
- Exexution time: 95 us / (chromosome evaluation)
 - 40 times faster than software on a PC (1.2GHz).

PLA Unit

- There are two PLAs for parallel evaluation of two circuits.
- I/O: 12bit input / 4bit output, or 8bit input / 8bit output.
- Product term line number: 32 in one PLA.

The hand controller with the EHW chip

Performance evaluation

Function	EHW chip (us)	Program (us)	(Program)/(EHW chip)
One evaluation	94.8	3670	38.7
Crossover & mutation	12.6	78.9	6.3
Fitness calculation	68.2	3560	52.2
Comparison of fitness values	0.03	0.15	5.0
PLA execution	0.03	13.42	447.3

• Comparison of the execution time with a GA program on a PC (AMD Athlon CPU 1.2GHz).

EHW chip: 38.7 times faster than the program.

– PLA execution: 447 times faster than the program.

Multi-functional myoelectric controlled artificial hand.

Mechanical specifications

Functions	Hand open-close
	Wrist flex-extend
Size	almost same as adult human hands
Weight	about 400g
Motor	DC motor X 2
Battery	rechargeable: 12V

Multi-functional myoelectric controlled artificial hand.

User's merit of multi-functional hand.

· Natural and easy approach to the object.



Without wrist flexion. (Conventional hand)

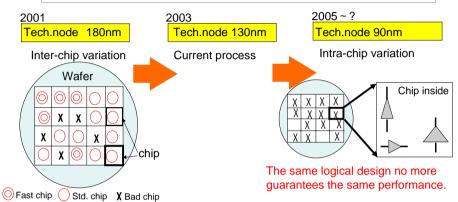
With wrist flexion.

Clock Timing Adjustment

Clinical evaluation.

Recent results from the project MIRAI funded by METI, Japan

- Clock timing adjustment with GA
 - Intel P4, 1GHz ALU, 2.1GHz FIR chip
- High speed data transmission with GA
 - USB, IEEE1394, 2GHz FPGA,10Gbps Ethernet chip


Background

Beyond 90nm, operational yield rate will be degraded due to process variation.

the limit of design capability strong need for post-fabrication LSI adjustment.

Trend beyond 90 nm:

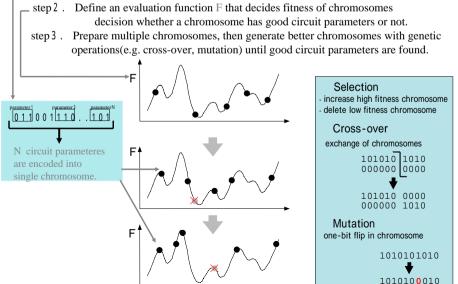
from inter-chip variation to intra-chip variation

Our approach: Post-fabrication LSI adjustment

Circuit design including adjustment circuits

Fast adjustment software

Fast adjustment software:

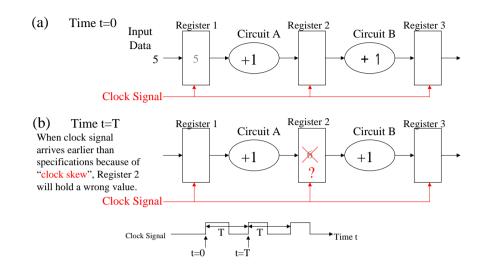

Genetic Algorithm(GA) in Artificial Intelligence

GA can determine quickly optimal values of many circuit parameters that affects LSI performance and operational yield rate.

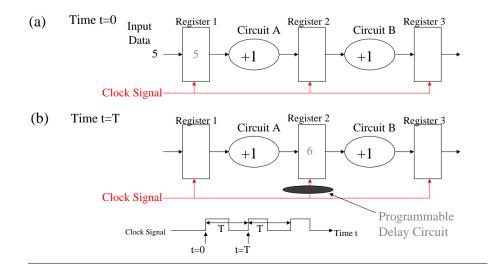
Genetic algorithm

Genetic Algorithm(GA): A quick and robust search algorithm

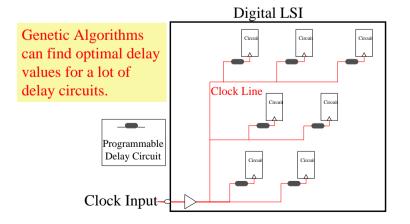
step 1. Encode multiple circuit parameters into single chromosome.


Clock Timing Adjustment with GA

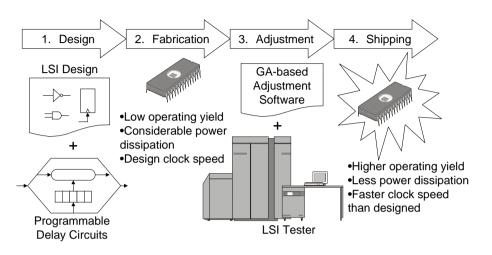
- --- Intel Pentium4
- --- 1GHz ALU and multiplexor
- --- 2.1 GHz FIR filter chip


Background & Advantages

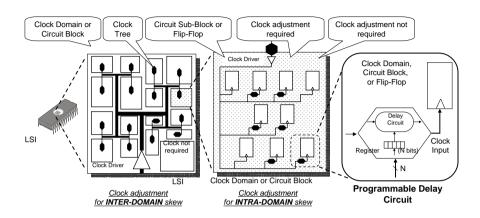
- Beyond 90nm, clock skew cannot be avoided only by design due to process variation
- Post-Fabrication clock timing adjustment with Genetic Algorithm
- Two 1GHz LSIs and a design experiment demonstrate three advantages:
 - 1. Speed-up of Clock Frequency (+25% max)
 - 2. Reduction of Power Dissipation (-54% max)
 - 3. Reduction of Design Time (-21% max)

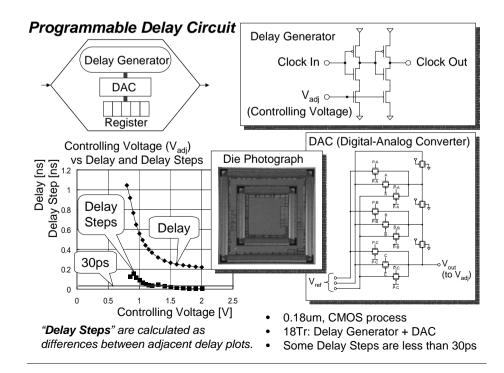

Clock Skew

Clock Timing Adjustment for Solving the issues of "Clock Skew"

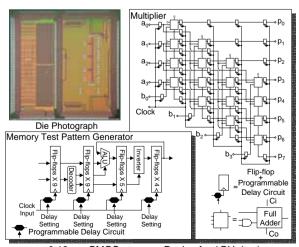


Insertion of Programmable Delay Circuits



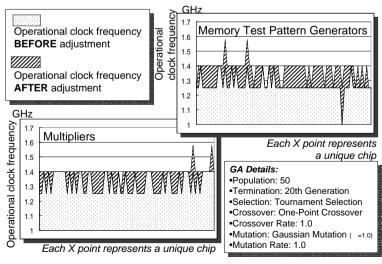

Delay Values must be globally optimized!

Post-Fabrication Clock Timing Adjustment



Hierarchical Application of Clock Timing Adjustment

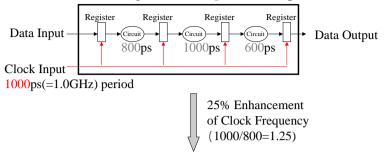
Test Chip No.2: Multiplier and Memory Test Pattern Generator

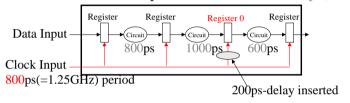


0.13um, CMOS process, Design for 1GHz(typ), Using the "Programmable Delay Circuits"

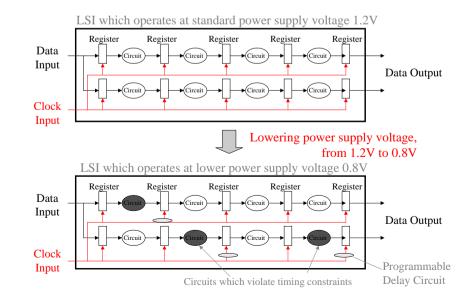
Three Advantages of GA-based adjustment

- 1.Speed-up of Clock Frequency (+25%)
- 2. Reduction of Power Dissipation (-54%)
- 3. Reduction of Design Time (-21%)


Experiment Result: Clock Frequency Speed-up


25% increase over all the chips

Advantage No.1: Clock Frequency Speed-up


LSI: Designed at 1000ps(=1GHz) period

LSI: Clock period is enhanced to 800ps(=1.25GHz)

Advantage No.2: Power Supply Voltage Reduction

Experiment Result: Power Supply Voltage Reduction

Operational yield at each voltage and clock frequency, **BEFORE** adjustment

	0.8V	0.9V	1.0V	1.1V	1.2V
1.58GHz	0%	0%	0%	0%	0%
1.4GHz	0%	0%	20%	30%	40%
1.25GHz	2 4 0%	40%	100%	100%	100%
1.0GHz	100%	100%	100%	100%	100%

Voltage: 1.2V

Clock

Adjustment

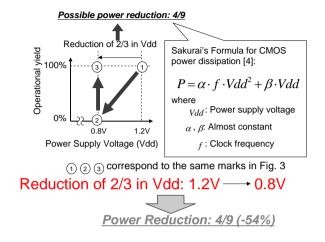
Operational yield at each voltage and clock frequency, **AFTER** adjustment

I		0.8V	0.9V	1.0V	1.1V	1.2V
I	1.58GHz	0%	0%	10%	20%	10%
I	1.4GHz	30%	60%	80%	100%	90%
	1.25GHz	3 100%	100%	100%	100%	100%
	1.0GHz	100%	100%	100%	100%	100%

Frequency: 1.0GHz

1.25GHz

Measured with the Memorytest-pattern Generators.


Advantage No.3: Design Time Reduction

Target Design: DDR-SDRAM controller circuit

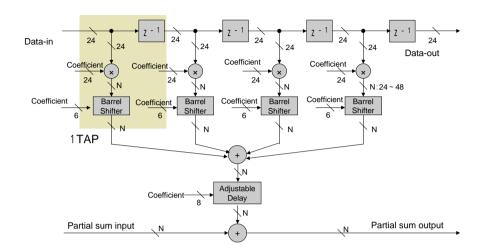
Design Stage	Traditional *1	GA-based*1
Function Design	12.0	1.5
Logic Design	30.0	30.0
Floor Planning	7.0	2.0
Verification (1)	5.0	5.0
Layout Design	7.0	1.5
Verification (2)	6.0	4.0
Library Design	42.0	42.0
Total	109.0-	→ 86.0

*1 day- person -21%

Experiment Result: Power Dissipation Reduction

Results: -75%!

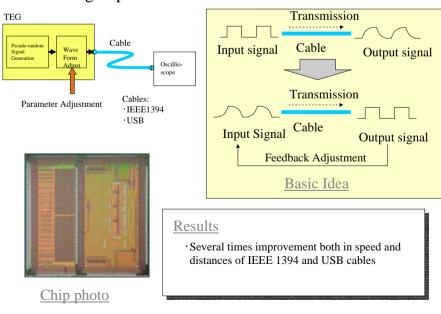
Overhead of the post-fabrication GA adjustment:

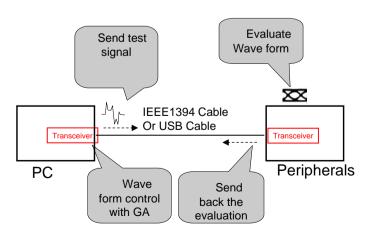

1. Area Overhead 4%

2. Time for Clock Timing Adjustment

Operations	Time (s)
Generation of Delay Setting and Test Data for Function Test	0.55
Write Data to Chip	0.02
Execution of Test	0.01
Read Results of Test from Chip	0.03
Calculation of Fitness	0.33
Total Time	0.94

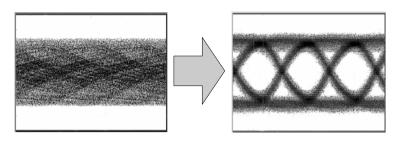
World fastest 2.1GHz DSP(FIR chip)


- 2.1GHz operation (single chip) → 3 GHz
- 500MHz (multiple chips connected) → 2GHz


High speed data transmission

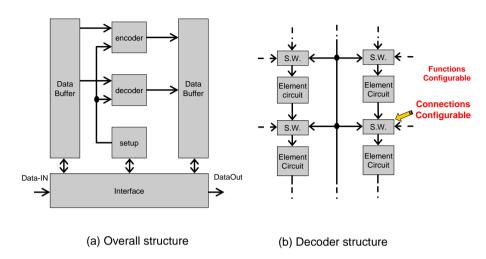
- --- USB, IEEE1394 enhancement
- --- 2GHz FPGA
- --- 10Gbps Ethernet transceiver

High-speed Data Transmission with GA



Adjustment procedures

Results


IEEE1394 cable: 1.6GHz(4 times), 9 m(2 times)

a. Before Adjustment

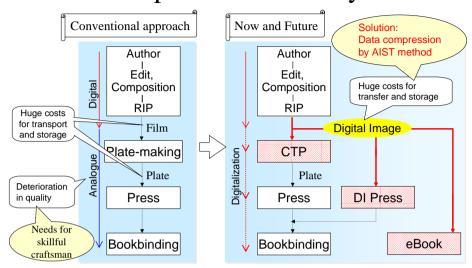
b. After adjustment

High-speed 2GHz FPGA

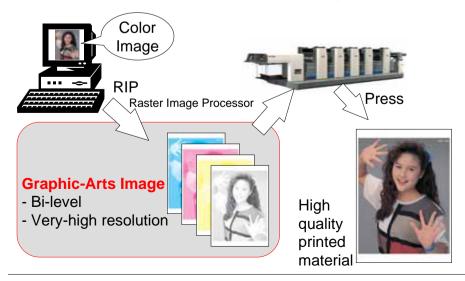
FPGA specifications

A multipotions	Gates	Power	Speed	Conventional
Applications	(area[mm ²])	[mW]		FPGA speed
DN comparator	1338	1.8	2GHz,	220MHz
PN generator	(0.014)	1.8	600MHz	220MHZ
GD G22	45465	9.5	300MHz	2122411-
CRC32	(0.94)			212MHz
Viterbi	61508	41.5 300MHz	200MHz	130MHz
Viterbi	(1.26)		130MHZ	
D 1 1	130319	762	2001/11-	77MH-
Reed-solomon	(2.19)	76.3	300MHz	77MHz

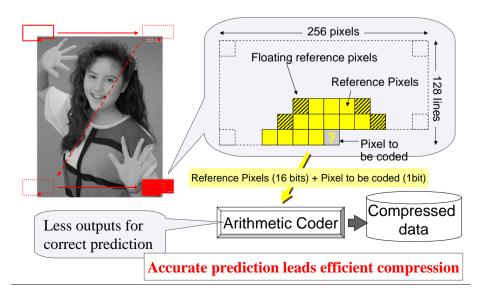
Lossless compression method for very high-resolution image data


Overview

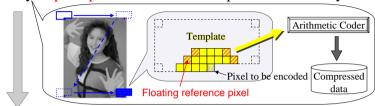
- Lossless compression method bi-level image with high-resolution.
- Amendment to JBIG2 standard.


(ISO/IEC JTC1/SC29/WG1 France meeting, 2003)

- JBIG2 = Joint Bi-level Image experts Group, 2
 - International standard for bi-level image coding
 - ISO/IEC 14492 | ITU-T T.88
- Activity toward incorporating JBIG2-AMD2 datastream into TIFF/IT
 - TIFF/IT = Tag Image File Format for Image Technology
 - International standard of graphic data format for data exchange
 - ISO 12639


Digitalization of Workflow in Graphic-Arts Industry

High-resolution Image for Graphic-Arts


Lossless Compression of JBIG2

Principle of JBIG2-AMD2

Prediction Coding

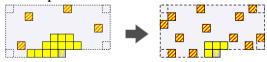
Accuracy of pixel prediction affects compression efficiency.

Halftone image with very high-resolution

Conventional methods achieve low prediction-hit rate.

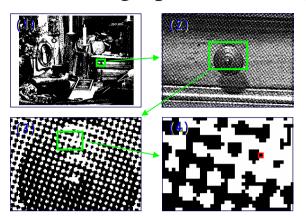
=> Poor compression efficiency

JBIG2-AMD2


Extended template with many floating reference pixels

=> Improved compression efficiency

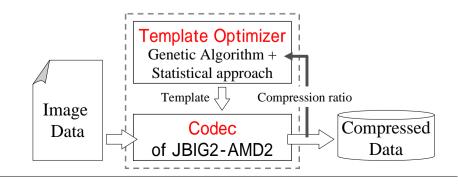
Limitation of JBIG2


Discovery by AIST:

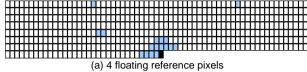
- Too few floating reference pixels
 - Proposal to ISO: Enhancement of JBIG2
 - Extended template: Increased number of floating reference pixels from 4 to 12

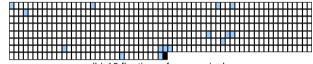
- Large costs for template optimization
 - GA can quickly find the good template configuration for higher compression ratio

Structure of graphic-arts image



Strange structure: Shading is represented by size of dots, and Dots' size is represented by density of pixels.


=>Conventional lossless compression method cannot compress well


AIST method

Genetic Algorithm optimizes the template for the target image data to achieve the higher compression ratio.

Experimental Results

(b) 16 floating reference pixels

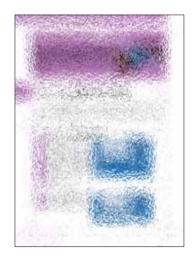
More floating reference pixels leads 30% better comp. efficiency.

- ·Limitation of JBIG2: Increased floating reference pixels
- ·Configuration of floating reference pixels
 - -> Artificial intelligence (AI) techniques

Performance 2 (European newspaper)

- ·1270 dpi
- ·17416 x 27958 pixels
- 'Approx. 58MB x (CMYK)

Method	CR
G4 Fax	27.67
JBIG1	41.54
This method	60.85


CR (Compression Ratio) = [Original size] / [Compressed size]

Performance 1 -- Compression Ratio--

Image		MAD(C4)	ZID	JBI	G2	
SCID#	Angle	Res.	MMR(G4)	ZIP	base	AMD2
		1200	2.36	2.37	8.20	9.10
	15	2400	3.59	2.74	10.80	13.47
N5		3600	5.26	3.11	14.95	18.68
NJ		1200	2.71	3.56	8.12	9.00
	75	2400	4.21	4.37	10.30	11.98
		3600	5.58	5.73	15.24	17.91
		1200	2.14	2.44	9.04	10.26
	15	2400	3.28	2.75	11.54	14.45
N6		3600	4.14	2.92	15.47	19.40
NO		1200	2.53	4.64	10.59	11.89
	75	2400	3.93	5.22	11.98	14.25
		3600	5.03	6.79	16.72	20.06
		1200	1.78	2.17	5.23	6.14
	15	2400	2.66	2.39	7.38	9.09
N8		3600	3.32	2.77	10.88	13.49
140		1200	2.13	3.49	7.19	7.93
	75	2400	3.26	4.10	8.56	10.04
		3600	4.06	5.44	13.19	15.79

- Compression Ratio = [Original size] / [Compressed size]
- Test data are created by RIPing images in SCID.

Performance 3 (Book page)

- ·2400 dpi
- ·17167 x 22100 pixels
- 'Approx. 45MB x 4 (CMYK)

Method	CR
LHA	28.3
TIFF (LZW)	17.9
This method	120.6

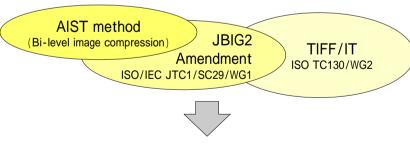
CR (Compression Ratio) = [Original size] / [Compressed size]

Performance 4 (Leaflet)

- · 2400 dpi
- · 20400 x 28034 pixels
- · Approx. 68MB x 4 (CMYK)

Method	CR
LHA	5.74
TIFF (LZW)	4.69
This method	16.86

CR (Compression Ratio) = [Original size] / [Compressed size]


Application

- 1bitTIFF Workflow
- Graphic-arts machinery
 - Digital copier, Printer, CTP setter, DI press, ...
- Embedment in RIP, Printer-driver, and so on.
- Storage and Management of image data after RIP
- Data transfer

Future Plans

- Standardization activity
 - TIFF/IT: Tag Image File Format for Image Technology (ISO 12639)
 - NWI proposal at ISO TC130/WG2 meeting
 - NWI = New Work Item
- R&D of graphic-arts technology at AIST venture company
 - Evolvable Systems Research Institute, Inc.

Advanced Graphic-arts system

Increase the competitiveness in the graphic-arts industry in next generation by using AIST method

- ·CTP (Computer To Plate)setter
- ·DI (Direct Imaging) Press

Target

- · DDCP (Direct Digital Color Proofing)
 - World market: 46.3 billion dollar (2008)
 - Growth at 18%/year

(Prediction of Hidelberg)

CTP (Computer To Plate) Setter

The machine to create *plate*, used in offset press, directly from digital data without analogue film.

Creo Inc.
Trendsetter VLF Quantum

AIST method drastically reduces the costs for data-transfer by efficiently compressing huge graphic-arts image

Leading manufacturer:

Creo, Heidelberg, Fuji Photo Film, Dainippon Screen MFG, Toyo Ink MFG, Toray Industries

DI (Direct Imaging) Press

The press machine with the functionality of laser imaging of thermal plate.

Hidelberg, Speedmaster 74 DI

AIST method drastically reduces the costs for data-transfer by efficiently compressing huge graphic-arts image

Leading manufacturer:

Hidelberg, Adast, Karat Digital Press, MAN Roland, KOMORI, Dainippon Screen MFG, SAKURAI Graphic Systems, RYOBI Imagix

DDCP (Direct Digital Color Proofing)

Prepress proofing machine which creates color proofs without the need for film or plates by using only digital data.

Konica Digital Konsensus Pro

AIST method drastically reduces the costs for data-transfer by efficiently compressing huge graphic-arts image

Leading manufacturer:

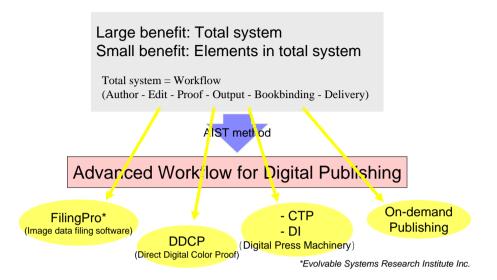
Dainippon Screen MFG, Creo, Hidelberg, Kodak Polychrome Graphics, Konica, Fuji Photo Film, Epson, Toyo Ink MFG, Sakata Inx, Toray Industries, Hewlett-Packard Development, Canon

Digital workflow and AIST method

Advantages of digital printing

- Short-run, Low-cost
- Fine precision printing
- Eradication of out-of-print and -existence

The Problem


Enormous size of the image with high-resolution => Large costs for transfer and storage

Advantages of AIST method

- •Efficient Compression
- •Improvement in Compatibility between systems

Target in Graphic-Arts Industry

Contents of this talk

- Basic Concept of Evolvable Hardware
- Digital Hardware Evolution
 - EMG prosthetic hand
 - Clock-timing adjustment (Post-fablication adjustment)
 - Data compression for print image data
- Analogue Hardware Evolution
 - Analogue EHW chip for cellular phones
- Mechanical Hardware Evolution
 - Evolvable Femto-second Laser System
 - Evolvable Interferometer
 - Evolutionary fiber alignment

FilingPro (Image Data Filing Software)

[This lossless compression method] + [Database system]

Analogue EHW chip for cellular phones

- Off-line analogue EHW
- Intermediate Frequency Filter
 - Analogue Band-pass Filter
 - Must be compact and fast: LSI required
 - Large market
- Variations in analogue components performance are adjusted by GA.
- Installed in cellular phones since Dec. 2001.

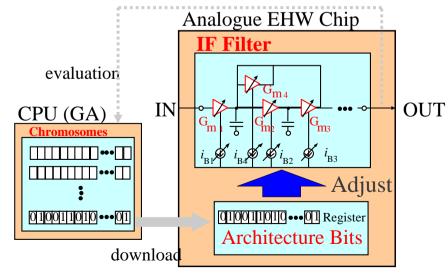
Variations in Analogue Components Values

• Analogue components values can be made as the same as the design specifications.

- Yield rates are degraded in high end applications.
 - e.g. Even 1% shift from the center frequency is not allowed in cellular phones.

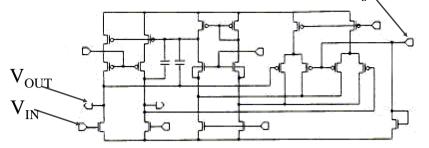
Advantages of analogue EHW

- Improvement of yield rate(100%)
- Reduction of die space (60% less)
 - cheaper process can be utilized.
 - Reduction of power consumption(40% less)
- Less effort in the design phase



Applicable to large variety of analogue circuits.

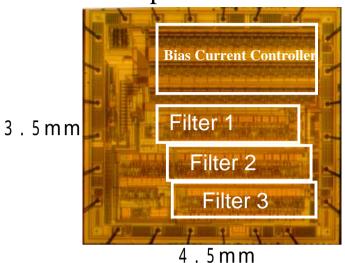
Off-line analogue EHW chip


- The performance of the analogue EHW chip can be adjusted by downloading adequate bit string (i.e. chromosomes).
- GA reconfigures each chip when it's shipped out.
- Why? To let each chip to fill out the design specification.

Analogue EHW chip for IF filter

(Gm: Transconductance Amplifier)

$Variation \ in \ Gm \ element \quad _{I_{B}(\mbox{\it Bias current})}$



- Gm value (I_{OUT}/V_{IN}) alters 20% (max).
- No chip satisfies the specification without adjustments.

GA adjusts bias currents: 90% of chips can fill out the specification.

Analogue EHW chip for cellular phones

Result (1)

After Specification Gain Before

Frequency response

Yield rate: 100 %

Result (2)

• Comparison with other methods

- hill climbing : 65%

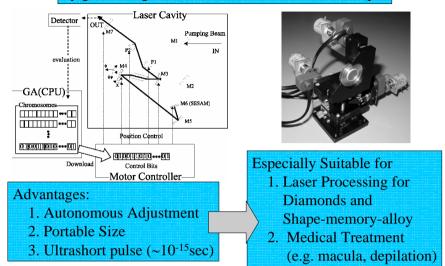
-GA: 100%

GA escapes from local minimum.

Contents of this talk

- Basic Concept of Evolvable Hardware
- Digital Hardware Evolution
 - EMG prosthetic hand
 - Clock-timing adjustment (Post-fablication adjustment)
 - Data compression for print image data
- Analogue Hardware Evolution
 - Analogue EHW chip for cellular phones
- Mechanical Hardware Evolution
 - Evolvable Femto-second Laser System
 - Evolvable Interferometer
 - Evolutionary fiber alignment

Interferometer System


- Interferometer is main system of environmental spectroscopic analysis instruments
 - such as Fourier-transform
 Infrared Spectroscopy(FTIR)

- These instruments are very large, and performance is greatly influenced by environmental conditions.
 - -Because the internal interferometer have many optical components to necessary precise positioning alignment.

Evolvable Femtosecond Laser System

Laser alignment can be optimized autonomously by genetic algorithms to obtain the maximum output

Evolvable Interferometer

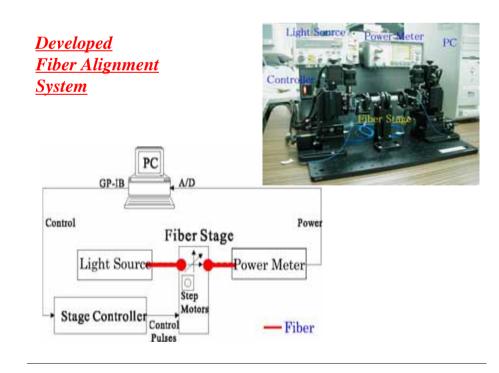
• The on-site use of spectrum-analysis instruments has been virtually impossible.

• The automatic adjustment method eliminates this problem making it possible to use interferometers outdoors.

Result of Experiment Result of Experiment Hill Climbming --RSHC --GA 1 2 3 4 5 6 7 8 9 10 Iterations(x60)

Fiber Alignment System

 Fiber alignment is necessary when two optical fibers are connected.


• The connection requires much greater precision in the order of sub-micron-meters.

Evolvable Fiber Alignment System

- Conventional fiber alignment system is
 - only capable of fibers with three degree of freedom (x,y,z)
 - non-useful to five or more degree of freedom $(x,y,z, , ,\cdots)$

• The alignment of optical fibers with five degrees of freedom can be completed within a few minutes.

Conclusion

- Industrial Applications for EHW
 - Time-variant behaviour (Adaptive)
 - Real-time performance
 - Fault-tolerant
 - Analogue systems
- Promising application domains
 - analogue devices
 - optical systems