Optimizing Cyclic Steam Oil Production With Genetic Algorithms

Charlie Guthrie
ChevronTexaco – Richmond, CA

Cyclic Steaming Process
- Trying to produce heavy, viscous oil from diatomite – like trying to get roofing tar out of a brick
- Need to inject steam to:
 - fracture the rock
 - reduce the viscosity of the oil
- We do this using a cyclic process:
 - Inject steam for 3-4 days
 - Let it soak in for 2-3 days
 - Produce oil for ~30 days (production declines exponentially with time)
 - Repeat

Optimization Opportunity
- Maximize cycle time (inject steam less frequently) because there is no production during steam and soak periods
- Minimize cycle time (inject steam more frequently) because oil production is highest immediately after returning the well to production, then declines rapidly
- There is an optimum cycle length (OCL) for every well that results in maximum productivity

This is a formidable optimization problem
- Large number of wells
- Multiple objectives – Production, Profit, Steam efficiency
- Multiple constraints –
 - Steam availability
 - Steam loop balancing
 - Facility constraints
- Special situations
 - Steam generator maintenance
 - Well shutdowns due to maintenance
 - Communicating / Gassy wells
- A Scheduling tool would be very helpful
Cyclic Steam Optimization Project

- **Objective**
 - Develop a tool to optimize the steam injection schedule to increase oil production and decrease steam-oil ratio

- **Project Challenges**
 - Complex combinatorial problem
 - Pockets of feasible space
 - Data quality is not very good
 - Well performance models are not readily available
 - Work process will change significantly
 - Operators must buy into the new tool & work process

- **Scheduler has 3 components**
 - **Visualizer** – Reconciles data & predicts future performance for individual well
 - **Simulator** – Simulates field-wide performance for a given steaming sequence
 - **Optimizer** – Uses Genetic Algorithm to optimize steaming sequence

- **Why is GA suitable for this problem**
 - Optimize over a long period of time
 - Discrete / integer variables
 - Pockets of feasible space
 - Computation time not an issue
 - Some constraints can’t be expressed in a mathematical form
 - Multiple solutions are preferred by the user

- **GA Features**
 - Chromosomes
 - Enumerated chromosomes
 - Literal representation
 - Sequential representation – Preferred
 - Sequence length – Heuristic based
 - Seeding Algorithm based on Optimum Cycle Length
 - User defined operators – insert, delete, swap
 - User controlled termination criteria
 - Inclusion of both hard & soft constraints
Closed loop test
- Conducted during July – November 2001
- One gauge setting - 21 wells
- Similar constraints as the whole field
- Objective was to maximize oil production over next 60 days
- Compared the performance against pre-selected baselines

Closed loop test proved the feasibility
- Production during closed-loop test increased by 4 - 18% (depending on which baseline you used for comparison)
- Steam injection also increased by 11 - 41% (was this fair?)
- The field operators & engineers made the new work process a success
- Project is economically viable and technologically feasible

Challenges / Strategies for scale up
- Risk mitigation – Phased development
- Retain performance – Heuristics, New GA operators
- Robust optimization – Breeding pool
- Evaluating the success of the project - ?
- Project management – Constant tracking and communication

Project economics are very attractive

Project Economics
- NPV (@10%) = $5.8MM
- DPI (@10%) = 5.25
- Payout = 9 months
- Total Investment = $1.4MM
• **Lessons Learned**

 - GA can be effectively used for production optimization
 - Technology implementation is as much about right people as it is about right technology
 - External peer review resulted in selecting software that is better suited for field-wide implementation
 - Design of a pilot for a complex facility is not an easy task but very critical
 - Measurement accuracy / frequency very important for optimization

• **Questions?**