
Population Implosion in Genetic Programming

Sean Luke, Gabriel Catalin Balan, and Liviu Panait

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030, USA

{sean,gbalan,lpanait}@cs.gmu.edu
http://www.cs.gmu.edu/˜eclab

Abstract. With the exception of a small body of adaptive-parameter
literature, evolutionary computation has traditionally favored keeping
the population size constant through the course of the run. Unfortu-
nately, genetic programming has an aging problem: for various reasons,
late in the run the technique become less effective at optimization. Given
a fixed number of evaluations, allocating many of them late in the run
may thus not be a good strategy. In this paper we experiment with grad-
ually decreasing the population size throughout a genetic programming
run, in order to reallocate more evaluations to early generations. Our re-
sults show that over four problem domains and three different numbers
of evaluations, decreasing the population size is always as good as, and
frequently better than, various fixed-sized population strategies.

1 Introduction

In generational EC, the choice of how to allocate evaluations may be cast as a
tradeoff between exploration and exploitation. A maximally large population,
run for a single generation, is an extreme in exploration, approximating random
search. On the other hand, depending on the locality of the modification op-
erator, a minimal (2 person) population exploits local features to the point of
hill-climbing.

Choosing a good population size vs. runlength tradeoff is a long-explored
topic in evolutionary computation. This choice has traditionally hinged on two
factors: theoretical justifications for a given population size; and practical ne-
cessity for capping population size, primarily because of memory capacity. Re-
cent advances in computer technology have obviated much of the second factor:
genetic programming has occasionally seen population sizes around a million
individuals divided among multiple machines in Beowulf clusters [1,2]. Contrast
this to early 1 + 1 evolution strategies techniques which used a population size
of 2!

The most common runlength for a genetic programming problem is a very
short 50 generations, and the standard population sizes have ranged from 500
to 2000. The reason for these layouts is mostly tradition: they were the layouts
popularized by Koza in [3]. Koza established these layouts through trial and
error, and his decisions seem to be justified for GP problems. As was discussed

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1729–1739, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.cs.gmu.edu/~eclab
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

1730 S. Luke, G.C. Balan, and L. Panait

in [4], it appears that many of the canonical test problem domains for GP have
a surprisingly short maximum useful runlength. In the Symbolic Regression do-
main, for example, beyond 32 generations it becomes advantageous to split the
run into two or more shorter runs.

This paper examines the effects of decreasing the population size towards zero
during the course of a genetic programming run. Early in the run the system
would evolve with a large population of individuals, but late in the run the
system would be effectively reduced to hill-climbing. This idea was inspired by
simulated annealing, which also explores early and exploits (hill-climbs) late in
the run, albeit in a very different fashion. We imagined that this “population
implosion” would be effective because it would reallocate evaluations away from
late generations where the population would have mostly stagnated anyway.

Decreasing the population size has another unforseen advantage in genetic
programming: it counters the effects of bloating on memory consumption. The
total memory consumed by the system is a function largely of the size of the
average individual times the number of individuals in the population. As the
first factor goes up, a drop in the other factor may maintain current memory
consumption levels. However, this issue is not considered in the presented exper-
iments.

We define a layout as a choice of population size and runlength in order
to allocate N evaluations for a run. In generational evolutionary computation,
layouts are almost always rectangular, with the minor exception of the µ + λ
evolution strategy, which may have a small initial generation. In this paper we
have chosen to decrease the population using a diagonal layout. The diagonal
layout starts with a large population, then linearly decreases the population size
at each generation until it reaches zero.

The paper discusses previous approaches to modifying the population size
during the search process, followed by three experimental investigations. The
first experiment compares a diagonal layout and three traditional layouts over
several GP problem domains and evaluation lengths. The second experiment
broadens the comparisons with a wider range of standard layouts. The third
experiment applies the new layout to two GA domains. The paper concludes
with a brief discussion and directions for future work.

2 Previous Work

Setting the population size has been a challenging issue in the EC domain for
a very long time. Initial work concentrated on deciding the optimal number
of individuals in fixed-sized populations. Interesting research has recently sug-
gested methods for adapting the size of the population during the search process,
depending on various online parameters like fitness improvement or size of indi-
viduals.

In [5], De Jong investigated the influence of population size, mutation, and
crossover rates on the efficiency of the search process. He also suggested param-
eter values that showed good performance in his experiments. Later, Grefen-

Population Implosion in Genetic Programming 1731

stette used a meta-GA to find good parameters for the search process and rec-
ommended a smaller population size than the one suggested by De Jong [6].
Grefenstette’s results were later supported by theoretical investigations [7]. [8]
provides a theoretical and empirical investigation on the relation between pop-
ulation size and crossover probability, while [9] presents a theoretical analysis
meant to determine how to set the population size in order to promote the selec-
tion of correct building blocks. More recently, [10] describes another theoretical
investigation of the impact of the population size on the performance of the
GA algorithms in the OneMax problem domain, and [11] finds statistical signif-
icant differences when using different population sizes and classifier lengths in
an SCS/LCS system.

Some studies have also raised the possibility of modifying the population
size during the search process. [12] introduces the GAVaPS algorithm, which
assigns fitness-dependent lifetimes to individuals in a steady-state EC system.
Individuals are removed from the population only when their lifetime is exceeded.
Another interesting approach is presented in [13], where an adaptive mechanism
adjusts the population size as a way to control selective pressure.

Population size has been studied in the GP domain as well. Koza ([3]) advo-
cated using large population sizes, but small populations have also been espoused
[14]. An interesting approach is reported in [15], where the number of tree nodes,
not individuals, in the population is kept constant in order to prevent bloat-
ing. This approach is reported to give similar results to the standard method,
however it reduces the use of computational resources.

3 First Experiment

In our first experiment, we compared four layouts against three different num-
bers of evaluations and four different genetic programming problem domains.
The problem domains were Symbolic Regression, Artificial Ant, 5-bit Parity,
and 11-bit Boolean Multiplexer. We chose to include three choices of number
of evaluations: 26600, 52224, and 102400 evaluations (hereafter referred to as,
inaccurately, 25K , 50K, and 100K).1 For each number of evaluations, we picked
rectangular layouts with population sizes of 1024, 1448, and 2048. We compared
these against a diagonal layout starting at a population size of 2048, and de-
creasing linearly towards zero.

1448 was included because we were concerned that the diagonal might out-
perform other choices simply because it struck a middle-ground between large
population sizes and long runlengths. Therefore we included our own rectangu-
lar middle-ground. Note however that the 1448 rectangular layout cannot have
exactly the same number of evaluations as the others: we chose to err on the side
of very slightly fewer evaluations. For the 50K evaluations runs, for example, the
1448 layout had 520 fewer evaluations than the others did.

Figure 1 illustrates the four layouts used.

1 These slightly odd evaluation sizes are due to our decision to run for 51 generations.

1732 S. Luke, G.C. Balan, and L. Panait

0 25 36 51

Runlength in Generations

0

1024

1448

2048

P
o

p
u

la
ti

o
n

 S
iz

e

Fig. 1. Four layouts for allocating ∼50K (52224) evaluations: 2048x26; 1448x36;
1024x51; and Diagonal 2048x51

3.1 Other Parameters

Our evolutionary computation system was ECJ [16]. Unless stated otherwise, pa-
rameters have values as described in [3]. Symbolic Regression used no ephemeral
constants and a function of x4 + x3 + x2 + x. Artificial Ant used the Santa Fe
trail. We used 7-tournament selection. All other initialization, modification, and
representation parameters are the same as those used in [3].

We compared mean best fitness of run among experiments, and performed
200 runs for each experiment setup. Our difference of means test was an ANOVA
at 95% confidence, plus a Tukey post-hoc comparison.

3.2 Results

We show the mean fitness results in Tables 1 through 4. Layouts are ordered
left-to-right in worsening fitness. Horizontal bars above and connecting different
layouts indicate no statistically significant difference between them.

The four problems vary significantly in problem difficulty; some prefer much
larger populations, others prefer longer runlengths. The diagonal layout often
outperformed all the other layouts, though not always by a statistically signif-
icant margin. Nonetheless, what was interesting was that the diagonal layout
consistently appeared in the best class of layouts for every single problem do-
main and every single number of evaluations attempted; and it was the only
layout to do so. The diagonal layout did particularly well with smaller numbers
of evaluations; for two of the domains (Multiplexer and Ant) it had no peer.

There is an interesting trend among the rectangular layouts. In all four prob-
lems, for smaller numbers of evaluations, smaller-population layouts are pre-

Population Implosion in Genetic Programming 1733

Table 1. Statistical significance groupings for mean best fitness of run for the Symbolic
Regression domain (First Experiment)

Problem and Evals Layouts

Regression 25K Diagonal 1024 1448 2048
Mean Best Fitness 0.09131543 0.103177731 0.145182262 0.169305242

Regression 50K Diagonal 2048 1448 1024
Mean Best Fitness 0.05270353 0.057168302 0.075613984 0.079054647

Regression 100K Diagonal 2048 1448 1024
Mean Best Fitness 0.037023631 0.038560673 0.039290056 0.060902268

Table 2. Statistical significance groupings for mean best fitness of run for the Artificial
Ant domain (First Experiment)

Problem and Evals Layouts

Ant 25K Diagonal 1024 1448 2048
Mean Best Fitness 22.325 24.63 24.79 25.99

Ant 50K Diagonal 2048 1024 1448
Mean Best Fitness 17.71 18.505 20.015 21.87

Ant 100K 2048 Diagonal 1024 1448
Mean Best Fitness 15.865 16.18 18.16 18.775

Table 3. Statistical significance groupings for mean best fitness of run for the 5-bit
Parity domain (First Experiment)

Problem and Evals Layouts

5-bit Parity 25K 1024 Diagonal 1448 2048
Mean Best Fitness 6.68 6.885 7.785 8.85

5-bit Parity 50K 1024 Diagonal 1448 2048
Mean Best Fitness 4.77 4.835 4.835 5.825

5-bit Parity 100K Diagonal 2048 1448 1024
Mean Best Fitness 3.35 3.44 3.46 3.55

ferred; and for larger numbers of evaluations, larger-population layouts are pre-
ferred. This suggests that there is an optimal useful runlength for each of the
problems. As the number of evaluations increases, the smaller-population layouts
are extended beyond this runlength and are essentially wasting time. Similarly,
for small numbers of evaluations, the large population layouts do not run for
enough generations to produce competitive results.

1734 S. Luke, G.C. Balan, and L. Panait

Table 4. Statistical significance groupings for mean best fitness of run for the 11-bit
Multiplexer domain (First Experiment)

Problem and Evals Layouts

11-bit Multiplexer 25K Diagonal 1024 1448 2048
Mean Best Fitness 197.16 230.475 274.695 352.72

11-bit Multiplexer 50K Diagonal 1448 2048 1024
Mean Best Fitness 92.38 119.33 122.43 128.32

11-bit Multiplexer 100K 2048 Diagonal 1448 1024
Mean Best Fitness 46.59 53.32 70.43 90.41

Why did the diagonal perform well? We include Fig. 2, showing results in
the Artificial Ant domain, to illustrate the general trend during the course of
evolution. We think that the diagonal layout is effectively taking advantage of the
maximal-runlength phenomenon by providing both the runlength of the longer
layouts and the emphasis on population size of the larger layouts. We note that in
both cases, up until 10,000 evaluations, the diagonal layout closely resembles the
2048-population layout in performance, and then in the 20,000-30,000 range the
diagonal layout “speeds up” and surpasses the smaller 1024-population layout,
which has mostly converged.

4 Second Experiment

Our second experiment added additional layouts and repeated the 50K evalua-
tion runs for each problem domain, to see if the diagonal was outperforming other
layouts simply because it started at 2048K or was able to eke out long numbers of
generations in its tail. The additional layouts included ones with both larger and
smaller population sizes (and correspondingly shorter and longer runlengths).

Our additional layouts brought the total rectangular layouts to 4096, 2048,
1448, 1024, 501, 251, and 125 population sizes. The diagonal layout again started
at 2048 and decreased to 0.

We again compared mean best fitness of run among experiments, and per-
formed 100 runs for each experiment setup. Our difference of means test was an
ANOVA at 95%, plus a Tukey post-hoc comparison.

4.1 Results

In the second experiment we changed the random seeds from the first experiment;
hence the means for the original layouts are slightly different. We show the mean
fitness results in Table 5. Layouts are again ordered left-to-right in worsening
fitness, and horizontal bars above and connecting different layouts indicate no
statistically significant difference between them.

Keep in mind that due to outlier biases from the worst layout results, the
conservative Tukey test now cannot discern statistically significant differences

Population Implosion in Genetic Programming 1735

Table 5. Statistical significance groupings for mean best fitness of run for the Sym-
bolic Regression, Artificial Ant, 5-bit Parity, and 11-bit Multiplexer domains (Second
Experiment)

Problem and Evals Layouts

Regression 50K Diagonal 2048 1024 1448 4096 251 502 125
Mean Best Fitness 0.051 0.063 0.078 0.084 0.102 0.198 0.232 0.373

Ant 50K Diagonal 2048 1448 4096 1024 251 502 125
Mean Best Fitness 17.7 20.23 21.25 21.31 22.49 26.63 28.45 29.68

Parity 50K Diagonal 1448 1024 251 2048 125 502 4096
Mean Best Fitness 4.67 4.93 4.95 5.32 5.78 6.01 6.16 8.48

Multiplexer 50K Diagonal 2048 1448 1024 251 4096 502 125
Mean Best Fitness 54.68 54.72 69.64 81.38 247.26 296.98 301.84 363.03

among the original four layouts. This is as expected: the goal of the second ex-
periment was only to see if the original four layouts were good choices, and it
appears that they were. The new rectangular layouts were usually poor perform-
ers, and the diagonal layout usually outperformed all of them by a statistically
significant margin.

5 Third Experiment

We also performed a similar experiment using two well-known GA problem do-
mains, the Rastrigin and Rosenbrock problems. Each GA individual’s represen-
tation was a vector of 100 floating-point genes each ranging from -5.12 to 5.12.
We used one-point GA crossover and a gene-independent mutation probability of
0.01, where mutation consisted of gene randomization. We applied tournament
selection of size 2, plus one-individual elitism.

Both functions are minimization functions. The Rosenbrock problem [5] com-
putes fitness over a genome of size n using the function

Rosenbrock(x1, ..., xn) =
n∑

i=1

100(xi
2 − xi+1)

2
+ (1 − xi

2)

Similarly, the difficult Rastrigin problem [17] computes fitness using the func-
tion

Rastrigin(x1....xn) =
n∑

i=1

xi
2 + a(1 − cos(2πxi))

1736 S. Luke, G.C. Balan, and L. Panait

0 5000 10000 15000 20000 25000
Number of Evaluations

20

30

40

50

60

M
e
a
n

B
e
s
t

F
i
t
n
e
s
s

S
o

F
a
r

Artificial Ant, 25K Evaluations

0 10000 20000 30000 40000 50000
Number of Evaluations

20

30

40

50

60

M
e
a
n

B
e
s
t

F
i
t
n
e
s
s

S
o

F
a
r

Artificial Ant, 50K Evaluations

Legend
- - - - - – – – – — — —
1024 1448 2048 Diagonal

Fig. 2. Best-So-Far Curves of Four Layouts, Artificial Ant Problem, at 25K and 50K
Evaluations

Population Implosion in Genetic Programming 1737

Table 6. Statistical significance groupings for mean best fitness of run for the Rosen-
brock and Rastrigin domains (Third Experiment)

Problem and Evals Layouts

Rosenbrock 32 Diagonal 45 64
Mean Best Fitness 2256.585 2415.601 3281.273 5131.429

Rastrigin 32 Diagonal 45 64
Mean Best Fitness 136.0726 142.2995 155.8251 184.689

We adjusted the size of layouts to make them more appropriate to the GA
realm: 32x1024, 45x724, 64x512, and a diagonal layout with initial population
size of 64, running for 1024 generations. We performed 100 independent trials for
each problem. As shown in Table 6, for both problem domains the ordering was
the same, namely: 32x1024 outperformed diagonal, which in turn outperformed
45x724, which in turn outperformed 64x512. However, on the Rastrigin domain
the difference between the 32x1024 and the diagonal layout was not statistically
significant.

This is a mixed result. The result is similar to that of the 5-bit Parity GP
domain, namely that longer runs are consistently preferred over shorter ones.
But for the first time in this paper, diagonal has come in second in one of
the experiments (Rastrigin). We note that the number of evaluations (32K, a
typically size for GAs) is nonetheless similar to the smaller GP experiments.
Further runs may suggest that GAs too have “diminishing returns” late in the
run: but this is not yet borne out from the evidence here.

6 Conclusions and Future Work

In this paper we examined the possibility of imploding the population — gradu-
ally decreasing it towards zero as the run progressed — in the context of genetic
programming. A linear decrease in population size proved effective regardless of
the number of evaluations used. A diagonal layout was consistently in the top tier
in every GP experiment, and usually gave the best results in the experiments.
In initial GA experiments however, the results were mixed.

From this we can draw two conclusions: the primary conclusion is of course
that non-rectangular layouts may yield better results than rectangular ones in
environments like GP. But the second more troubling conclusion is that our ex-
periments add to existing evidence that GP may have an aging problem. Whether
due to premature convergence, bloat, or other factors, GP does not appear to
use large-population resources effectively late in the run. While methods like
diagonal layouts may serve to work around the issue, there is need for a closer
examination as to why GP has diminishing returns, and how the representation
or breeding methods may be changed to alleviate the problem.

Acknowledgements. This research was partially supported through a gift from
SRA International and through Department of Army grant DAAB07-01-9-L504.

1738 S. Luke, G.C. Balan, and L. Panait

References

1. Streeter, M.J., Keane, M.A., Koza, J.R.: Iterative refinement of computational
circuits using Genetic Programming. In Langdon, W.B., Cantú-Paz, E., Mathias,
K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G.,
Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska,
N., eds.: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, New York, Morgan Kaufmann Publishers (2002) 877–884

2. Koza, J.R., Keane, M.A., Yu, J., Mydlowec, W.: Automatic synthesis of electrical
circuits containing a free variable using Genetic Programming. In Whitley, D.,
Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G., eds.: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2000),
Las Vegas, Nevada, USA, Morgan Kaufmann (2000) 477–484

3. Koza, J.: Genetic Programming: on the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

4. Luke, S.: When short runs beat long runs. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO) 2001, Morgan Kaufmann Publishers
(2001) 74–80

5. De Jong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, MI (1975)

6. Grefenstette, J.J.: Optimization of control parameters for Genetic Algorithms.
IEEE Transactions on Systems Man and Cybernetics 16 (1986) 122–128

7. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parame-
ters affecting online performance of Genetic Algorithms for function optimization.
In: Proceedings of the Third International Conference on Genetic Algorithms, Mor-
gan Kaufmann Publishers Inc. (1989) 51–60

8. De Jong, K., Spears, W.M.: An analysis of the interacting roles of population size
and crossover in Genetic Algorithms. In Schwefel, H.P., Männer, R., eds.: Parallel
Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1. Volume
496., Dortmund, Germany, Springer-Verlag, Berlin, Germany (1991) 38–47

9. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic Algorithms, noise, and the sizing of
populations. Complex Systems 6 (1992) 333–362

10. Giguère, P., Goldberg, D.E.: Population sizing for optimum sampling with Genetic
Algorithms: A case study of the onemax problem. In Koza, J.R., Banzhaf, W.,
Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E.,
Iba, H., Riolo, R., eds.: Genetic Programming 1998: Proceedings of the Third
Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, Morgan
Kaufmann (1998) 496–503

11. Federman, F., Dorchak, S.F.: A study of classifier length and population size.
In Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B.,
Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R., eds.: Genetic Programming 1998:
Proceedings of the Third Annual Conference, University of Wisconsin, Madison,
Wisconsin, USA, Morgan Kaufmann (1998) 629–634

12. Arabas, J., Michalewicz, Z., Mulawka, J.J.: GAVaPS – A Genetic Algorithm with
varying population size. In: Proceedings of IEEE Conference on Evolutionary
Computation. Volume 1. (1994) 73–78

13. Balazs, M.E., Richter, D.L.: A Genetic Algorithm with dynamic population: Ex-
perimental results. In Brave, S., Wu, A.S., eds.: Late Breaking Papers at the 1999
Genetic and Evolutionary Computation Conference, Orlando, Florida, USA (1999)
25–30

Population Implosion in Genetic Programming 1739

14. Fuchs, M.: Large populations are not always the best choice in Genetic Program-
ming. In Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela,
M., Smith, R.E., eds.: Proceedings of the Genetic and Evolutionary Computation
Conference. Volume 2., Orlando, Florida, USA, Morgan Kaufmann (1999) 1033–
1038

15. Wagner, N., Michalewicz, Z.: Genetic Programming with efficient population con-
trol for financial time series prediction. In Goodman, E.D., ed.: 2001 Genetic
and Evolutionary Computation Conference Late Breaking Papers, San Francisco,
California, USA (2001) 458–462

16. Luke, S. ECJ 9: A Java EC research system.
http://www.cs.umd.edu/projects/plus/ec/ecj/ (2002)

17. Cervone, G., Michalski, R., Kaufman, K., Panait, L.: Combining Machine Learning
with Evolutionary Computation: Recent results on LEM. In: Proceedings of the
Fifth International Workshop on Multistrategy Learning. (2000) 41–58

http://www.cs.umd.edu/projects/plus/ec/ecj/

	Introduction
	Previous Work
	First Experiment
	Other Parameters
	Results

	Second Experiment
	Results

	Third Experiment
	Conclusions and Future Work

