Efficiently Solving: A Large-Scale Integer Linear
Program Using a Customized Genetic Algorithm

Kalyanmoy Deb! and Koushik Pal?

! Kanpur Genetic Algorithms Laboratory (KanGAL), Department of Mechanical
Engineering, Indian Institute of Technology Kanpur, Kanpur, PIN 208016, India,
deb@iitk.ac.in, http://www.iitk.ac.in/kangal/deb.htm
2 Department of Mathematics and Scientific Computing, Indian Institute of
Technology Kanpur, Kanpur, 208016, India, kapal@iitk.ac.in

Abstract. Many optimal scheduling and resource allocation problems
involve large number of integer variables and the resulting optimization
problems become integer linear programs (ILPs) having a linear
objective function and linear inequality/equality constraints. The
integer restrictions of variables in these problems cause tremendous
difficulty for classical optimization methods to find the optimal or a
near-optimal solution. The popular branch-and-bound method is an
exponential algorithm and faces difficulties in handling ILP problems
having thousands or tens of thousands of variables. In this paper, we
extend a previously-suggested customized GA with four variations of
a multi-parent concept and significantly better results are reported.
We show variations in computational time and number of function
evaluations for 100 to 100,000-variable ILP problems and in all problems
a near-linear complexity is observed. The exploitation of linearity
in objective function and constraints through genetic crossover and
mutation operators is the main reason for success in solving such
large-scale applications. This study should encourage further use of
customized implementations of EAs in similar other applications.

Keywords: Integer linear programs, customized GAs, Large-scale opti-
mization, computational time

1 Introduction

Optimal scheduling and resource allocation problems often arise in different real-
world activities and are routinely solved using classical search and optimization
algorithms including linear programming methods. The difficulties often faced in
solving such problems are (i) dimensionality of the search space and (ii) integer
restriction of the decision variables. If the resulting problem is linear (that is,
the objective function and constraints are all linear functions of the decision
variables), the linear programming (LP) approaches are ideal candidates to solve
such problems (Taha, 1989). Although the first difficulty is not a matter for
solving such problems using an LP, the second difficulty requires an LP approach

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1054-[[065, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Efficiently Solving: A Large-Scale Integer Linear Program 1055

to be used with an integer programming approach, such as the branch-and-
bound method. Since the branch-and-bound approach requires branching every
non-integer variable into two different LPs, the presence of a large number of
integer decision variables demands an exponentially large number of function
evaluations to solve the problem to optimality.

For past few decades, such problems have also been solved using various
non-traditional methods, such as simulated annealing, genetic algorithms, tabu
search etc. (Kirkpatrick, Gelatt and Vecchi, 1983, Goldberg, 1989; Glover, 1997).
In some of these methods, although the second difficulty of handling integer va-
riables is not a matter, the first difficulty of handling a large number of decision
variables is not well researched. A recent paper (Deb, Reddy and Singh, 2003)
clearly demonstrated that a direct use of a genetic algorithm (binary-coded or
real-coded) with generic crossover and mutation is too expensive to handle inte-
ger linear programs. The study also suggested a customized GA for handling such
problems and problems having as large as one million variables were solved with
a less-than-quadratic computational time complexity. That study was probably
the first attempt to solve such a large-scale application using an evolutionary
algorithm.

This paper is motivated from this earlier study and a multi-parent customi-
zed GA is suggested and tested on very large-scale ILP problems. Four different
variations of the proposed multi-parent recombinative GA are compared with
each other and with the previous study in terms of computational time comple-
xity and in terms of required function evaluations. For each case, efficient parent
and population sizes are found experimentally by solving a casting scheduling
problem, which is an ILP and a representative problem to many other real-
world optimization problems. The advantage of developing a customized GA for
large-scale application and the systematic parametric approach followed in this
study should encourage readers to pay attention to population-based customized
optimization techniques for solving real-world optimization problems.

2 Casting Scheduling as an Integer Linear Program

In a typical foundry, casting of various sizes are made from a heat by melting
metal in a large crucible. For convenience, more than one crucible are usually
used. In this study, we shall assume a foundry using two crucible of different sizes
(Wy and Wiy), so that each crucible is used on alternate days. Depending on the
crucible size used on the j-th day, the number of heats (H;) allowed per day vary.
We assume that the total number of castings (R) to be made is so large that a
multi-day schedule requiring a total of H heats is necessary. Let us also assume
that rp copies of order k£ having a weight wy kg are to be made, such that the
total number of castings is R = fo:l r (where K is the total number of orders)
and the total amount of metal required to make all castings is M = Zszl TEWE
kg. With these parameters, one can optimize a casting sequencing for multiple
days by introducing decision variables xj; denoting the number of copies of
order k made from the i-th heat. The equality constraints ensure that all desired

1056 K. Deb and K. Pal

copies of each order k are made from the combination of H heats. The inequality
constraints arise to ensure that total amount of metal used for pouring in each
heat is less than or equal to the size of the crucible (can be either W or Wi;
depending on the day). We form the following ILP:

Maximize % Efil 100 Z,Ile Wi /Wi,

Subject to Zfilxkizrk, fork=1,2,... K,
Zszl Wi < Wi, fori=1,2,... ,H, (1)
T 2 07

Tk 1S an integer.

A sequence of operation can be evaluated based on the utilization of the
molten metal in each heat. Since Zszl wgTr; kg of molten metal is utilized
during the i-th heat, the percentage utilization of molten metal of the i-th heat
. K
is 100) wrxks /Wi.

As can be seen from the above equation that the objective function and
constraints are all linear in terms of the decision variable zj;. There are two
difficulties that an LP solver can face in order to solve the above problem:

1. The number of decision variables and constraints are usually too large to
solve them using classical methods, and
2. All decision variables are integer-valued.

The total number of decision variables are n = HK and total number of con-
straints are (H + K). However, since an LP solver will first convert the inequality
constraints into equality constraints using slack variables (in one approach), the
total number of decision variables for an LP solver become n = (K + 1)H. For
example, for K = 50 orders requiring H = 200 heats to complete all castings,
the LP problem involves a total of 10,000 integer-valued decision variables, 200
slack variables and a total of 250 equality constraints. Besides, the discreteness
of the decision variables causes the major hurdle. The commonly-used techni-
que to handle such problems is the branch-and-bound (BB) method (Deb, 1995;
Reklaitis, Ravindran and Ragsdell, 1983). As shown in the sketch in Figure [T
the BB method first relaxes the integer restrictions and finds the real-parameter
optimal solution. Thereafter, it chooses one particular variable (for which an
non-integer value is obtained) and divides (branches) the original problem into
two new problems (nodes) with an additional constraint to each problem. These
procedure of branching into subproblems is terminated (bounded) when feasible
integer-valued optimized solutions are found on a node or when a violation of
some other optimality criteria cannot justify the continuation of the node. It
is clear that as the number of decision variables increases, exponentially more
such branching into new LPs are required, thereby making the overall approach
computationally expensive.

3 Previously-Suggested Customized GA

It was clearly shown in another study (Deb, Reddy and Singh, 2003) that ca-
nonical binary-coded or real-coded GAs with generic crossover and mutation

Efficiently Solving: A Large-Scale Integer Linear Program 1057

Fig. 1. A sketch of the working principle of the branch-and-bound method for a two-
variable integer program. Every LP having a non-integer solution is branched into two
LPs by adding an extra constraint on the variable.

operators are not at all adequate for handling more than 500 variable version of
the above casting scheduling problem. To solve the above problem close to op-
timality, that study introduced a customized GA. We first briefly describe that
algorithm here.

3.1 Customized Initial Population

The initial population, instead of being created at random, is created in a way
so as to satisfy all the equality constraints in each solution. Although it may
sound impossible, the linearity of the equality constraints can be exploited and
a simple procedure can be adopted. First, every variable xy; is initialized within
[0,a] (a being an upper limit to the number of copies of an order k that can
be made from one heat). Thereafter, we normalize each entry x; such that the
total number of copies allocated for an order k is the same as that desired (r):
L

Hixrk-. (2)
i=1"ki

Tli <

3.2 Customized Recombination Operator

The main purpose of a recombination operator is to recombine partial good infor-
mation of two or more solutions and create an offspring solution. In the context
of the ILP problem stated in equation [, a solution can be called good, if the
overall utilization of molten metal is close to 100%, so that the corresponding
casting strategy causes minimal waste of energy. However, a good solution may

1058 K. Deb and K. Pal

not have close to 100% metal utilization for all its heats, but may have close to
100% utilization in some of its heats. These partial solutions, in which a good
utilization has been already achieved, are building blocks of the problem and
should be propagated from parent solutions to their offsprings. Thus, if two pa-
rent schedules are compared heat-wise and all x; values for the better i-th heat
parent are copied to the child schedule, a literal jump towards the real optimum
solution can be expected with such a recombination operator. However, it is in-
tuitive that such a child may not satisfy the equality and inequality constraints,
although both parents may be feasible. The created schedule was attempted to
be made feasible by using two mutation operators.

3.3 Customized Mutation Operators

In the first mutation operator, the decision variables of a solution are altered so
as to satisfy the equality constraints. For a solution, all zy; values for each order
k are added and compared with the desired number of castings ry. If the added
quantity is larger than rp, we have to reduce zy; from one of the heats. Here,
we choose a heat which violates the inequality constraints maximally so that a
fix-up for the equality constraints is achieved by modifying the worst-violated
inequality constraints. On the other hand, if the added quantity is smaller than
ri then the reverse of the above procedure is followed. For details, readers may
refer to the original study (Deb, Reddy and Singh, 2003).

Next, the modified solution is sent to the second mutation operator which
attempts to alter the decision variables further without violating the equality
constraints in order to satisfy the inequality constraints. The second mutation
operator is started using the first heat and continued serially to the final heat.
Each heat is checked for its inequality constraint violation. If the constraint is
satisfied, there is no need to modify the heat. Otherwise, we look for the heat
(4min) which has the minimum feasible utilization. To satisfy the constraint, it
is necessary to transfer one copy of an order k (randomly chosen) from the i-th
heat to the i,;,-th heat. After all infeasible heats are rectified as above, the
feasibility of the overall solution is checked. If any solution is found infeasible at
the end, a constraint violation equal to the sum of the normalized violations of
all infeasible heats is assigned.

3.4 Salient Results Reported

The above customized GA was applied to the ILP problem having 100 to
1,006,750 (more than one million!) variables and the obtained scalability plots
are reproduced in Figures Bl and [l It is interesting to note that the proposed
GA can solve a problem having as much as 1,006,750 integer decision varia-
bles in only about 1.6(107) normalized heat-updates in finding a solution with
99.84% efficiency. Figure Bl shows the computational time needed to find the
same optimized solutions on a 1.7 GHz Pentium IV processor. The figure shows
a sub-quadratic computational time complexity of the proposed algorithm. The

Efficiently Solving: A Large-Scale Integer Linear Program 1059

1e+08 100000
le+07 | '3 10000 F
)
u)
3 les06 b £ 1000 |
o 3]
'& -
3? \ 1. =0.946 g
£ 100000 Slope=0. E 100 £
Q
= 3
2 \Slope=1.789
10000 B g 10
O
1000 “ L L L L 1 L L |
100 1000 10000 100000 le+06 10000 100000 16406
Number of Variables Number of Variables
Fig. 2. Average, minimum, and maxi- Fig.3. Average, minimum, and maxi-

mum heat-updates needed to find a so- mum computational time needed to find
lution having at least 99.7% utilization of the optimum solution.
molten metal for different problem sizes.

log-log plot shows a complexity of O(n'78%), which is less than quadratic to the
number of decision variables.

4 Extensions of the Customized GA

In this section, we introduced four different extensions to the above GA. In all
extensions, we have slightly modified the second mutation operator as follows.
In addition to choosing a casting (k) randomly to try to satisfy a violated in-
equality constraint (as described above), we choose the heaviest (largest wy)
possible casting for the exchange of a copy. This should make a bigger impact
in preventing some potential solutions from getting lost and hence lead to faster
convergence.

4.1 Multi-parent Customized GA

In this extension, in addition to considering only two parents in the recombina-
tion operator, we consider u random parents from the pool for creating one child
solution. Like before, all u parents are compared heat-wise and the components
(zk;) corresponding to the best individual utilization of the i-th heat are copied
in the child. Since more parents are used in creating the child, a better child
than that obtained in the original study is expected to be created. However, the
use of too many parents may cause a loss of diversity among created solutions,
thereby slowing down the progress towards the true optimum solution.

We first compute an estimate of the required number of heats by using 99.7%
capacity of the crucibles. Each run is started with a population of size 30 and
is run for a maximum of 40 generations till a feasible solution with utilization

1060 K. Deb and K. Pal

of 99.7% is found. If such a solution is not found, we restart the procedure with
a new population. We repeat this a maximum of five times. If no such solution
is found after five iterations, the number of heats is increased and the whole
procedure is repeated. If we get such a solution within five iterations, we decrease
the number of heats and redo the process. We continue reducing the number of
heats till no such feasible solution is found. The number of heats we mentioned in
the paper is the minimum number of heats needed to find a high-quality feasible
solution. When a number of heats is successful, we compute the heat-update for
the best solution. Since the above procedure requires larger-heat runs, we find
the minimum, average and maximum values of such heat-updates for all previous
successful runs (with larger heats) and present here. The computational time is
the time required to find the feasible solution in each run. The average, minimum
and maximum time of all such successful runs (with varying number of heats)
are presented here.

By keeping the population size fixed at 30 and by varying the parent size from
three to 10 on the 50,000-variable ILP problem (given in equation [IJ), we observe
from Table [I] that the use of seven parents require smaller average number of
function evaluations with minimal number of heats.

Table 1. Function evaluations and computational time recorded for different parent
size in the multi-parent approach in solving the 50,000-variable ILP problem. A popu-
lation size of 30 is used.

Util.|Heats| Function Evaluations |Computational Time (sec)
ul (%) H Avg.| Max.| Min.| Avg.Max. Min.
3199.97| 5487| 58491.4|61838.5|54046.9| 94.3| 129 68
5(99.97| 5487| 50974.2(59369.3|47462.6| 129.9| 169 67
6]99.97| 5487| 54211.6|54485.9|46913.8| 149.3| 227 65
7199.97| 5487|48505.1(54705.4| 45158| 143.7| 227 65
8]99.95| 5489| 48797.2| 52914|45942.9|132.57| 237 78
9(99.95| 5489| 50279.2| 55384|47973.9|138.23| 225 81

10199.93| 5490| 50068.8|53582.445621.9| 141.2| 273 75

In this problem, R = 29,466 castings for K = 10 different shapes, each
having different weights and orders (as shown below), are to be made:

Casting(k) 1 2 3 4 5 6 7 8 9 10
Copies (ry,) 3427 3329 3327 3229 3429 3526 3122 1322 2529 2226
Weight (kg) (wy,) 175 150 85 75 95 75 95 200 85 50

This requires a total of M = 3,101,505 kg molten metal. By using W; = 650
kg and Wy = 500 kg and corresponding maximum daily heats H;y = 10 and
Hj; = 13, it can be calculated that at least 5,487 heats involving 478 days will be
required to melt the required amount of metal. This can be explained as follows.
239 days (or 239 x 10 or 2,390 heats) of W requires 239 x (650 x 10) or 1,553,500

Efficiently Solving: A Large-Scale Integer Linear Program 1061

kg and 238 days (or 238 x 13 or 3,094 heats) of Wy requires 238 x (500 x 13)
or 1,553,500 kg metal. The remaining 1,005 kg metal would require at least
three more heats involving Wr; = 500 kg crucible. Thus, a total of minimum
2,390+3,094+3 or 5,487 heats are necessary to complete the job. Table [l shows
that runs with parent size (u) varying from three to seven are able to find this
optimum solution, although the number of function evaluations needed to arrive
at this solution is more for smaller parents. The table clearly indicates that the
seven-parent strategy is most-efficient for this problem having 50,000 variables.

Next, we perform a systematic study by varying the size of the problem from
100 to 100,000. In each case, we fix a parent size of seven and a population
size of 30. The average, minimum, and worst number of function evaluations
and computational times are tabulated in Table 2. The table also shows the
percentage utilization and number of heats obtained for each case and compares
those with the minimum possible number of heats (not necessarily feasible).
The second column indicates the total metal required to cast all orders and the

Table 2. Minimum possible heats and results obtained with the multi-parent strategy
with seven parents and 30 population members.

Variable| Total metal|Days|Min. Heats|Multi-parent GA results
Size|reqd. (M, kg) H |Heats (H) Util. (%)

100 6,475 1 10 10 99.62
5,000 282,065 44 499 499 99.83
10,000 281,992 44 498 499 99.83
50,000 3,101,505 478 5,487 5,487 99.97
100,000 5,891,505/ 907 10,423 10,428 99.94

third column indicates the number of days required to complete the task. The
next column indicates the minimum number of heats necessary to melt M kg
of metal, however in order to make a feasible overall schedule, more heats may
be necessary. Since the number of orders (rj) and weight (wy) of each casting
are arbitrarily chosen, it is difficult to establish if the minimum number of heats
indicated in column 4 would be adequate for the task. However, it is true that
a schedule with a smaller number of heats than what is indicated in column 4 is
inadequate to make all castings. For 100, 5,000, and 50,000 variable cases, the
minimum possible heats are obtained in the multi-parent GA, however in the
other cases although the minimum possible heats are not achieved, close values
are obtained. It is important to reiterate that the marked minimum possible
number of heats may not be the true optimal solution. These number simply
indicates that the minimum number of heats required to melt the adequate
amount of metal.

We have rerun the 100,000-variable case for a maximum generation of 60 and
kept all other parameters the same as before. This time we obtain 10,425 heats

1062 K. Deb and K. Pal

adequate to have a solution with 99.98% utilization and requiring an average of
77,666.3 heat-updates and 548.8 sec computational time.

Figure llshows how the computational time varies with the increase in num-
ber of variables from 100 to 100,000. Over this wide range, the computational
time is found to vary very close to linearity. The fitted straight line on the log-
log plot has a slope of 1.153 indicating a time complexity of O(n!1%3). Since
the plotted computational time is the average of execution times needed for a
number of runs with different heat count (H), the larger-heats runs require more
time and lesser-heats run require smaller time, thereby producing a large fluctua-
tion in the time values. But the average time indicates the overall time needed
to complete one heat run. Figure [l shows the variation of function evaluations
needed to have a utilization efficiency of over 99.7%. A near-linear (O(n°998))
complexity is observed in Figure [3

1000 fr 1e+07

le+06
100 ¢ 3

100000

[Slope: 0.998
10 ESlope: 1.153«\ B

10000

Heat-Updates

1000

Computational Time (sec)

0.1
100

1000

10000

Number of Variables

100000

100

100

I
1000

10000

Number of Variables

100000

Fig.4. Computational time complexity
for the multi-parent approach.

Fig.5. Complexity of function evaluati-
ons for the multi-parent approach.

4.2 Steady-State Customized GAs

The original study (Deb, Reddy and Singh, 2003) and the above multi-parent
study used a generational model of a GA. For better convergence, steady-state
GAs are used in other contexts. In the next three customizations, we use the
multi-parent recombinative strategy and produce one child after two mutation
operators, as mentioned earlier. However, after each child is created, it is com-
pared with the parents for its inclusion in the main population.

Approach 1: In the first approach, we compare all i participating parents and
the child and the best u solutions are kept in the population.

Approach 2: In the second approach, the worst member of the entire current
population is replaced with the child solution.

Approach 3: In the third approach, a random population member is chosen
and compared with the new-born child. The better of the two solutions is
kept in the population.

Efficiently Solving: A Large-Scale Integer Linear Program 1063

We compare the above steady-state approaches with multi-parent strategy
and the original study (with the modified mutation operator indicated in Sec-
tion [) on the 50,000 variable problem. For each case, the best parent size and
population size are found by performing an extensive parametric study and time
and function evaluation results are shown in Table Bl It is clear that all multi-

Table 3. Best results of this study are compared with the original study.

Approach | N|u|Heats| Util.|Avg. Func. Eval.|Avg. Time (sec)
Original 30(2| 5,488(99.97 112,888.2 283.0
Multi-parent|30|7| 5,487|99.97 48,505.1 1437
Approach 1 |25|6] 5,487(99.99 23,045.4 95.8
Approach 2 [25|7]5,490/99.94 22,618.8 82.1
Approach 3 [25|8| 5,490(99.94 22,069.8 109.2

parent GAs perform better than the original two-parent algorithm and the first
steady-state approach and the generational multi-parent approach found the
truly minimum solution (with 5,487 heats), whereas others require more heats
involving a lesser utilization of metal. However, between these two approaches,
the steady-state approach requires much less average computational time.
Figures [l and [show the scalability of the first steady-state approach in
terms of computational time and function evaluations for variables from 100
to 100,000. It is observed that the time complexity varies as O(n9%%) and the
function evaluations as O(n%963) to obtain a minimum utilization of 99.7%.

1000 gr

le+06 [

100 £ 100000 £

Slope: 0.945

10 gSlope: 1.055 w\ E| 10000

Heat-Updates

1000

Computational Time (sec)

0.1

100

1000

10000

Number of Variables

100000

100 *

100

I
1000

10000

Number of Variables

100000

Fig. 6. Computational time complexity
for the steady-state approach 1.

Fig. 7. Complexity of function evaluati-
ons for the steady-state approach 1.

We perform similar studies for the other two steady-state approaches and
similar results are obtained. We show the computational time variations for the

1064 K. Deb and K. Pal

two approaches in Figures Bl and [, respectively. The corresponding time com-
plexities are O(n'02%) and O(n!:%25). The corresponding complexities on the re-
quired number of function evaluations are O(n%8%4) and O(n°928), respectively.

Computational Time (sec)

1000

100

0.1

ESlope:

1.025

«

g

100

1000

10000

Number of Variables

100000

Computational Time (sec)

1000 gr

10 Fslope: 1.026~

A

0.
100

1000

10000

Number of Variables

100000

Fig. 9. Computational time complexity
for the steady-state approach 3.

Fig. 8. Computational time complexity
for the steady-state approach 2.

To put the above results into a better perspective, the best approach of
this paper finds a near-optimum solution of the 100,000-variable ILP problem
within only 130 sec on a Pentium IV processor. Solving ILP problems as large
as 100,000 variables in an almost linear computational time complexity is rarely
demonstrated in the EA literature. By performing extensive parametric studies
for different algorithms proposed in this paper, we believe to have developed
very efficient population-based steady-state optimization algorithms for solving
ILP problems which would be difficult to match in terms of computational time
or overall function evaluations by classical point-by-point search approaches.

5 Conclusions

Despite many applications of evolutionary algorithms (EAs) to various search
and optimization problems, there exists very few studies where EAs have been
tested on very large sized problems, such as problems having hundreds or thou-
sands of variables. An earlier study demonstrated the use of a customized GA
for the purpose, in which initialization and genetic operators are all customized
using the problem knowledge. In this paper, we have extended the idea further to
solve integer linear programs often arising in scheduling and resource allocation
problems. A multi-parent version and three steady-state GAs have been sugge-
sted and extensive parametric studies have been performed to develop efficient
optimization algorithms. Following conclusions can be made from this study:

1. The parametric study on population size indicates an efficient population
size varying between 25 to 30, indicating that a population-based approach

Efficiently Solving: A Large-Scale Integer Linear Program 1065

(not a point-by-point approach) is a more efficient procedure for solving the
ILP problems considered here.

2. The parametric study on parent size indicates that the usual consideration
of two parent recombination is not the optimal approach. However, there lies
an optimal parent size (about six to eight parents) with which the suggested
algorithms work the best. This is due to the exploration and exploitation
balance which must be honored in a population-based search algorithm in
order to constitute a successful search process.

3. The multi-parent steady-state approaches have been found to be better than
the multi-parent generational approach both in terms of computational time
and amount of function evaluations.

4. The results of this study are better than those reported in the original study
in which two parents were used. The best computational time complexity of

this study is O(n':%2%), whereas the best reported in the original study was
O(n'789).

This paper has demonstrated the power of a recombinative GA in solving large-
sized problems to near-optimality, as the use of multiple good parents to con-
struct a new solution may often provide jumps towards the minimum solution
in the case of linear problems, a matter which is not possible to obtain with
point-by-point classical approaches. Hopefully, this study will motivate the de-
sign and application of EAs to similar other large-scale real-world optimization
problems. The approach used here may be directly applicable to other scheduling
problems (with discrete variables) having a set of linear equality and inequality
constraints, such as the commonly-used knap-sack problems, however, the idea
of using a good initial population, a steady-state approach, a multi-parent re-
combination, and the use of knowledge-based genetic operators is important in
solving very large-sized problems.

References

Deb, K. (1995). Optimization for engineering design: Algorithms and examples. New
Delhi: Prentice-Hall.

Deb, K., Reddy, A. R., and Singh, G. (2003). Optimal scheduling of casting sequence
using genetic algorithms. Journal of Materials and Manufacturing Processes, 18(3).
409-432.

Glover, F. and Laguna, M. (1997). Tabu search. Boston: Kluwer.

Goldberg, D. E. (1989). Genetic Algorithms for Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. (1983). Optimization by simulated an-
nealing. Science, 220, 671-680.

Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M. (1983). Engineering Optimization
Methods and Applications. New York: Wiley.

Taha, H. A. (1989): Operations Research. New York: Macmillan.

	Introduction
	Casting Scheduling as an Integer Linear Program
	Previously-Suggested Customized GA
	Customized Initial Population
	Customized Recombination Operator
	Customized Mutation Operators
	Salient Results Reported

	Extensions of the Customized GA
	Multi-parent Customized GA
	Steady-State Customized GAs

	Conclusions

