Experimental Research in **Evolutionary Computation**

T. Bartz-Beielstein and M. Preuß

Lehrstuhl für Algorithm Engineering und Systemanalyse Universität Dortmund

June 25, 2005

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

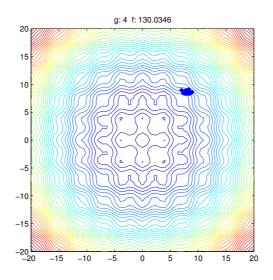
GECCO'05 1 / 42

Outline

- Motivation
 - Computer Experiments
 - Existing Approaches
- The New Experimentalism—Results
 - Sequential Parameter Optimization
 - Example (tuning): Distillation facility
 - Example (comparison): PSO variants
 - Difference Detection and the p-Value

Motivation Computer Experiments

Particle swarm optimization. Simplified and idealized. Stage 1: Soon after initialization.

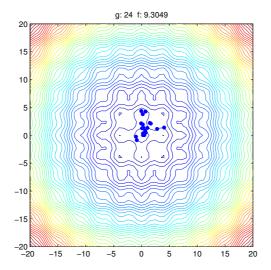


Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05 3 / 42

Motivation Computer Experiments

Particle swarm optimization. Simplified and idealized. Stage 2: Search space exploration.

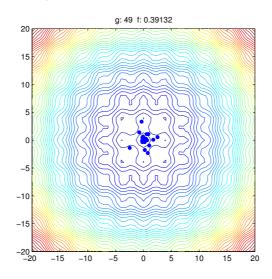


Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05 3 / 42

Motivation Computer Experiments

Particle swarm optimization. Simplified and idealized. Stage 3: Detecting the optimum.

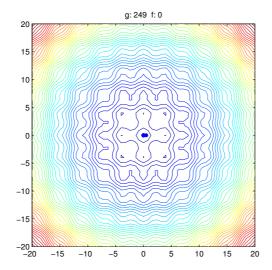


Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05 3 / 42

Motivation Computer Experiments

Particle swarm optimization. Simplified and idealized. Stage 4: The search is finished.



Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05 3 / 42

PSO converges very quickly.

- Experimental setup:
 - ▶ 4 test functions: Sphere, Rosenbrock, Rastrigin, Griewangk.
 - Initialization: Asymmetrically.
 - ► Termination: Maximum number of generations.
 - ▶ PSO Parameter: Default.
- Results: In table form.
- Conclusion: "Under all the testing cases, the PSO always converges very quickly."

Table: Mean fitness values for the Rosenbrock function.

Population	Dimension	Generation	Fitness
20	10	1000	96,1725
20	20	1500	214,6764

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

Motivation Computer Experiments

Scientific goals?

 Why is astronomy considered scientific—and astrology not?

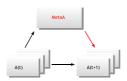
 And what about experimental research in EC?

- Analyze: Important factors?
- Compare: Different algorithms. Demonstrate.
- Conclude: Explain. Understand.
- Improve: Effectivity. Efficiency.

Similarities and differences to existing approaches.

Agriculture, industry: Design of Experiments (DoE).

Evolutionary algorithms: Meta-algorithms.



• Algorithm engineering: Rosenberg Study (ANOVA).

Statistics: Design and **Analysis of Computer** Experiments (DACE).

Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

The New Experimentalism—Results Sequential Parameter Optimization

Overview.

- Pre-experimental planning.
- Scientific thesis.
- Statistical hypothesis.
- Experimental design: Problem, constraints, start-/termination criteria, performance measure, algorithm parameters.
- Experiments.
- Statistical model and prediction (DACE). Evaluation and visualization.
- Solution good enough?

Yes: Goto step 8.

No: Improve the design (optimization). Goto step 5.

- Acceptance/rejection of the statistical hypothesis.
- Objective interpretation of the results from the previous step.

Heuristic for stochastically disturbed function values.

- Latin hypercube design: Relatively many starting points, small number of evaluations.
- Sequential enhancement, guided by DACE model.
- Sepected improvement: Compromise between optimization (min Y) and model exactness (min MSE).
- Budget-concept: Best search point are re-evaluated.
- 5 Fairness: Evaluate new condidates as often as the best one.

Table: SPO. Algorithm design of the best search points.

Y	S	C ₁	c ₂	<i>W</i> _{max}	W _{scale}	Witer	v_{max}	Conf.	n
0.055	32	1.8	2.1	8.0	0.4	0.5	9.6	41	2
0.063	24	1.4	2.5	0.9	0.4	0.7	481.9	67	4
0.066	32	1.8	2.1	0.8	0.4	0.5	9.6	41	4
0.058	32	1.8	2.1	0.8	0.4	0.5	9.6	41	8

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

GECCO'05

The New Experimentalism—Results Sequential Parameter Optimization

Statistical model building and prediction

Design and Analysis of Computer Experiments (DACE)

- Response Y: Regression model and random process.
- Model:

$$Y(x) = \sum_{h} \beta_{h} f_{h}(x) + Z(x).$$

- Z(⋅) correlated random variable.
- Stochstic process.
- DACE stochastic process model.
- Until now: DACE for deterministic functions, e.g. [Santner et al., 2003].
- New: DACE for stochastic functions.

Weighted distances

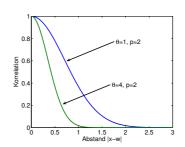
Design and Analysis of Computer Experiments (DACE)

- Euklidean distance: all variables weighted equally.
- DACE uses weighting

$$d(x, w) = \sum_{h=1}^{k} \theta_h |x_h - w_h|^{p_h},$$

 \Longrightarrow Correlation of errors in x and w:

$$Corr(\epsilon(x), \epsilon(w)) = exp(-d(x, w)).$$



- Meaning, activity of x_h: θ_h .
- "Smoothness": p_h.
- Active: Even small distances produce large differences of function values (low correlation).

Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

The New Experimentalism—Results Sequential Parameter Optimization

Expected model improvement

Design and Analysis of Computer Experiments (DACE)

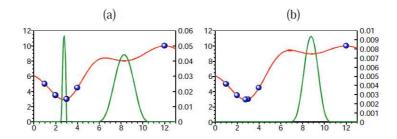
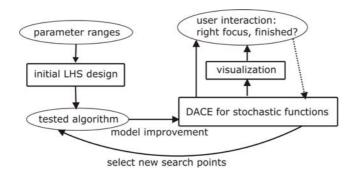


Figure: Axis labels left: function value, right: expected improvement. Source: [Jones et al., 1998].

- (a) Expected improvement: 5 sample points.
- (b) Another sample point x = 2.8 was added.

Data flow and user interaction



- User provides parameter ranges and tested algorithm.
- Results from an LHS are used to build model.
- Model is improved incrementally with new search points.
- User decides if parameter/model quality is sufficient to stop.

Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

12 / 42

The New Experimentalism—Results Sequential Parameter Optimization

How to use it?

Possible use cases:

Table: Categorization based on algorithm/problem knowledge

	Problem well-known	Problem unknown
Algorithm well-known	Comparison	Tuning
Algorithm unknown	Tuning	Tuning

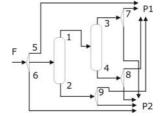
• Two examples:

- Mow to determine an improved parameter setting for an evolution strategy (parameter tuning).
- 4 How to compare the performance of two algorithms (comparison).

Example problem (real-world): Distillation facility. Parameter tuning.

Task: Design a non-sharp separation sequence.

- Separate 3-component feed into two different mixtures.
- 9 real-valued variables control columns and stream dividers.
- 18 (17 hidden) constraints, discretized penalties.



- Shortcut simulator checks physical validity of generated layouts.
- Commercial simulator (slow) evaluates valid layouts.
- Even with shortcut simulator, only few ($\approx 10^5$) evals possible.

Bartz-Beielstein / Preuß (Uni Dortmund)

The New Experimentalism—Results Example (tuning): Distillation facility

Pre-experimental planning.

Parameter tuning.

- First tests with default (μ, κ, λ) -ES reveals: It is hard to reach valid solutions at all.
- \bullet ρ measure $< 10^{-5}$
- Further tests give evidence for non-convex valid search space.
- Manual tuning results in success rates p(valid) < 0.1.

Table: Parameter settings for manual tuning.

Parameter name	tried range
Population size μ	10-20
Maximum age κ	1-20
Selection pressure λ/μ	1-5
Learning rate $ au$	0.05-0.2

Scientific/Statistical theses.

Parameter tuning.

- Scientific thesis: ∃ a parameter set that leads to high success rates (for reaching valid solutions)
- Statistical thesis: SR(SPO-tuned) >> SR(man-tuned)
- In the following: Commercial simulator switched off, finding good quality solutions deferred to a second step.

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

GECCO'05 16 / 42

The New Experimentalism—Results Example (tuning): Distillation facility

Experimental design.

Parameter tuning.

- Problem design (mainly fixed):

 - ▶ Performance measure ← MBF (penalized invalid solutions always worse than valid ones)
- Algorithm design:

Table: Parameter ranges for SPO (intervals enlarged now).

Parameter name	min	max
Population size μ	10	100
Maximum age κ	1	50
Selection pressure λ/μ	1	10
Learning rate τ	0	1

 Experimental goal: detect parameter region that minimizes the MBF (fitness of invalid points $\geq 10^6$).

Experiments. Parameter tuning.

- Test function is costly, try to minimize number of runs.
- 25 initial design points (LHD).
- Initial configurations repeated r = 2 times.
- Model enlarged with 1 best, 4 expected best, 4 model improvement points per step.

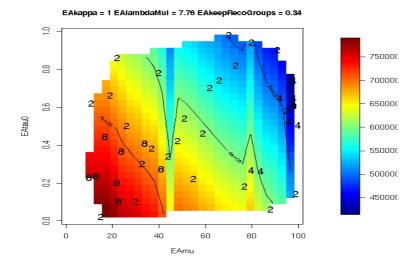
Table: First entries of result file after initial design + 3 iterations.

_	κ	μ	λ/μ	au	recGrp	r	conf	MBF	std.dev.	-
_	2	44	7.03	0.34	0.02	2	14	3.2306E+05	1.7635E+04	-
	1	98	7.7576	0.6045	0.3425	8	27	3.2516E+05	3.7345E+04	
	32	33	9.406	0.3	0.94	2	16	3.2704E+05	301	
	22	91	6.238	0.9	0.42	2	13	3.3018E+05	3.0601E+04	
	16	100	5.342	0.5035	0.1695	4	32	3.3048E+05	1.8736E+04	
	42	95	3.466	0.58	0.22	2	21	3.3644E+05	3.2716E+04	
	29	55	3.862	0.22	0.26	2	10	3.3916E+05	3.668E+04	
	12	70	8.614	0.98	0.46	2	22	3.6124E+05	2.9507E+04	
	1	96	5.8865	0.5215	0.4075	4	26	3.7467E+05	2.6731E+04	
	28	84	1.09	0.26	0.14	4	23	4.8457E+05	3.1373E+05	
	19	41	9.8763	0.2724	0.5165	8	39	4.969E+05	3.0772E+05	
Bartz-Be	ielsteir	n / Preuß	(Uni Dortmur	nd)	Experiment	al Res			GECCO'05	18

The New Experimentalism—Results Example (tuning): Distillation facility

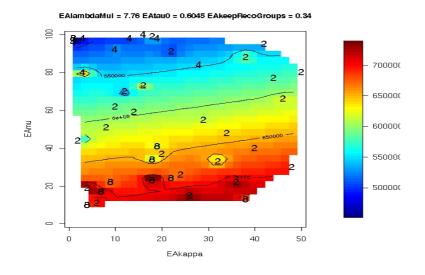
Evaluation and visualization.

Parameter tuning.



Evaluation and visualization.

Parameter tuning.



Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

The New Experimentalism—Results Example (tuning): Distillation facility

Acceptance/rejection of the statistical hypothesis. Parameter tuning.

- We chose configuration 27 ($\mu = 98, \kappa = 1, \lambda/\mu = 7.76, \tau = 0.6$) because it performs well (2nd) and is stable under 8 repeats.
- Verify result: 40 new runs, measure SR.
- \bullet SR \approx 65%, significantly better than 10%, no t-test needed.

Objective interpretation of the results.

Parameter tuning.

- (First) task fulfilled: ES parameters for high SR found.
- Better performance may be possible: μ value at upper limit.
- Parameters κ and *recGrp* have little influence.
- Possible explanations:
 - Increased population size induces higher (needed?) diversity.
 - Large selection pressure and high learning rates lead to fast reaction when lesser constrained search points are found.

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

GECCO'05

21 / 42

The New Experimentalism—Results Example (comparison): PSO variants

Pre-experimental planning. Comparison.

Experiments to avoid floor and ceiling effects:

- Run length distributions: How many runs were completed successfully after t_{max} iterations?
- Varying the starting points: How many runs were completed successfully after t_{max} iterations from different starting points?
- Varying the problem dimension: How many runs were completed successfully after t_{max} iterations for different problem dimensions?
- Here (different to Mike's example): Specify the problem design.

Table: Comparison. Problem design.

n	<i>t</i> _{max}	d	Init	Term	Χį	X _U	Perf
50	2500	10	1-4	T-3	15	30	PM-3

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

Scientific claim.

Comparison.

• Consider the experimental setup from [Shi and Eberhart, 1998].

Table: Comparison. Problem design. I-4 denotes non-uniform random starts. The algorithm terminates, if the ressources are exhausted (T-3).

n	$t_{\sf max}$	d	Init	Term	Χį	Χu	Perf
50	10,000 - 60,000	10 – 30	I-4	T-3	15	30	PM-3

Example

Claim: The PSO constriction variant (PSO_C) outperforms the PSO inertia weight variant (PSO) on the Rosenbrock function.

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

GECCO'05

The New Experimentalism—Results Example (comparison): PSO variants

Experimental design.

Comparison.

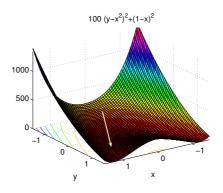
- Experimental design combines algorithm and problem designs.
- Experimental goal:
 - Determine improved algorithm designs for both algorithms for a given problem design.
 - Compare both algorithms based on the improved designs.

Table: Comparison. Algorithm design.

Design	s	C ₁	C 2	W _{max}	W _{scale}	WiterScale	V _{max}
$\mathbf{X}_{PSO}^{(I)}$	5	1.0	1.0	0.7	0.2	0.5	10
X _{PSO} X _{PSO}	100	2.5	2.5	0.99	0.5	1	750
X _{PSO}	21	2.25	1.75	0.789	0.283	0.94	11.05

Experiments. Comparison.

- Test function not very costly.
- Many experiments.
- Each run configuration repeated r = 5 times.
- 80 design points (LHD).
- Max. 2000 runs to determine improved algorithm designs.
- Actual experiment requires a few minutes only.



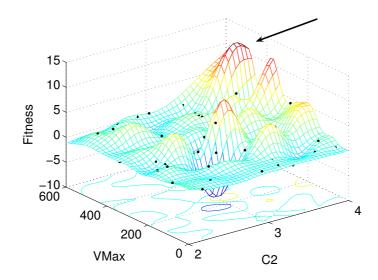
Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

The New Experimentalism—Results Example (comparison): PSO variants

Evaluation and visualization.

DACE. Particle swarm optimization.



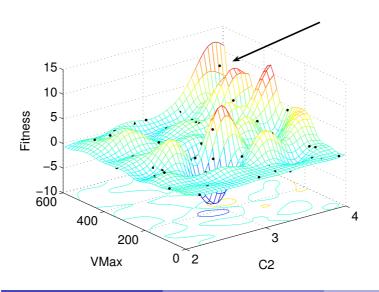
Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

26 / 42

Evaluation and visualization.

DACE. Particle swarm optimization.



Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

The New Experimentalism—Results Example (comparison): PSO variants

Acceptance/rejection of the statistical hypothesis. Comparison.

Table: Results on the Rosenbrock function. NMS is a Nelder-Mead simplex algorithm, QN denotes a Quasi-Newton strategy. 50 repeats.

Design	Mean	Median	StD	Min	Max
x _{PSO}	1.84e+03	592.13	3.1e+03	64.64	18519
X* PSO	39.70	9.44	5.38	0.79	254.19
x _{PSO} x ₍₀₎ x _{PSOC}	162.02	58.51	378.08	4.55	2.62e+03
	116.91	37.65	165.90	0.83	647.91
x_{PSOC}^* $x_{NMS}^{(0)}$	9.07e+03	1.14e+03	2.50e+04	153.05	154966
x* NMS	112.92	109.26	22.13	79.79	173.04
QN	5.46e-11	5.79e-11	8.62e-12	1.62e-11	6.20e-11

Is PSO really better than PSO_C?

Objective interpretation of the results. Comparison. A closer look at the data.

• Here: 500 repeats.

PSO: Mean Y1 = 287.15 PSO_C: Mean Y2 = 150.90 • p value: p = 6.7035e-05

• 95 % confidence interval: ci = [69.67 202.84].

• t test: reject the null hypothesis. Now: PSO_C outperforms PSO?

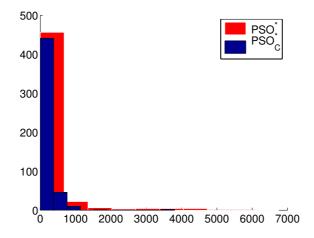
Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

GECCO'05

The New Experimentalism—Results Example (comparison): PSO variants

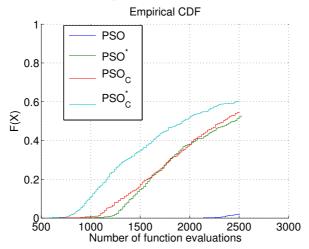
Objective interpretation of the results.

Comparison. Histogram.



- Histograms indicate:
 - High variance in the data.

Objective interpretation of the results. Comparison. Run-length distribution.



- RLD indicate:
 - ▶ PSO_C performs slightly better than PSO.

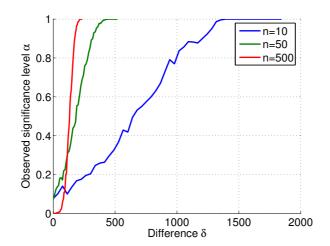
Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

30 / 42

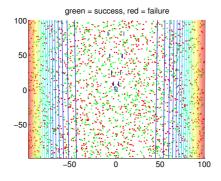
The New Experimentalism—Results Example (comparison): PSO variants

Objective interpretation of the results. Comparison. OSL plots.



- OSL plots indicate:
 - Difference depends on the number of experiments.

Objective interpretation of the results. Comparison. Starting points.



 Starting points indicate no structure.

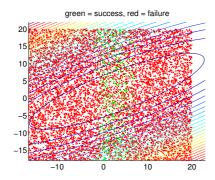
Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

The New Experimentalism—Results Example (comparison): PSO variants

Objective interpretation of the results.

Comparison. Starting points.



- $y = 3 + (x_1 1.5x_2)^2 + (x_2 2)^2$.
- $x^* = [3 \ 2].$
- $f^* = 3$.
- 10,000 starting points.
- Starting points indicate structure.

Objective interpretation of the results. Comparison.

Analysis reveals:

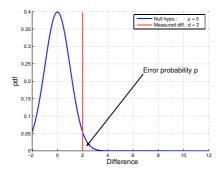
- Experimental setup has to be modified.
- ▶ *t* tests, confidence intervals, or *p* values alone are not sufficient.
- Vary factors that influence the results (and statistics of these results).
- Rosenbrock function is not well suited to compare the performance of algorithms, because it causes high variance.
- ▶ Both PSO variants perform very poorly on the Rosenbrock function.
- Other performance measures necessary, e.g. best result from 5 runs.
- Good comparisons can pose new questions, they can be regarded as starting points for further investigations.

Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

Statistical hypothesis.

- Run algorithm A and B n times.
- Two result vectors: y_A and y_B that contain the best function values.
- Difference $d_{AB} = y_A y_B$.
- $Var(d_{AB}) \neq 0$.
- Null hypothesis: "There is no difference in means $\mu = 0$."
- Error probability.



Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

35 / 42

Error statistics.

- p value: Probability, that the observed (or larger) effect occurs, under the assumption that the null hypothesis is true.
- Small p values ⇒ improbable that the observed effect occurs under the null hypothesis.
- Convention: p value ≤ 0.05 statistically significant.

Definition (p value)

 $P(H \text{ true} \mid \text{result}) \text{ or } P(\text{result} \mid H \text{ true})$?

• p value is not the probability that the null hypothesis H is true. The null hypothesis is either true or wrong.

Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

Quotes from recent publications.

Example (Problematic.)

... are compared using the null-hypothesis H0: FX = FY and the one-sided alternative H1: FX < FY. Only if the probability of the null-hypothesis P(H0) is at most 0.01, it is rejected and the alternative hypothesis is accepted.

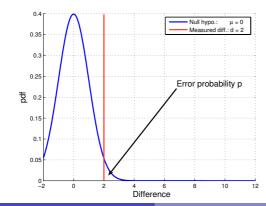
Example (Good.)

The test H_0 : $\beta = 1$ versus H_1 : $\beta < 0$ has p < 0.001. This provides some evidence that the empirical relative complexity coefficient is However, the model implies that

How to detect differences?

Null hypothesis true. Prob., that a difference *d* (or larger) occurs: 0,0228.

- Experimenter assumes a difference. But: p value too large. Therefore: further experiments.
- Experimenter demonstrates a difference. Now: p value small



Bartz-Beielstein / Preuß (Uni Dortmund)

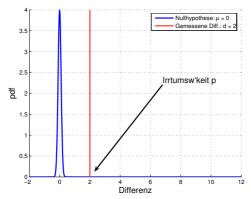
Experimental Research

GECCO'05

How to produce differences?

Null hypothesis true. Prob., that a difference d (or larger) occurs: 0.

- Experimenter assumes a difference. But: *p* value too large.
- Experimenter demonstrates a difference. Now: p value small enough. Therefore: no further experiments necessary.



Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

Idea: Control the variables that influence the *p* value.

Statistical controversies: p value and hypothesis testing.

- How to avoid this arbitrariness?
- Control the variation ⇒ Observed significance.
- OSL plots.
- Dynamic analysis.
- Furthermore: Vary problem dimension, instances, starting points etc.

Bartz-Beielstein / Preuß (Uni Dortmund)

GECCO'05

Benefits of this approach.

- Combination and improvement of classical and modern statistical techniques such as:
 - Design of Experiments.
 - Regression trees.
 - Design and Analysis of Computer Experiments.
- Based on the new experimentalism, an influential trend in the philosophy of science:
 - Learning from error.
 - Statistical idea: Not avoiding, but controlling error.
 - Offers extensions and new interpretations of the Popperian view.

The philosophy of science seems to be in a state of flux, and the possibilities opened up by the new experimentalists seem to offer genuine hope for a recovery of some of the solid intuitions of the past about the objectivity of science, but in the context of a much more detailed and articulate understanding of actual scientific practice.

-Robert Ackermann, 1989.

Further literature I

- Ackermann, R. (1989). The new experimentalism. Brit. J. Phil. Sci., 40:185-190.
- Bartz-Beielstein, T. (2005). New Experimentalism Applied to Evolutionary Computation. PhD thesis, University of Dortmund.
- Bartz-Beielstein, T., Parsopoulos, K. E., and Vrahatis, M. N. (2004).

Design and analysis of optimization algorithms using computational statistics.

Applied Numerical Analysis & Computational Mathematics (ANACM), 1(2):413-433.

Bartz-Beielstein / Preuß (Uni Dortmund) Experimental Research

GECCO'05

Appendix Further Literature

Further literature II

- Jones, D., Schonlau, M., and Welch, W. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455-492.
- Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge. The University of Chicago Press.
- Santner, T., Williams, B., and Notz, W. (2003). The Design and Analysis of Computer Experiments. Springer, Berlin.
- Shi, Y. and Eberhart, R. (1998). Parameter selection in particle swarm optimization. In Porto, V., Saravanan, N., Waagen, D., and Eiben, A., editors, Evolutionary Programming, volume VII, pages 591-600. Springer.