
An Efficient Evolutionary Algorithm Applied to the Design
of Two-dimensional IIR Filters

Swagatam Das
 Electronics & Telecom Eng Dept.

 Jadavpur University
Kolkata 700032, India
+(91) (33) 2528-2717

swagatamdas19@yahoo.co.in

Amit Konar
 Electronics & Telecom Eng Dept.

Jadavpur University
Kolkata 700032, India
+(91) (33) 2416-2697

babu25@hotmail.com

Uday K. Chakraborty
 Math and Computer Science Dept.

University of Missouri
St. Louis, MO 63121, USA

 +1 (314) 516-6339

uday@cs.umsl.edu

ABSTRACT
This paper presents an efficient technique of designing two-
dimensional IIR digital filters using a new algorithm involving the
tightly coupled synergism of particle swarm optimization and
differential evolution. The design task is reformulated as a
constrained minimization problem and is solved by our newly
developed PSO-DV (Particle Swarm Optimizer with
Differentially perturbed Velocity) algorithm. Numerical results
are presented. The paper also demonstrates the superiority of the
proposed design method by comparing it with two recently
published filter design methods.

Categories and Subject Descriptors

J.2 --- Electronics, engineering; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search --- Heuristic
methods; G.1.6 [Numerical Analysis]: Optimization --- Global
optimization; G.3 --- Probabilistic algorithms

General Terms
Design, algorithms

Keywords
Particle swarm optimization, differential evolution, IIR filter,
genetic algorithm

1. INTRODUCTION
Two-dimensional zero-phase digital filters find an extensive
application in the domain of biomedical imaging and digital
mammography, X-rays image enhancement, seismic data
processing, etc. [7], [13], [9]. The most popular design methods
for 2-D IIR filters are based either on an appropriate
transformation of 1D filter [13], [9] or on appropriate optimization
techniques. One of the major problems underlying the design task
is to satisfy the stability criterion for the filter transfer function.
Although researchers have attempted to tackle the stability
problem in a number of ways, most of these efforts resulted in a
filter having a very small stability margin with hardly any
practical importance [11]. The application of evolutionary
computation techniques to the design of digital IIR filters can be
traced to the work of Gorne and Schneider [6]. Chellapila et al.

[1] used evolutionary programming in optimizing the coefficients
of the transfer function of a one-dimensional IIR filter. In the
present paper the design task of 2D recursive filters is formulated
as a constrained optimization problem and a new optimization
technique, called PSO-DV [2], is applied to solve the problem. In
[2], we show that our PSO-DV algorithm outperforms both
particle swarm optimization (PSO) [8] and differential evolution
(DE) [12] on a set of benchmark functions. In the present paper
numerical results show that the algorithm yields a better
approximation to the transfer function as compared to the works
presented in [11] and [10]. The proposed technique also satisfies
the stability criterion which is presented as constraints to the
minimization problem. Compared to a genetic algorithm-based
method, the algorithm used here is easier to implement and
requires fewer function evaluations to find an acceptable solution.

The remainder of this paper is organized as follows. Section 2
provides an overview of the filter design problem and its
reformulation as a constrained minimization problem. In Section 3
the PSO-DV algorithm is presented briefly and its application to
the present problem is described in Section 4. Section 5 presents
the results of applying the proposed method to a specific design
problem and also provides performance comparisons with two
previous techniques [11], [10]. Conclusions are drawn in Section
6.

2. FORMULATION OF THE DESIGN
PROBLEM
Let the general prototype 2-D transfer function for the digital filter
be

∏

∑ ∑

=

= =

+++
= N

k
kkk

N

i

N

j

ji
ij

zzszrzq

zzp
HzzH

1
2121

0 0
021

).1(
),(

 (1)

with P00 = 1. Also, let us assume that the user-specified amplitude
response of the filter to be designed is Md which is obviously a
function of digital frequencies ω1 and ω2 (ω1, ω2 є [0, π]). Now the
main design problem is to determine the coefficients in the
numerator and denominator of equation (1) in such a fashion that
H(z1, z2) follows the desired response Md (ω1, ω2) as closely as
possible. Such an approximation of the desired response can be
achieved by minimizing

b
d

N

n

N

n
kkkij MMHsrqpJ)],(),([),,,,(21

0 0
210

1

1

2

2

ωωωω −=∑∑
= = (2)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

2157

where

 2
2

1
1),(),(2121 ω

ωωω
j

j

ez
ezzzHM

=
==

 (3)

and

 ;)(
;)(

222

111

nN
nN

πω
πω

=
=

and b is an even positive integer (usually b = 2 or 4).

Equation (2) can be restated as

b

d

N

n

N

n N
n

N
nM

N
n

N
nMJ)],(),([

2

2

1

1

0 0 2

2

1

1
1

1

2

2

ππππ
−= ∑ ∑

= = (4)

Here the prime objective is to reduce the difference between the
desired and actual amplitude responses of the filter at N1.N2
points. Since the denominator contains only first degree factors,
we can assert the stability conditions, following [7], [13] and [9],
as

,11 kkkkk rqsrq −−<<−+ (5)
where k = 1, 2,...,N.
Thus the design of a 2-D recursive filter is equivalent to the
following constrained minimization problem:

Minimize J
b

d

N

n

N

n N
n

N
nM

N
n

N
nM)],(),([

2

2

1

1

0 0 2

2

1

1
1

1

2

2

ππππ
−= ∑ ∑

= = (6a)

subject to the constraints

 |qk + rk| - 1< sk k = 1, 2,...,N

sk < 1 - |qk - rk| k = 1, 2,...., N (6b)

where N1, N2 and N are all positive integers. In [11], the design
problem has been tackled with neural networks and the work in
[10] attempts to solve it using a GA. In the present paper a much
better solution has been obtained using an improved version of
particle swarm optimization, called PSO-DV.

3. A BRIEF DESCRIPTION OF PSO-DV
In classical PSO [8], a population of particles is initialized with
random positions Xi and velocities Vi and a function f is
evaluated, using the particle’s positional coordinates as input
values. In an n-dimensional search space, Xi = (xi1, xi2, xi3,…,xin)
and Vi = (vi1, vi2, vi3,...,vin). Positions and velocities are adjusted,
and the function evaluated with the new coordinates at each time-
step. The fundamental velocity and position update equations for
the d-th dimension of the i-th particle in the swarm may be given
as

Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))
Xid (t+1) = Xid (t) + Vid (t+1)

 (7)

The variables φ1 and φ2 are random positive numbers, drawn from
a uniform distribution and restricted to an upper limit φmax which
is a parameter of the system. C1 and C2 are called acceleration
constants whereas ω is called inertia weight. Pli is the best solution
found so far by an individual particle while Pg represents the
fittest particle found so far in the entire community.

In the PSO-DV algorithm [2], for each particle i in the swarm two
other distinct particles, say j and k (i ≠ j ≠ k), are selected
randomly. The difference between their positional coordinates is
taken as a difference vector δ:

jk XX −=δ (8)

Then the d-th velocity component (1 < d < n) of the target particle
i is updated as follows:
If (randd (0, 1) < CR) Then

 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t))

Else Vid (t+1) = Vid (t) (9)

where CR is the crossover probability, δd is the d-th component of
the difference vector δ defined in equation (8) and β is a scale
factor in [0, 1]. In essence the cognitive part of the velocity
updating formula in equation (7) is replaced by the vector
differential operator to produce some additional exploration
capability. Obviously for CR < 1, some of the velocity
components retain their old values. Now, a new trial location Tri
is created by adding this updated velocity to the previous position
Xi:

)1()(++= tVtXTr iii (10)

The particle is placed at this new location only if the coordinates
of the location yield a better fitness value. So if we are seeking the
minimum of an n-dimensional function)(),...,,(21 Xfxxxf n = , then
the target particle is relocated as follows:

If ())(()(tXfTrf ii < then ii TrtX =+)1(

Else)()1(tXtX ii =+ (11)

Therefore the particles either move to better positions in the
search space or stick to their previous locations every time their
velocities are changed. Thus the current location of a particle is
actually the best location it has found so far. Unlike the classical
PSO, here Plid always equals Xid. The cognitive part involving
|Plid-Xid| is eliminated automatically in our algorithm.
If a particle gets stagnant at any point in the search space, the
particle is shifted by a random mutation step to a new location.
This technique helps escape local minima.

If (())(....)2())1()(NtXtXtXtX iiii +==+=+= and

))))(((*fNtXf i ≠+

then for (r = 1 to n)
 Xir(t+N+1) = Xmin + randr(0, 1)*(Xmax-Xmin) (12)
where f* is the global minimum of the fitness function, N is the
maximum number of iterations up to which stagnation can be
tolerated and (Xmax, Xmin) define the legitimate bounds of the
search space. The pseudo-code for this method, which we call

2158

PSO-DV (Particle Swarm Optimization with Differentially
perturbed Velocity), is presented below:
Procedure PSO-DV
begin
 initialize population;
 while stopping condition not satisfied do
 for i = 1 to no_of_particles
 evaluate fitness of particle;
 update Pgd ;
 select two other particles j and k (i≠j≠k) randomly;

 construct the difference vector as
jk XX −=δ ;

 for d = 1 to no_of_dimensions
 if randd (0, 1) < CR
 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t));
 else Vid (t+1) = Vid (t); end if
 end for

 create trial location as)1()(++= tVtXTr iii
;

 if ())(()(tXfTrf ii <) then
ii TrtX =+)1(

 else)()1(tXtX ii =+ ; end if

 end for
 for i = 1 to no_of_particles
 if Xi stagnates for N successive generations

for r = 1 to no_of_dimensions
 Xir(t+1) = Xmin + randr(0, 1)*(Xmax-Xmin)
 end for
 end if
 end for
 end while
end

4. APPLICATION OF THE ALGORITHM
TO THE DESIGN PROBLEM
4.1 Converting the Problem to a Suitable
Form
Without loss of generality let us assume N = 2. Then H (Z1, Z2) in
equation (1) can be restated as:

)1)(1(
),(

21222122112111

2
2

2
1222

2
121

2
21122111

2
120110

2
20220100

021 zzszrzqzzszrzq
zzpzzpzzpzzpzpzpzpzpp

HzzH
++++++

++++++++
=

 (13)
Now if we substitute Z1 and Z2 as in (3), then M (ω1, ω2) can be
expressed as:

]
)(

)(
[),(

2222212112121111202010100202010100

2222212112121111202010100202010100
021

V
gpgpgpgpgpgpgpgppj

V
fpfpfpfpfpfpfpfppHM

++++++++
−

++++++++
=ωω

 (14a)

with fxy = cos (xω1 + yω2)
 gxy = sin (xω1 + yω2)
and x, y = 0, 1, 2 (14b)

with

)]()1[(
*)]()1[(

112012102112012102

111011101111011101

gsgrgqjfrfrfq
gsgrgqjfsfrfqV

++−+++
++−+++=

 (14c)
From (14a) we may put M(ω1, ω2) in a compact form as

)).((
),(

2211
021

IRIR

IR

jDDjDD
jNNHM

−−
−=ωω

 (15)

 where

1120121022

1120121022

1110111011

1110111011

2222212112121111202010100202010100

2222212112121111202010100202010100

1

1

gsgrgqD
fsfrfqD

gsgrgqD
fsfrfqD

gpgpgpgpgpgpgpgppN
fpfpfpfpfpfpfpfppN

I

R

I

R

I

R

++=
+++=

++=
+++=

++++++++=
++++++++=

 (16)
Hence the actual magnitude may be written as:

))((
)(),(2

2
2
2

2
1

2
1

22

021
IRIR

IR

DDDD
NNHM

++
+

=ωω
 (17)

Now let us consider a specific example of the design problem
where the user-specification for the desired circular symmetric
low-pass filter response may be given as:

 Md (ω1, ω2) = 1, if πωω 04.02
2

2
1 ≤+

 = 0.5, if πωωπ 08.004.0 2
2

2
1 ≤+≤

 = 0, otherwise. (18)
Also from (5) the constraints may be put in a continuously
differentiable form as:

 0)1(
0)1(

)1()()1(
)1()()1(

>−
>+

−<−<−−
+<+<+−

k

k

kkkk

kkkk

s
s

srqs
srqs

 (19)
Now in this problem we select b = 2, N1 = 50 and N2 = 50. Finally
the constrained minimization task becomes:

Minimize J

221
50

0

50

0

21)]
50

,
50

()
50

,
50

([
1 2

nnMnnM d
n n

ππππ
−= ∑∑

= = (20a)
subject to the constraints imposed by (19) with k = 1, 2.

Since the objective is to minimize this cost function and the true
minimum is at the origin, to make the error function values
(usually less than 1) more sensitive, we take the square root of the
modulus of each individual term above, instead of taking squares,

2159

while applying the PSO-DV algorithm. Thus for PSO-DV our
fitness function becomes:

 Minimize J

 |)
50

,
50

(|)
50

,
50

(||
50

0

50

0

2121

1 2

∑∑
= =

−=
n n

d
nnMnnM ππππ (20b)

However, other competitive processes use the cost function (20a).

4.2 Particle Representation
In order to apply the PSO-DV algorithm to the problem
formulated in (20) we need to represent each trial solution as a
particle in a multi-dimensional search space. Since p00 is always
set to 1 in (1), the dimensionality of the present problem is 14 and
each particle has 14 positional coordinates represented by the
vector

THssrrqqppppppppX),,,,,,,,,,,,,,(02121212221201211100201=

All these 14-dimensional particles have 14 components in their
velocity vector.

4.3 Population Initialization and Population
Size
Each space-coordinate of a particle was initialized with a random
floating point number whose absolute value was kept below 3.00.
Following Eberhart and Shi [4], the maximum allowable velocity
Vmax for each particle was limited to the upper value of the
dynamic range of search, i.e., |Vmax| = |Ximax | = 3.00. Eberhart and
Shi also showed that the population size has hardly any effect on
the performance of the PSO method. It is quite common in PSO
research to limit the number of particles in the range 20 to 60. Van
den Bergh and Engelbrecht [14] have shown that though there is a
slight improvement of the optimal value with increasing swarm
sizes, a larger swarm increases the number of function evaluations
necessary to converge to an error limit. We maintain a constant
population of 40 particles throughout the runs of the PSO-DV
algorithm.

4.4 Other Control Parameter Setting
Through simulations carried out with numerical benchmarks we
find that an excellent value for the acceleration-coefficient C2 is
2.4 in equation (9). For the PSO-DV algorithm, scale factor β is
kept at a value of 0.78 and the cross-over constant CR has been
set to 0.9. For comparison against the work done in [10] we run a
simple GA [5] to solve the same problem. The GA parameter set-
up is given in Table 1.

Table 1. GA Parameter Set-up

4.5 Handling the Constraints
To handle the constraints we followed the method in [3] as
follows: a) any feasible solution is preferred to any infeasible
solution; b) between two feasible solutions, the one with a better
objective function value is preferred; c) between two infeasible
solutions, the one having a smaller constraint violation is
preferred. To tackle the constraints presented in (19) we start with
a population of around 200 particles with randomly initialized
positional coordinates. Out of these, 40 particles were selected,
space-coordinates of which obey the constraints imposed by (19).
If more than 40 particles are initially found to obey the
constraints, obviously the selection takes into account the initial
fitness value of these particles. During the run of the program, the
globally best particle was sorted not only on the basis of its fitness
value in the swarm but also depending on whether or not it obeyed
the constraints. That is, if a particle in course of its movement
through the search space yields the lowest fitness value found so
far, its position will be memorized as the globally best position by
all other members in the swarm only if it satisfies the constraints.

5. RESULTS OF SIMULATION
Fig. 1 shows the desired amplitude response of the filter to be
designed. In the present work 50 independent runs of the PSO-
DV algorithm were taken and the maximum permissible error
limit was achieved within 400 iterations on average.

We took the average value of the best particle positions found in
these 50 runs. The vector X found in this way is given by

T

X

]0004.0,8212.0,8521.0
,8215.0,8623.0,9813.0,9586.0,7903.1,0832.2
,2897.0,3281.0,5430.0,4902.0,3554.1,1796.0[

−−−−−
−=

Therefore the filter transfer function may be given by equation
(21) (equation 21 appears at the top of the next page).

The corresponding amplitude response is presented in Fig. 2. For
the purpose of comparison, in Figures 3 and 4 we present the
amplitude response obtained by using the methods in [11] and
[10], respectively. A closer look at these figures reveals that the
PSO-DV algorithm yields a better approximation to the desired
response compared to the works presented in [11] or [10]. In
addition, our method takes considerably less time to find the
solution. The ripple in the stop-band of Fig. 2 is much less than
that in Fig. 3 or Fig. 4.

Fig. 5 presents the performance curves of PSO-DV and GA
applied to the same design problem. This figure presents fitness
function values in log scale versus the number of error function
evaluations. The curves of Figure 5 show that PSO-DV is the
preferred choice when a reasonably good solution is required in a
limited time.

Name of the Parameter Value
Maximum number of chromosomes

per generation
250

No. of bits per gene 32
Mutation probability 0.05

Part of genetic materials
interchanged during cross-over

12

Maximum number of children from
each pair of parents

10

Maximum no. of iterations 500

2160

)
21

8212.0
2

8215.0
1

9813.01)(218521.028623.019586.01(

2
2

2
17903.12

2
10832.22

212897.0213281.02
1543.0149022

23554.121796.01
0004.0)2,1(

zzzzzzzz

zzzzzzzzzzzz
zzH

+−−+−−

−−+−+−++
= (21)

 Figure 1. Desired amplitude response |Md (ω1, ω2)| of the 2-D filter.

 Figure 2. Amplitude response |M (ω1, ω2)| of the 2-D filter using PSO-DV.

2161

 Figure 3. Amplitude response |M (ω1, ω2)| of the 2-D filter using GA

 Figure 4. Amplitude response |M (ω1, ω2)| of the 2-D filter using the method in [7].

2162

 Figure 5. Performance comparison of GA and PSO-DV

algorithms.

6. CONCLUSION
In this paper a new optimization algorithm (developed by
modifying the classical PSO) has been applied to a real-world
problem of designing 2-D zero-phase recursive filters. The filter
thus obtained has a reasonably good stability margin (we have
incorporated the stability criteria as constraints to the
minimization task). Our method leads to a simpler filter since in
practice we have to realize a factorable denominator. Compared to
the methods described in [11] and [10], which, to our knowledge,
are the most recent and the best-known methods to date, the
algorithm used here yields a better design in considerably less
time.

7. ACKNOWLEDGMENTS
Partial support of UGC-sponsored projects on i) AI and Expert
Systems and ii) Excellence Program in Cognitive Science is
acknowledged. We are grateful to five anonymous reviewers for
their helpful comments.

8. REFERENCES
[1] Chellapilla, K., Fogel, D.B., Rao, S. S. Optimizing IIR

Filters using Evolutionary Programming, In Proceedings of
the Adaptive Distributed Parallel Computing Symposium,
Dayton, OH (1996), pp. 252-258.

[2] Das, S., Konar, A., Chakraborty, U. K. Improving particle
swarm optimization with differentially perturbed velocity,
to appear in ACM-SIGEVO Proceedings of Genetic and
Evolutionary Computation Conference (GECCO-2005),
Washington D.C., June, 2005.

[3] Deb, K. An efficient constraint handling method for genetic
algorithms, Computer Methods in Applied Mechanics and
Engineering, 186(2-4) (2000) 311-338.

[4] Eberhart, R. C., Shi, Y. Comparing inertia weights and
constriction factors in particle swarm optimization. In
Proceedings of IEEE International Congress on
Evolutionary Computation, Vol. 1. (2000) 84-88.

[5] Goldberg, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning, Reading, MA: Addison-Wesley,
(1989).

[6] Gorne, T., Schneider, M. Design of digital filters with
evolutionary algorithms, International Conference on
Artificial Neural Networks and Genetic Algorithms (1993),
Ref. No. 155-1, pp 1-7.

[7] Kaczorek, T. Two-Dimensional Linear Systems. Berlin,
Germany: Springer-Verlag (1985).

[8] Kennedy, J., Eberhart, R. Particle swarm optimization, In
Proceedings of IEEE International conference on Neural
Networks. (1995) 1942-1948.

[9] Lu, W. S., Antoniou, A. Two-Dimensional Digital Filters.
NewYork: Marcel Dekker (1992).

[10] Mastorakis, N., Gonos, I. F., Swamy, M. N. S. Design of
two-dimensional recursive filters using genetic algorithms,
IEEE Transactions on Circuits and Systems, Vol. 50. 634–
639 (2003).

[11] Mladenov, V., Mastorakis, N. Design of two-dimensional
recursive filters by using neural networks, IEEE
Transactions on Neural Networks, Vol. 12. 585–590 (2001).

[12] Storn, R., Price, K. Differential evolution – a simple and
efficient heuristic for global continuous spaces, Journal of
Global Optimization, 11(4) (1997) 341–359.

[13] Tzafestas, S. G. (Ed.) Multidimensional Systems, Techniques
and Applications. New York: Marcel Dekker (1986).

[14] van den Bergh, F., Engelbrecht, P. A. Effects of swarm size
on cooperative particle swarm optimizers. Proc. GECCO-
2001, San Francisco, CA, (2001) 892-899.

2163

