Evolutionary Computation: A Unified Approach
Kenneth De Jong

Historical roots:

- **Evolution Strategies (ESs):**
 - developed by Rechenberg, Schwefel, etc. in 1960s.
 - focus: real-valued parameter optimization
 - individual: vector of real-valued parameters
 - reproduction: Gaussian “mutation” of parameters
 - M parents, K>>M offspring

- **Evolutionary Programming (EP):**
 - Developed by Fogel in 1960s
 - Goal: evolve intelligent behavior
 - Individuals: finite state machines
 - Offspring via mutation of FSMs
 - M parents, M offspring

- **Genetic Algorithms (GAs):**
 - developed by Holland in 1960s
 - goal: robust, adaptive systems
 - used an internal “genetic” encoding of points
 - reproduction via mutation and recombination of the genetic code.
 - M parents, M offspring

Present Status:

- wide variety of evolutionary algorithms (EAs)
- wide variety of applications
 - optimization
 - search
 - learning, adaptation
- well-developed analysis
 - theoretical
 - experimental

Interesting dilemma:

- A bewildering variety of algorithms and approaches:
 - GAs, ESs, EP, GP, Genitor, CHC, messy GAs, …
- Hard to see relationships, assess strengths & weaknesses, make choices, ...
A Personal Interest:

- Develop a general framework that:
 - Helps one compare and contrast approaches.
 - Encourages crossbreeding.
 - Facilitates intelligent design choices.

Viewpoint:

Starting point:

- Common features
- Basic definitions and terminology

Common Features:

- Use of Darwinian-like evolutionary processes to solve difficult computational problems.
- Hence, the name: Evolutionary Computation

Key Element: An Evolutionary Algorithm

- Based on a Darwinian notion of an evolutionary system.
- Basic elements:
 - a population of “individuals”
 - a notion of “fitness”
 - a birth/death cycle biased by fitness
 - a notion of “inheritance”

An EA template:

1. Randomly generate an initial population.
2. Do until some stopping criteria is met:
 - Select individuals to be parents (biased by fitness).
 - Produce offspring.
 - Select individuals to die (biased by fitness).
 - End Do.
3. Return a result.
Instantiate by specifying:

- Population dynamics:
 - Population size
 - Parent selection
 - Reproduction and inheritance
 - Survival competition
- Representation:
 - Internal to external mapping
- Fitness

EA Population Dynamics:

- M parents
- K offspring
- Overlapping
- Non-overlapping

Population sizing:

- Parent population size M:
 - degree of parallelism
- Offspring population size K:
 - amount of activity w/o feedback

Population sizing:

- Examples:
 - M=1, K small: early ESs
 - M small, K large: typical ESs
 - M moderate, K=M: traditional GAs and EP
 - M large, K small: steady state GAs
 - M = K large: traditional GP

Selection pressure:

- Overlapping generations:
 - more pressure than non-overlapping
- Selection strategies (decreasing pressure):
 - truncation
 - tournament and ranking
 - fitness proportional
 - uniform
- Stochastic vs. deterministic

Reproduction:

- Preserve useful features
- Introduce variety and novelty
- Strategies:
 - single parent: cloning + mutation
 - multi-parent: recombination + mutation
 - ...
- Price’s theorem:
 - fitness covariance
Exploitation/Exploration Balance:
• Selection pressure: exploitation
 – reduce scope of search
• Reproduction: exploration
 – expand scope of search
• Key issue: appropriate balance
 – e.g., strong selection + high mutation rates
 – e.g., weak selection + low mutation rates

Representation:
• How to represent the space to be searched?
 – Genotypic representations:
 • universal encodings
 • portability
 • minimal domain knowledge

Representation:
• How to represent the space to be searched?
 – Phenotypic representations:
 • problem-specific encodings
 • leverage domain knowledge
 • lack of portability

Fitness landscapes:
• Continuous/discrete
• Number of local/global peaks
• Ruggedness
• Constraints
• Static/dynamic

The Art of EC:
• Choosing problems that make sense.

EC: Using EAs to Solve Problems
• What kinds of problems?
• What kinds of EAs?
Intuitive view:

- parallel, adaptive search procedure.
- useful global search heuristic.
- a paradigm that can be instantiated in a variety of ways.
- can be very general or problem specific.
- strong sense of fitness “optimization”.

Evolutionary Optimization:

- fitness: function to be optimized
- individuals: points in the space
- reproduction: generating new sample points from existing ones.

Useful Optimization Properties:

- applicable to continuous, discrete, mixed optimization problems.
- no a priori assumptions about convexity, continuity, differentiability, etc.
- relatively insensitive to noise
- easy to parallelize

Real-valued Param. Optimization:

- high dimensional problems
- highly multi-modal problems
- problems with non-linear constraints

Discrete Optimization:

- TSP problems
- Boolean satisfiability problems
- Frequency assignment problems
- Job shop scheduling problems

Multi-objective Optimization:

- Pareto optimality problems
- a variety of industrial problems
Properties of standard EAs:

- **GAs:**
 - universality encourages new applications
 - well-balanced for global search
 - requires mapping to internal representation

- **ESs:**
 - well-suited for real-valued optimization.
 - built-in self-adaptation.
 - requires significant redesign for other application areas.

- **EP:**
 - well-suited for phenotypic representations.
 - encourages domain-specific representation and operators.
 - requires significant design for each application area.

Other EAs:

- **GENITOR:** (Whitley)
 - "steady state" population dynamics
 - K=1 offspring
 - overlapping generations
 - parent selection: ranking
 - survival selection: ranking
 - large population sizes
 - high mutation rates

- **GP:** (Koza)
 - standard GA population dynamics
 - individuals: parse trees of Lisp code
 - large population sizes
 - specialized crossover
 - minimal mutation

- **Messy GAs:** (Goldberg)
 - Standard GA population dynamics
 - Adaptive binary representation
 - genes are position-independent
Other EAs:

• GENOCOP: (Michalewicz)
 – Standard GA population dynamics
 – Specialized representation & operators for real valued constrained optimization problems.

Designing an EA:

• Choose an appropriate representation
 – effective building blocks
 – semantically meaningful subassemblies

• Choose effective reproductive operators
 – fitness covariance

Designing an EA:

• Choose appropriate selection pressure
 – local vs. global search

• Choosing a useful fitness function
 – exploitable information

Industrial Example: Evolving NLP Tagging Rules

• Existing tagging engine
• Existing rule syntax
• Existing rule semantics
• Goal: improve
 – development time for new domains
 – tagging accuracy

Evolving NLP Tagging Rules

• Representation: (first thoughts)
 – variable length list of GP-like trees

• Difficulty: effective operators

Evolving NLP Tagging Rules

• Representation: (second thoughts)
 – variable length list of pointers to rules

• Operators:
 – mutation: permute, delete rules
 – recombination: exchange rule subsets
 – Lamarckian: add a new rule
Evolving NLP Tagging Rules

- Population dynamics:
 - multi-modal: $M > \text{small}$
 - typical: 30-50
 - high operator variance: $K/M > 1$
 - typical: 3-5 : 1
 - parent selection: uniform
 - survival selection: binary tournament

- So, what is this thing?
 - A GA, ES, EP, …

- My answer:
 - a thoughtfully designed EA

Analysis tools:

- Schema analysis
- Convergence analysis
- Markov models
- Statistical Mechanics
- Visualization

New developments and directions:

- Exploiting parallelism:
 - coarsely grained network models
 - isolated islands with occasional migrations
 - finely grained diffusion models
 - continuous interaction in local neighborhoods

- Co-evolutionary models:
 - competitive co-evolution
 - improve performance via “arms race”
 - cooperative co-evolution
 - evolve subcomponents in parallel

- Exploiting Morphogenesis:
 - sophisticated genotype --> phenotype mappings
 - evolve plans for building complex objects rather than the objects themselves.
New developments and directions:

• Self-adaptive EAs:
 – dynamically adapt to problem characteristics:
 • varying population size
 • varying selection pressure
 • varying representation
 • varying reproductive operators
 – goal: robust “black box” optimizer

New developments and directions:

• Hybrid Systems:
 – combine EAs with other techniques:
 • EAs and gradient methods
 • EAs and TABU search
 • EAs and ANNs
 • EAs and symbolic machine learning

New developments and directions:

• Time-varying environments:
 – fitness landscape changes during evolution
 – goal: adaptation, tracking
 – standard optimization-oriented EAs not well-suited for this.

New developments and directions:

• Agent-oriented problems:
 – individuals more autonomous, active
 – fitness a function of other agents and environment-altering actions
 – standard optimization-oriented EAs not well-suited for this.

Conclusions:

• Powerful tool for your toolbox.
• Complements other techniques.
• Best viewed as a paradigm to be instantiated, guided by theory and practice.
• Success a function of particular instantiation.

More information:

• Journals:
 – Evolutionary Computation (MIT Press)
 – Trans. on Evolutionary Computation (IEEE)
 – Genetic Programming & Evolvable Hardware
• Conferences:
 – GECCO, CEC, PPSN, FOGA, …
• Internet:
 – www.cs.gmu.edu/~eclab
• New book:
 – Evolutionary Computation: A Unified Approach
 • Kenneth De Jong, MIT Press, 2004-2005