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Abstract. Learning Bayesian networks from data has been studied extensively 
in the evolutionary algorithm communities [Larranaga96, Wong99]. We have 
previously explored extending some of these search methods to temporal 
Bayesian networks [Tucker01]. A characteristic of many datasets from medical 
to geographical data is the spatial arrangement of variables. In this paper we in-
vestigate a set of operators that have been designed to exploit the spatial nature 
of such data in order to learn dynamic Bayesian networks more efficiently. We 
test these operators on synthetic data generated from a Gaussian network where 
the architecture is based upon a Cartesian coordinate system, and real-world 
medical data taken from visual field tests of patients suffering from ocular hy-
pertension. 

1   Introduction 

Bayesian Networks (BNs) are probabilistic models that can be used to combine expert 
knowledge and data. They also facilitate the discovery of complex relationships in 
large datasets. A BN consists of a directed acyclic graph consisting of links between 
nodes that represent variables in the domain. The links are directed from a parent 
node to a child node, and with each node there is an associated set of conditional 
probability distributions. Learning the structure of a BN from data [Cooper92] is a 
non-trivial problem due to the large number of candidate network structures and as a 
result there has been substantial research in developing efficient algorithms within the 
optimisation and evolutionary communities. For example, Evolutionary Programs 
(EP) [Bäck93] and Genetic Algorithms (GA) [Holland95] have been used to search 
for candidate structures [Larranaga96, Wong99]. The Dynamic Bayesian Network 
(DBN) is an extension of the BN that can model time series [Friedman98]. See figure 
1 for an example of a DBN  with N+1 variables spanning two time slices. Note that 
links in a DBN can be between nodes in the same time slice or from nodes in previous 
time slices. We have developed algorithms (evolutionary and non-evolutionary) for 
efficiently learning DBN structures [Tucker01]. 

Spatial Data-mining [Ester00] involves the application of specialist algorithms and 
operators (e.g. neighbourhood distance, topology and direction) to data that has a 
spatial nature. That is, variables in the domain can be considered to have neighbour-
hood  relations  with  other variables. This can vary from simple Cartesian coordinates 
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to more complex spatial neighbourhoods. See [Roddick99] for a bibliography on 
spatial and temporal data mining. Spatial data is common in geographical research 
[Cofiño02].  

 
 

  
 

Fig. 1. A Typical DBN 
 

 
Fig. 2. A Visual Field Test 

 
 
To our knowledge, BN learning has not been investigated with respect to spatial 

data. We define a Spatial Bayesian Network (SBN) to be a BN that represents data of 
a spatial nature and a Spatial Dynamic Bayesian Network (SDBN) to be a BN that 
represents spatio-temporal data. We introduce and test an evolutionary algorithm and 
a set of spatial operators for learning SDBNs from spatio-temporal data. These opera-
tors are tested on synthetic data and visual field data of patients suffering from ocular 
hypertension. The algorithm and its operators are compared with a standard BN 
search technique. We validate resulting networks in several ways including inspection 
of the spatial links, calculating the structural difference of the original network used 
to generate the synthetic data, and using clinical expert knowledge on the visual field 
data. 

2   Methods 

2.1   Datasets 

We have generated spatio-temporal data using DBNs with Gaussian probability dis-
tributions [Geiger94]. This data contains 1000 time points of 64 variables spatially 
located on an 8x8 grid, where each variable was influenced by its immediate 
neighbours at the previous time point.  

Visual Field (VF) data can be recorded using the Humphrey Perimeter [Haley87]. 
This involves a patient fixating a point in the centre of a dimly illuminated bowl. The 
perimeter shines brighter stimuli onto the bowl at various points, corresponding to 
points in the visual field. The stimuli are varied in intensity and the patient presses a 
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button when a stimulus has been observed. This technique determines the sensitivity 
to light of each point in the VF. The data that is used in this paper is from a study that 
contains tests recorded every few months, in patients with ocular hypertension, a 
major risk factor for glaucoma. The test measured 54 points on each eye (figure 2 
shows an example of a patient’s VF test). The dataset used in this paper involves 95 
patients with 1809 measurements in all, concerning only the right eye. Two points in 
the VF correspond to the blind spot and should not contain any useful data. We have 
included these points to check for spurious relationships. We know of little research 
in using probabilistic models to understand VF data. Previously, a state space model 
has been used to classify glaucomatous patients [Anderssen98] and Bayesian statistics 
have been proposed to test VF data [Bengtsson97]. Both datasets were discretised into 
four states using equal bin sizes from the maximum value to the minimum value for 
each variable. 

2.2   Algorithm 
 
Candidate structures of a network, bn, given a dataset, D, are scored using the log-
likelihood, calculated using the equation:  
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where N is the number of variables in the domain, ri denotes the number of states that 
a node xi can take, qi denotes the number of unique instantiations of the parents of 
node xi, Fijk is the number of cases in D, where xi takes on its kth unique instantiation 
and, the parent set of i takes on its jth unique instantiation. 
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In order to increase efficiency of our algorithms, we have developed an evolution-

ary approach without the necessity of storing a population of candidate solutions. 
Rather, we consider each point in the spatial dataset to be an individual within the 
population of points. Therefore, the population, itself, is the candidate solution. We 
have looked at a similar method before for grouping algorithms [Liu01]. The algo-
rithm also makes use of a simulated annealing type of selection criteria 
[Kirkpatrick83], where good operations are always carried forward, but sometimes 
less good ones are also accepted dependant upon a temperature parameter. A form of 
elitism [Grefenstette86] is employed to ensure that the final structure is the best dis-
covered. This is to prevent the simulated annealing process from moving away from a 
better solution when the temperature is still high. We formally define the algorithm 
below where maxfc is the maximum number of calls to the scoring function, c is the 
‘cooling parameter’, t0 is the initial temperature, b is the branching factor of a net-
work, and R(a, b) is a uniform random number generator with limits, a and b. 
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Input t0, b, maxfc, D 

fc = 0, t = t0 
Initialise bn to a SDBN with no links 
result = bn 
While fc ≤ maxfc do 

score = L(bn) 
For each operator do 

Apply operator to bn 
If bn is valid given b Then 

newscore =  L(bn) 
fc = fc + 1 
dscore=newscore-oldscore 
If newscore > score Then 

result = bn 

Else If R(0,1)< t

dscore

e  Then 
Undo the operator 

End If 
End If 

End For 
t = t × c 

End While 
Output result 

2.3   Operators 
 
We now introduce three spatial and three non-spatial operators. All involve manipu-
lating links within the SDBN. For this paper we have only investigated links that span 
one time slice, although we have developed equivalent operators for links within the 
same time slice (these require a more strict ordering assumption to ensure the struc-
ture is directed acyclic which is an essential property of a BN structure). 

2.4   Non-spatial Operators 
 
We have chosen three non-spatial operators as these represent common operators used 
in optimisation techniques such as hill climbing and simulated annealing. 

1) Add - A link with random parent and child is added to the network. 
2) Take– Randomly remove a single existing link. 
3) Mutate - Randomly change the parent of an existing link. 

2.5   Spatial Operators 
 
For the scope of this paper, we assume that the points in a spatial dataset are located 
according to Cartesian coordinates. Therefore, each point in a dataset with coordi-
nates (x,y) has a first order neighbourhood which includes all nodes with coordinates 
(i,j) for x-1 ≤ i ≤ x+1 and y-1 ≤ j ≤ y+1. The spatial operators that we have developed 
exploit the Cartesian spatial nature of a dataset, whereby links are added to a node 
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based upon the proximity of the parent to the child, and mutations are made from an 
existing parent’s position to the positions of other nearby parents. A crossover opera-
tor has also been developed that swaps the relative positions of node’s parents. Fig-
ure 3 shows examples of parent coordinates, relative to the child node, when applying 
the operators. Unfilled circles represent child nodes, filled circles represent parents of 
the child. 
 

 
 Before  After 
(a)            

         •   
   {   Î   {   
            
            
            
 - - - - - - - - - - - 
            
 Before  After 

(b)            
  •      •    
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   {     • {  • 
            
  •          
             

 
Fig. 3. Spatial Operator Examples: (a) Add (b) Mutate and (c) Crossover. 

 

 

1) Spatial Add - Randomly add a link to a node, such that its parent is one of its 
first order neighbours (shaded in figure 3a). Note that the coordinates of a parent can 
be the same as its child because we are dealing with links that span a time-slice. 

2) Spatial Mutate - Randomly replace the parent of an existing link with one of its 
first order neighbours (for example, the shaded region in figure 3b represents possible 
new positions for the parent immediately to the right of its child). 

3) Spatial Crossover - Randomly select two nodes. For each parent of a node, x, 
there is a 50% chance of moving it to become a parent of the other node, y, so that its 
relative position to x becomes updated relative to y. See figure 3c where the shaded 
cells with filled circles show the parents of node x, before and after crossover, and the 
unshaded cells with filled circles show the parents of node y. 

For all spatial operators, if a parent that is selected for a node is outside the bound-
ary of the coordinate system, then it is deemed invalid. 
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3   Experiments 

The experiments involved running the stochastic algorithm described earlier on the 
synthetic and VF datasets. One experiment involved using only non-spatial operators, 
one involved only spatial operators and one using all operators. All operators were 
applied in the order that they appear listed in the previous section. Due to the stochas-
tic nature of the algorithm, we ran each experiment ten times and recorded the aver-
age learning curve. We also investigated Cooper’s greedy search algorithm, K2, 
[Cooper92] when applied to the two datasets. To find out the performance of the 
individual operators, we also recorded the average success rate of each operator in the 
‘all operators’ experiments. A success is recorded when an operator results in im-
proved fitness. 

In order to determine the quality of the final structures, we use the Structural Dif-
ference (SD) metric on the synthetic data. This is calculated from summing the miss-
ing links with the spurious links in the discovered structure, compared to the original 
network used to generate the data. Expert knowledge is used for the VF data, based 
upon the anatomical correspondence of VF locations to particular nerve fibre bundles 
and the proximity of the nerve fibre bundles to each other in terms of their position of 
entry (angular location) at the Optic Nerve (ON) margin [Garway00].  

3.1   Parameters 
 
In this experiments we set t0=5, b=3, c=0.9999 and maxfc=35000. These values were 
chosen as they generated the most efficient results for all methods. 

4   Results 

4.1   Synthetic Data 

Figure 4a shows the learning curves for each method when applied to the synthetic 
data. It can be seen that the simple K2 algorithm is not as efficient as any of the sto-
chastic methods. What is more, the log likelihood of the final solution is not as high 
as the other methods. The spatial operators alone seem to perform the most effi-
ciently. This could be due to the more limited type of relationships that exist. All are 
based upon the first order Cartesian neighbourhood. It should be noted that on the 
synthetic data that if all methods, including K2, are run for long enough they eventu-
ally reach solutions very close to one another (again perhaps due to the simplicity of 
the relationships within the network). 

Figure 4b shows the mean success of individual operators during an experiment, 
figure 4b shows that the most successful were Spatial Add (SpatAdd), Take, and Spa-
tial Mutation (SpatMut). The worst seems to be Spatial Crossover (SpatCross). 

We have calculated the structural difference of the discovered structures from the 
original structures used to generate the data. Table 1 shows that on average the closest 
network to resemble the original structure that generated the data is surprisingly that 
from using K2. This is somewhat unexpected, but could be due to the simplistic na-
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ture of the synthetic data (where all dependencies are generated from a linear Gaus-
sian process given each variable’s first order neighbours). The next best structure is 
that from the spatial operators alone. The next closest is found when using spatial and 
non-spatial operators, and the worst when using only non-spatial operators. 
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Fig. 4. (a) Mean Learning Curves and (b) Operator Successes for Synthetic Data 

 
 

Table 1. Quality of Networks Learnt from Synthetic Data 

 K2 Non-Spat Spat All 
Structural Difference 119.0 142.0 122.3 129.2 

 

 
Figure 5 shows the spatial nature of the final networks for the synthetic dataset. All 

networks appear to have strong spatial characteristics. The K2 result appears to have 
more links that lie on the border compared to the stochastic methods. This could be 
due to a bias in the search or an inability to remove links once they are discovered. 

4.2  Visual Field Data 

Figure 6a shows the learning curves for all methods on the VF data. It appears that the 
best operators are a combination of spatial and non-spatial. This results in more effi-
cient learning curves compared to the experiments involving just spatial operators, 
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which in turn generate more efficient learning curves than the non-spatial operators 
alone. However, figure 6a implies that if the non-spatial operator experiments are run 
for enough iterations then they eventually overtake the spatial operator curves (proba-
bly due to the over-restrictive nature of using these operators only). The VF data, 
unlike the synthetic data, appears to have a mixture of spatial and non-spatial relation-
ships. Figure 6b shows the average success of individual operators during an experi-
ment on the VF data. The most successful were Spatial Add, Take, and Spatial Muta-
tion. The worst seems to be Spatial Crossover, though there is a steady success rate. 
In fact, successes involving Spatial Crossover generally result in higher fitness im-
provements than other operators. 

 
 

K2 Spatial Only 

Non-Spatial Only All Operators 

Fig. 5. Networks Learnt from Synthetic Data 

 
We use the average Optic Nerve (ON) distance between each link’s parent and 

child to validate the resulting networks. Table 2 shows that a similar ordering is found 
to that on the SD with the synthetic data but with K2 performing somewhat worse. 
The spatial operators generate networks that have least ON distance, followed by a 
combination of spatial and non-spatial, then just the non-spatial and finally the struc-
ture with largest ON distance is that generated using K2. This implies that for more 
complex real-world problems, a simple greedy search such as K2 is not suitable. We 
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have also used knowledge of how nerve fibre bundles are arranged on the visual field 
[Garway00]. Figure 7 shows how these bundles are positioned with respect to the 
visual field. This means that it is likely that points in the visual field that share a nerve 
fibre bundle are likely to be related. Grey shaded points in figure 7 correspond to the 
blind spot.  Table 2 shows the mean number of links that are contained within the 
same bundle as a percentage of all links, for each search method. A similar ordering 
to the mean ON distance is observed: a higher percentage of links in the same bundle 
implies a shorter average ON distance. The highest percentage of links contained 
within the same bundle are from networks generated from only spatial operators, the 
next best being all operators, followed by non-spatial operators and the worst being 
those generated using K2. 
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Fig. 6.  (a) Mean Learning Curves and (b) Operator Successes for VF Data 
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Table 2. Quality of Networks learnt from VF
Data 

 % Links in 
same Bundle 

Mean 
ON Distance 

K2 62.963 41.056 
Non-Spat 70.863 29.477 

Spat 78.325 19.225 
All 73.333 25.138  

   • • • •   
  • • • • • •  
 • • • • • • • • 
• • • • • • • • • 
• • • • • • • • • 
 • • • • • • • • 
  • • • • • •  
   • • • •   

 
Fig. 7. Nerve Fibre Bundles  

 
 

K2 Spatial Only 

Non-Spatial Only All Operators 

Fig. 8. Networks Learnt from VF Data 
 

 
 
Figure 8 shows the spatial nature of the final networks for the different search 

methods on the VF data. ON distance is represented by the shading of the links (the 
larger the distance the lighter the link). Notice that the stochastic methods all have 
similar looking networks with strong spatial features. This is likely to be because 
these networks are the result of a large number of iterations and the methods have 
converged close to the optimum (figure 6a). The K2 result displays fewer spatial 
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characteristics and many links with high ON distance (in lighter grey), including links 
across the horizontal midline that are anatomically unlikely. None of the networks 
have included links involving the blind spot, as was expected. For the stochastic 
methods, there are still some links that have high ON distance (links in lighter grey). 
Most of these links appear to be between VF points that are very close to one another 
and cross the central horizontal axis. Some nerve fibres interdigitate across the hori-
zontal raphe in the nasal visual field, but this does not account for some of the more 
central links crossing the horizontal meridian. These could be a result of bias in the 
spatial operators, but they still exist in the non-spatial experiments. This implies er-
rors in measurement of the visual field where the VF is shifted slightly or the disease 
process acts symmetrically in the visual field in anatomically unlinked locations. 
These biases and errors will be explored further. 

5   Conclusions and Future Work 

In this paper, we have developed evolutionary and non-evolutionary operators, for 
learning Bayesian network structures from spatial time series data. These operators 
have been tested on synthetic data and real-world visual field data. We have com-
pared the efficiency of the operators as well as a well-known straw-man learning 
algorithm. Results using the proposed operators were very encouraging, particularly 
on the real-world data, where high quality networks were found more efficiently when 
spatial operators were used. Various methods were used to measure network quality, 
including structural difference and expert knowledge on the synthetic and visual field 
data, respectively. In the future, we will use spatial information such as optic nerve 
distance and geographical direction to guide search rather than simple Cartesian coor-
dinates. It would be interesting to see how temporal lag search [Tucker01] interacts 
with spatial operators, and their performance on other datasets such as rainfall predic-
tion of cities [Cofiño02]. We intend to explore how the operators compare to other 
methods for learning the network structures such as Estimation of Distribution Algo-
rithms [Larranaga01] and methods based upon neural network optimisation 
[Kahng95]. We also plan to extend the modelling of the visual field to include data 
from both eyes, as well as clinical information. 
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