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Abstract. Low diversity in a genetic algorithm (GA) can cause the
search to become stagnant upon reaching a local optimum. To some ex-
tent, non-stationary tasks avoid this problem, which would be a desirable
feature of GA for stationary tasks as well. With this in mind, we show
that several methods of introducing artificial non-stationary elements
help to promote diversity in a GA while working on an inherently station-
ary task. By analyzing online and offline diversity and fitness measures,
we show that it is possible to improve overall performance through this
technique, and that some measures intuitively related to performance are
misleading.

1 Introduction

Considerable research has been done in the field of non-stationary tasks in genetic
algorithms (GA). Search techniques such as random restart, adaptive mutation
[1], and the island model [2] can be quite effective in helping an evolutionary
system track a dynamic problem. One effect of this tracking is that the GA
is not allowed to converge on a particular local optimum – a common pitfall
when solving stationary problems using GA. Relatively little exploration has
been done to investigate whether this benefit can be applied to stationary tasks
as well.

One problem with the GA approach is the tendency for the search to become
‘stuck’ on local optima. If one individual within the population happens to find
a very good solution relative to the other individuals, it is likely to have con-
siderable influence over future generations. This effect compounds over several
generations and frequently results in a near total loss of diversity in the pop-
ulation: premature convergence. Such low diversity results in redundancy: two
individuals representing the same solution store less information than two repre-
senting different solutions. This in turn means that fewer solutions are explored,
and the search is less complete.

In this paper we propose that lessons can be learned from non-stationary
tasks and applied to stationary ones. Specifically, we show that diversity is im-
proved when a stationary problem is made non-stationary, and that the benefit
of doing so outweighs the cost.
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2 Terminology

One may expect that GA will perform better when diversity is high, and when
convergence is avoided. In order to test this intuition, it must be made precise.
This section will define the terms that will be used for the remainder of this
discussion. When necessary, we present a concrete definition for a term with
respect to both a binary-valued and a real-valued problem.

The binary-valued problem we will address is target matching: the goal is to
evolve a solution identical to a predetermined target. The fitness function for an
individual a is equal to the Hamming distance between that individual and the
target t, and is to be minimized.

Our real-valued problem is a function optimization, which is similar to target
matching. For ease of reference, we will discuss a two-dimensional problem, in
which the fitness function f (a) = F (ax, ay) is to be maximized. This leads
naturally to discussion of the fitness landscape as a three-dimensional space, in
which peaks represent good solutions, and valleys represent bad ones.

Performance of the GA will be measured in terms of its offline performance:
the fitness value of the single most fit individual encountered at any point during
the run. Online performance – the average fitness of individuals per generation
– will be noted, but is not the primary measure of performance. In fact, an
increase in diversity will almost guarantee a drop in online performance, as fewer
individuals will cluster at peaks in the fitness landscape.

Diversity in a GA run is a critical measure of the behavior of the search.
Unfortunately, it is also a very complex and ambiguous term. We define two
types of diversity: online and offline. Online diversity refers to the ‘spread’ of
individuals across the search space in a given generation, measured in, for in-
stance, standard deviation. Offline diversity is that of the entire run viewed as
a whole – an approximation of search space coverage.

The base diversity function for a given population D (Pi) will be defined
differently for each problem, but will commonly be based on standard deviation
or average Hamming distance between individuals in the population.

3 Background

Many low-cost methods for increasing diversity have been researched. Perhaps
the simplest method is to increase the crossover or mutation rate inherent in
the GA. Another low-cost method of promoting diversity is the random restart
method, in which the entire population is re-seeded with random values. This
restart may happen at a fixed interval, or when diversity becomes low, etc.
These low-cost methods share one downside: they cause little improvement in
the performance of the search [3].

On the other hand, fitness sharing [4] is extremely effective in increasing
diversity, and has a marked positive effect on performance as well. In fitness
sharing, the fitness score associated with a particular location in the search space
is seen as a resource; individuals at that location must share that resource. As a
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result, if many individuals share one particular high-fitness location, the fitness
of each individual might be lower than that of a single individual situated in a
region of lower fitness. The effect of fitness sharing is that individuals are forced
to spread out over a larger amount of the search space, helping to avoid the loss
of diversity associated with population convergence and encouraging the GA
to seek better solutions. Many diversity-promoting techniques that are effective
in improving fitness also suffer fitness sharing’s major drawback: a prohibitive
computational cost [4].

4 Improving Diversity

One might expect that diversity levels in non-stationary tasks would be higher
than those in stationary tasks – if nothing else, a dynamic fitness landscape
could be expected to discourage convergence on one particular location in the
search space. It would seem then that transforming a stationary task into a
non-stationary one would yield higher levels of diversity. A stationary problem
is made non-stationary by changing the environment within the GA during the
run – effectively making a static fitness landscape dynamic. One immediate
benefit of this method is that the computational cost is directly controllable: in
fact, all of the methods presented here add a constant-time operation to a fitness
evaluation, and no more.

This type of change is best expressed in terms of an altered fitness function
with an added dependence on time. In general, if the original fitness function is
fa = f (a), and t represents the current time in the context of the GA run, then
the new fitness function will be of the form

f ′
a = f ′ (t, a, fa) . (1)

This investigation focuses on two optimization problems of two real-valued
variables. The first function (Problem 1) being optimized was

f1 (a) =
1 − (|ax| + |ay|)

2
· cos (ax · π · peaks) + cos (ay · π · peaks) + 2

4
, (2)

where peaks = 8. The fitness landscape is depicted graphically in Fig. 1. This
landscape is somewhat difficult, but primarily serves an illustrative purpose.
The second function (Problem 2) was the Griewangk function, frequently used
as a benchmark for genetic algorithms. The Griewangk function is scalable to
any number of parameters, but becomes simpler as it scales up [5]. The two-
parameter Griewangk landscape, the one used here, is shown in Fig. 2. The
function was expanded and simplified to

f2 (a) = 1 +
a2

x + a2
y

4000
− cos x · cos

y√
2

. (3)

Both functions were normalized to output in the range of 0 to 1, and the
Griewangk function was inverted in order to make it a maximization problem.
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Fig. 1. Fitness landscape for Problem 1. The global optimum is at the center, coor-
dinates (0.5, 0.5). Every depression has a point of zero fitness at its center, including
those surrounding the global optimum

Fig. 2. Fitness landscape for Problem 2, the Griewangk function. The global optimum
is again at the center, at coordinates (0, 0). This is a detail view of the center at 50x
zoom. Note that pits do not reach zero fitness

The domain of each parameter in the first landscape was -1 to 1; in the second,
-512 to 512. These were normalized to take inputs in the range from 0 to 1..

All GA runs were made to run for exactly 300 generations. GA parame-
ters are depicted in Table 1, and were the same for both problems. Solutions
were represented as ordered pairs of floating point numbers: (ax,ay). As such,
mutation of a coordinate was done by adding a random number (Gaussian dis-
tributed about 0). Crossover of two parents was implemented to yield two new
coordinates that lay along the segment between the parents, 1% of the distance
from either end. Mathematically, if a′ was the first child, and a and b were the
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parents, then

a′ =
(

ax ∗ 99 + bx

100
,
ay ∗ 99 + by

100

)
, (4)

and similarly for b′ with weights reversed. Elitism was based on the raw fitness
function f (a) rather than f ′ (a).

Table 1. Parameters for each GA run

Population size: 500
Selection: Tournament of 3

Chance of Crossover: 100%
Chance of Mutation: 0.1% per coordinate (ax and ay)

Elitism: 2 individuals

4.1 Baseline: Random Noise

Perhaps the simplest method of making the landscape dynamic is to randomly
modify each individual’s score during fitness evaluation. This randomness en-
sures that individuals that are on or near a peak in the unmodified fitness land-
scape are not necessarily the individuals that receive the highest modified score
– effectively, peaks are constantly shifting at a rate faster than once per genera-
tion. This could cause individuals near a good solution to not always be favored,
and thus help maintain diversity. Of course, there is also a clear downside: in
some cases, this practice could cause the GA to completely miss a good solution.

Depending on the size of the random change, relative to the unmodified
fitness, the effects of the random noise approach vary wildly. In extreme cases,
the search either exhibits behavior indistinguishable from the original GA if
noise is low, or effectively becomes random search if noise is high. It is worth
noticing that in random search, convergence is avoided and so diversity is very
high. Thus, it is clear that diversity by itself does not improve GA performance,
as random search performs poorly. In moderation, the ‘noisy fitness’ tends to
have slight effects toward both improving diversity and delaying convergence,
but does not have a significant effect on performance [6].

Our goal in this research is to discover whether it is possible to use non-
stationary modifications to a stationary GA in such a way as to improve both
diversity and fitness, with low computational cost. To this end, we explored three
methods detailed in the following sections.

4.2 The Moving Target Approach

The fitness function representing the “moving target” approach (MT) is

f ′ (t, a, fa) = wfa + (1 − w) dist (x, T (t)) , (5)
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where w is a weighting factor, dist (x, y) calculates the distance between two
individuals, and the function T (t) constructs an individual that represents the
target at time t. The dist (x, y) function measures the average Hamming distance
in the population for bit string problems, or the sum of the standard deviation
across all values in real-valued problems.

The implementation of MT discussed here regards a secondary target with an
additive effect on the raw fitness function, with linear falloff. The target begins at
a random location within the search space, and moves to new random locations
throughout the run. Moves occur at most every 20 generations, but only when
online diversity falls below 0.1% of the search space.

The desired effect of the secondary target is to temporarily encourage the
population to explore in a direction that it would not otherwise. The secondary
target ‘bends’ the landscape around a new peak, such that population travel
toward that peak earns higher fitness than travel away. For instance, if the
secondary target positions itself in the middle of a low-fitness region, that region
is then easier for the population to enter or cross. A potentially beneficial side
effect is that if the target then leaves that region, the population should then
leave th low-fitness region for higher-fitness regions of the search space – which
have not necessarily already been explored.

One potential drawback of the MT approach is that the secondary target
may “distract” the GA from finding the global optimum. An extreme example
is that of a deceptive fitness function: if the secondary target is placed such that
the population is encouraged to explore the deceptive portion of the landscape,
it will then be difficult to lead exploration back toward the true optimum, even
if the secondary target is moved to encourage such behavior. In fact, in order to
reliably induce such action, the weight of the secondary target must dominate
that of the raw fitness – and in that situation, the GA cannot be expected to find
good solutions to anything but the secondary target’s fitness function. Clearly
this is an extreme example, but it is not difficult to see this situation arising in
non-deceptive landscapes as well.

4.3 The Peak Removal and Peak Erosion Approaches

The peak removal (PR) approach attempts to guide the population away from
good solutions after they have been found. The fitness function that describes
this is

f ′ (t, a, fa) = fa · S (t, a) , (6)

where the function S calculates the ‘squash factor’ associated with that partic-
ular location in the search space at that particular time. This method is similar
in concept to Tabu search, described in [7]. Here, we focus exclusively on the
idea of simplistically modifying the fitness landscape.
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The squash factor is determined by keeping a list of local optima that have
been found recently, and negating fitness values within that range. That is,

S (t, a) =
{−1 if dist (a,pi) < δ for any of the past n local optima pi

1 otherwise. (7)

Whenever diversity falls below a certain level, the current best position in
the area is recorded and added to the set of previously found peaks, p. If the list
is longer than n, the oldest element is discarded. From then on, any individual
within a certain distance δ of that known peak is penalized, encouraging explo-
ration of other regions of the search space. It is important to note that, though
selection is based on the modified fitness, elitism is based on the raw fitness. This
prevents the GA from completely losing a good solution when it is squashed.

One critical factor in using PR is choosing the right δ. If it is chosen too large,
peaks may be missed; if it is too small, then some peaks (with more rounded
tops) will not be eliminated. It is conceivable that some sort of adaptive method
might determine a good value for δ every generation (or even for every peak),
but developing such a method is beyond the scope of this discussion.

Peak Erosion (PE) is a relaxed form of PR. Rather than completely inverting
a peak if it is on the peaks list, the fitness is decreased according to how many
times that region of the search space is found on the list. Specifically, the squash
factor for PE is defined as

S (t, a) = 0.9m , (8)

where m is the number of the past n local optima pi satisfying dist (a,pi) < δ.
Peak Erosion is intended to avoid the possibility of prematurely forcing the

population to abandon a particular peak. Rather than immediately removing
a peak, PE causes the population to gradually become ‘disinterested’ in that
region of the search space. This allows a few generations of further exploration,
perhaps yielding a slightly better solution, before the population moves on to
the next area of interest.

For this investigation, δ was chosen to be equal to 1
16 of the range of each

parameter for Problem 1. That is, a squashed peak implied a circular “pit” in the
fitness landscape, with radius equal to 1

16 of the horizontal or vertical span of the
square space. For Problem 2, the squash was much smaller: only approximately
0.5% of the range of each parameter. This is because peaks in Problem 2 are
proportionally smaller than those in Problem 1. The list of recent peaks was
20 peaks long. Settings for both PR and PE were the same; only the S (t, a)
function was changed.

5 Results

Results were collected for 100 runs of each version of the GA: normal, MT, PR,
and PE. The diversity, maximum fitness, and average fitness were calculated for
each generation of each run. For Problem 1, Fig. 3 shows the average diversity
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 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300

Normal
MT
PR
PE

Fig. 3. Online population diversity with logarithmic scale. Diversity levels are compa-
rable for all three modified GAs; lower diversity is seen in the unmodified GA

Table 2. Summary of averaged results. Each method was run 100 times; the values
here represent the average of each measurement across those 100 runs

Problem 1:
Method Offline Fitness Offline Diversity
Normal 0.927 0.0492

Moving Target 0.814 0.0963
Peak Removal 0.957 0.1115
Peak Erosion 0.964 0.1009

Problem 2:
Normal 0.982 0.0495

Moving Target 0.917 0.0755
Peak Removal 0.995 0.0590
Peak Erosion 0.997 0.0568

at each generation for each version of the GA, Fig. 4 shows the average fitness,
and Fig. 5, the maximum fitness at each generation1. The maximum fitness and
offline diversity for each method, and both problems, is shown in Table 2.

Several interesting trends can be noted in these results. First, it is clear
that all modifications had a positive effect on offline diversity for both problems
(Table 2) – Student’s two-tailed t-test verifies that fact with P < 1%. Looking

1 Graphs for Problem 2 are similar, omitted due to space constraints
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 1

 0  50  100  150  200  250  300

Normal
MT
PR
PE

Fig. 4. Online fitness with lower limit of 0.5 to emphasize detail. The unmodified GA
clearly has higher average fitness than the others, and Peak Removal is lowest. The
Moving Target and Peak Erosion methods are similar in online fitness

at the Problem 1 graphs as a guide, initial diversity levels are high (as expected
for an initially random population), then as poorly fit individuals are culled
diversity drops dramatically. The stationary GA never recovers from this drop
in diversity, though the others seem to exhibit a reactive bloom in diversity in
just a few generations. Subsequently, PR and PE maintain a roughly static level
of diversity, whereas with MT diversity maintains a slow rate of increase. Similar
behavior was seen in Problem 2.

The fitness graphs are even more interesting. First, online fitness is signifi-
cantly lower for MT, PR, and PE than in the stationary GA, with the lowest
results in PR (Fig 4). On the other hand, offline fitness is significantly lower for
MT, but higher in both PR and PE (Fig 5). All of these differences are statisti-
cally significant (Student’s t-test P < 1%). These results may not be intuitive,
but do make sense: they imply that PR and PE are better at forcing the popula-
tion to leave peaks that have already been found, thus forcing more individuals
into low-fitness regions of the search space and decreasing average fitness. Again,
results for Problem 2 are similar.

6 Conclusions

There are three conclusions that may be drawn from these results. First, diversity
in static tasks can indeed be improved by adding non-stationary subtasks, which
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Fig. 5. Maximum fitness at each generation, with lower limit of 0.5. This represents
offline fitness “in progress.” The Moving Target method has a negative impact on offline
fitness, whereas the Peak Removal and Peak Erosion methods have a positive influence,
especially in early generations

can also be seen as making the static landscape dynamic. Second, non-stationary
subtasks can improve performance – but not necessarily in proportion to the
increase in diversity. Finally, as an extension of the former points, online fitness
and diversity are not necessarily accurate predictors of offline fitness.

All three modifications exhibited significantly increased diversity. Intuitively,
it makes sense that a dynamic fitness landscape would lead to increased diver-
sity: if the local optimum that the GA is working toward repeatedly moves or
changes before the population converges, then the loss of diversity related to
full convergence will never occur. In the case of the Moving Target, the popu-
lation is attracted in varying directions in order to pull individuals away from
discovered peaks in the fitness landscape. In Peak Removal or Erosion, peaks
found are made less attractive – metaphorically pushing the population away.
In a rank-based selection method, these pulling and pushing effects are basically
equivalent, as the diversity results suggest (Fig 3).

Though intuitively in may seem that increased diversity should lead directly
to increased performance, it is clear that there is at least some decoupling be-
tween the two. PR and PE perform better than a normal GA; MT performs
significantly worse – even though the diversity levels in PR, PE, and MT are
comparable. It would seem that taking more information about the current land-
scape and population distribution into account will generate more intelligent –
and more effective – methods of modifying that landscape at runtime. Of course,
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in doing so one must consider the computational cost of the intelligence as com-
pared to the resulting fitness benefit. We hope to test these ideas by exploring
other potential dynamic subtasks in future work.

The relationship between online fitness and offline fitness is also indirect,
largely due to the presence or absence of diversity. Specifically, a drop in online
fitness does not necessarily correspond to a drop in offline fitness, as shown by
PR and PE. In fact, it would seem that the ideal case would have high online
and offline diversity, and low online fitness – though MT seems to fit this pattern
and yields low offline fitness as well. More research needs to be done in order to
discover the difference between the apparent ‘good’ and ‘bad’ sorts of diversity.
Early results seem to indicate that diversity is only ‘good’ as long as some
amount of convergence is allowed, and that convergence must be related to an
optimum in the static landscape. Allowing total convergence is to be avoided,
so perhaps an adaptive method which balances a diversification process against
runtime-observed convergence would be effective. This is an area we hope to
explore further.
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