
EC Theory: A Unified Viewpoint

Christopher R. Stephens and Adolfo Zamora

Instituto de Ciencias Nucleares, UNAM, Circuito Exterior
A. Postal 70-543, México D.F. 04510
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Abstract. In this paper we show how recent theoretical develop-
ments have led to a more unified framework for understanding different
branches of Evolutionary Computation (EC), as well as distinct theoret-
ical formulations, such as the Schema theorem and the Vose model.In
particular, we show how transformations of the configuration space of
the model – such as coarse-grainings/projections, embeddings and coor-
dinate transformations – link these different, disparate elements and alter
the standard taxonomic classification of EC and different EC theories.
As an illustration we emphasize one particular coordinate transformation
between the standard string basis and the “Building Block” basis.

1 Introduction

The development of Evolutionary Computation (EC) up to now has been prin-
cipally empirical and phenomenological, theory only playing a relatively limited
role. In its more “scientific” guise it is related to an older, more mature field –
population genetics. Mathematically speaking it is the study of certain classes of
heuristic algorithms based on populations of objects (for a rigorous exposition in
the context of Genetic Algorithms (GAs) see [1]). From the “engineering” point
of view it is an area where the analogical use of “natural selection” appears as
a moulding force in the creation of more “competent” problem-solvers [2].

In distinction to other more mature areas of science there is not really a clear
consensus on what should be the task of EC theory. Is it to provide recipes for
practitioners, to provide exact computational models, to allow a deeper under-
standing of a complex system, all of these, none of these, or what?

Different approaches to EC theory have been proposed in the past, often with
proponents who have been disparaging of the others’ point of view. These include
schema theories [3], the Vose model [4], the statistical mechanics approach [5]
and more. Is there a model that is superior to all others? Often, models are
judged by their clarity, simplicity, and ability to explain and predict. Is there a
framework that does this best?

A theoretical model is also often judged by how well it unifies a range of
phenomena. As there are many different flavours of Evolutionary Algorithm
(EA) – GAs, Genetic Programming (GP), Evolution Strategies (ES) etc. – one
may ask if there is a theoretical framework that encompasses them all? If not,
then which is the framework with the broadest applicability?
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In many sciences a large part of theory is associated with taxonomy – classifi-
cation with respect to natural relationships. In EC, various high-level taxonomic
labels are at our disposal, such as GP, GAs, ES etc. Whether these labels are
optimal, or even useful other than in an historic sense, however, is a debatable
point. Taxonomy allows us to understand commonality between different things.
Subsequently we must understand why such commonality exists. For instance,
the periodic table was initially an empirical and phenomenological construct
until the atomic theory gave it a firm “microscopic” foundation. What is the
“periodic table” for EC? Does such a construct exist? If nothing of this nature
existed it would be deeply worrying as it would mean that a theoretical treat-
ment of each and every EA and/or problem would be different. It is clear however
that there is commonality. The question is more – can it be suitably formalized?

At the other extreme one could claim a type of “hyperuniversality”, such as
was present in the original version of the Building Block Hypothesis [6], which
claimed that all GAs behaved in the same way in finding an optimum – via fit,
short schemata. We now know that this, in its strict form, is wrong, being rather
an engineering rule-of-thumb with only limited validity, and that such a degree of
hyperuniversality does not exist. Nevertheless, a prime job of EC theory should
be to tell us what EAs and problems, or classes of EAs and problems, are likely
to lead to similar outcomes or behaviour. It does not need to be elaborated on
that a deeper understanding of this would be of great use to practitioners.

In this article we wish to give a more unified presentation of EC theory
showing how recent developments [7,8,9,10,11,12] have pointed to a new un-
derstanding of the relationships between the different branches of EC and the
different theoretical formulations.

2 Some Fundamentals of EC Theory

We first describe, briefly and non-rigorously, some fundamentals of EC theory
that could be applied to many different types of EA. We try to maintain as much
generality as possible, in particular to show how a unified theoretical frame-
work, encompassing most standard EAs, can be developed. Formally, an EA is a
stochastic algorithm that takes as input a population of “objects” (strings, trees
etc.) and a fitness function, at a given time, and gives as output the population
at a later time. The objects live on a configuration space X, of dimensionality
NX , with elements i ∈ X. We denote a population by P = (n1, n2, ..., nNX

),
where ni represents the proportion of objects of type i in the population. Each
object is assigned a quality or fitness, via a fitness function fX : X → R+.

A dynamics is imposed via an evolution operator which in the infinite pop-
ulation limit leads to

P(t+ 1) = S (P(t), f) ◦ T (P(t), p) , (1)

where ◦ denotes the Schur product of vectors. The transmission term T (P(t), p)
describes the probability of transforming one object into another one by muta-
tion, crossover, or other genetic operators, the explicit transmission mechanism
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being encoded by the parameters p. The term S(P, f) describes the selection
forces acting on P with the parameters f determining the fitness function.

For selection the number of parameters necessary depends on the type of
fitness function and the amount of degeneracy of fX . For instance, for one-
max, only N fitness values are needed due to the degeneracy of the genotype-
phenotype map. Mutation usually only depends on one parameter – the mutation
probability. Two-parent recombination depends on the set of recombination dis-
tributions, {λijk(m)}, that characterize the transferral of genetic material from
parents to offspring, where λijk(m) is the probability to form an offspring object,
i, given two parent objects, j and k, and a crossover “mode”, m, i.e. a rule for
redistributing genetic material between parent and offspring objects.

We mentioned previously that taxonomy is important without specifying
what should be classified. One may think that it is EAs themselves. An EA
alone however, is in some sense a “black box” which takes a “problem” (usually
a fitness landscape and an initial population) as input and then gives an output
(the population at a later time). A given EA, though, may have very different
characteristics with respect to a given measure on one problem versus another,
hence, one is led to study EA-problem pairs rather than EAs in isolation. We
will call an EA/problem pair a “model”, characterizing a particular model by
a set of parameters p and f, and taking the models to live on a space, E . In
principle one could put a metric on E and talk about how “close” one model
is to another. A less rigorous, but more pragmatic, approach is to think of two
models as being “close” if they lead to “similar” behaviour. Of course, to do
this one must define “similarity measures”. A simple example might be the time
taken for a particular correlation between two loci in a population to decrease
by a given factor. Continuity on E would lead one to believe that models with
similar parameter values should behave similarly.

Population flows take place on X. All the main branches of EC – GP, GAs,
ES etc. – fall into this general framework. The chief differences lie more in what
objects are being represented in X and what specific operators generate the dy-
namics. For instance, in GAs the i represent fixed length strings. In GP they are
program trees and in machine code GP [13] or Grammatical evolution [14] they
are variable length strings. “Coarse grained” representations, such as phenotypes
or schemata also offer very useful representations.

3 Generic Genetic Dynamics

The space of models, E , is very large if one thinks of all possible genetic operators.
Selection, mutation and crossover, however, form a very generic set and we will
now restrict attention to them. Formally at least, the following also applies to
GP as well as GAs:

Pi(t+ 1) =
∑

j

PijP
c
j (t) (2)

where P c
i (t) is the probability to find objects of type i after selection and

crossover. The matrix elements of the mutation matrix, P, give the probabil-
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ity to mutate object j to object i. In the simple case of fixed length GAs for
instance, Pij = pdH(i,j)(1 − p)N−dH(i,j), where dH

ij is the Hamming distance
between the two strings and N is the strings’ length. For mutation Hamming
distance is clearly a very natural metric. Explicitly P c

i (t) is given by

P c
i (t) = (1 − pc)P ′

i (t) +
∑

m

∑

j

∑

k

λijk(m)P ′
j(t)P

′
k(t) (3)

where P ′
i (t) is the probability to select i. P ′

i = (fi/f̄(t))Pi for proportional se-
lection, where f̄ is the average population fitness. λijk(m) is an interaction term
between objects, i.e. objects j and k are selected and crossed over (“interact”)
to potentially form an object i, depending not only on j and k but also on the
particular recombination mode. In the case of homologous crossover these modes
are just crossover masks with

∑
m

being the sum over all possible masks while
for non-homologous crossover they are more general. Equations (2) and (3), as
an exact representation of the dynamics, in the case of fixed-length GAs, where
a crossover mode is simply a mask, are equivalent to the Vose model or, indeed,
to earlier formulations in population biology. These equations however are also
valid for objects other than fixed-length strings.

λijk(m) = 0 unless the mode m creates object i from j and k. This is unlikely
and hence the vast majority of interactions are zero. e.g. in GAs with binary
alleles, for a given i and m, λijk(m) is a 2N -dimensional square matrix. However,
only of the order of 2N matrix elements are non-zero. Thus, the microscopic
representation is very inefficient. This also hold for more complicated types of
object.

4 Coarse Graining and Coordinate Transformations

Rather than considering one type of representation as being more “general” or
fundamental than another it is useful to think of transforming between differ-
ent representations. We will consider three basic types of transformation: coarse
grainings, “coordinate” transformations, and embeddings, concentrating mainly
on the first two. Such transformations give flexibility in terms of what particular
representation we may find most suitable for a problem and also give a more
unified framework within which we may view different elements of EC, such as
GP and GAs, in a more coherent light. More importantly they can facilitate an
understanding of the dynamical equations associated with the true effective de-
grees of freedom of the model. These effective degrees of freedom will more often
than not be aggregations of the underlying “microscopic” degrees of freedom
and may be made more manifest via a coordinate transformation, embedding
or coarse-graining/projection. Additionally, it may be the case that effective de-
grees of freedom most naturally emerge in an approximation to the dynamics
rather than the exact dynamics.
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4.1 Coarse Graining

The generic dynamics discussed in the previous section is described by an expo-
nentially large number of coupled, non-linear difference equations representing
the microscopic degrees of freedom, i.e. the completely specified objects them-
selves. In the absence of recombination, the equations are essentially linear and
the problem reduces down to finding the eigenvalues and eigenvectors of the
selection-mutation matrix. However, save in very simple problems, even this
simpler problem is formidable. Crossover adds yet another layer of complexity.
Naturally, in such problems one wishes to find the correct effective degrees of
freedom so as to be able to affect an effective reduction in the dimensionality of
the problem. Such a reduction can be affected by an appropriate coarse graining.

We can formalize these considerations by introducing a general coarse grain-
ing operator, R(η, η′), which coarse grains from the variable η ∈ Xη to the
variable η′ ∈ Xη′ ⊂ Xη. Thus, the action of R is a projection. Given two such
coarse grainings we have

R(η, η′)Pη(t) = Pη′(t) R(η, η′′)Pη(t) = Pη′′(t) (4)

However, given that R(η′, η′′)Pη′(t) = Pη′′(t) we deduce that

R(η, η′′) = R(η, η′)R(η′, η′′) (5)

i.e., the space of coarse grainings has a semi-group structure. This type of struc-
ture is known, by an abuse of language, as the Renormalization Group. The
naturalness of a particular coarse graining transformation will be to a large ex-
tent determined by how the transformed dynamics looks.

Considering (1), then given that R(η, η′)Pη(t) = Pη′(t) the dynamics un-
der a coarse graining is governed by R(η, η′)S (Pη(t), f) ◦ T (Pη(t), p), where
S (Pη(t), f) and T (Pη(t), p) are the dynamical operators associated with the
variables η. If this can be written in the form S (Pη′(t), f′) ◦ T (Pη′(t), p′) with
suitable “renormalizations”, f −→ f′ and p −→ p′ of the model’s parameters,
then the dynamics is form covariant or invariant under this coarse graining. Note
that we are here considering a more general notion of invariance than the idea
of “compatibility” [1] (see [15] for a discussion of the relationship between the
two). In the case of selection only, the coarse graining transforms the fitness

fη −→ fη′ = R(η, η′)fη =
∑

η∈η′
fηPη(t)/

∑

η∈η′
Pη(t). (6)

An important point to note here is that, generically, a coarse graining gives rise
to a time dependent coarse-grained fitness.

Of course, there are many types of coarse graining procedure all of which
lead to a dimensional reduction. Such reductions can sometimes come about in
a relatively “trivial” fashion, such as in the case of the genotype-phenotype map,
where the dynamics is invariant in the case of selection and in the absence of
mixing operators. In fact, it is strictly invariant not just form invariant, as there
is no “renormalization” necessary of any parameter or variable and we have fη′ =
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R(η, η′)fη = fη, where, here, η′ represents the phenotype and η the genotype.
A concrete example is that of the “needle-in-a-haystack” landscape where the
fitness landscape is degenerate for all genotypes except one, the “needle”. For
selection only, as there are only two phenotypes, there is a reduction in the size
of the configuration space from 2N to 2, i.e. a reduction in the number of degrees
of freedom from N to 1. However, if we include in the effect of mutation we see
that there is an induced breaking of the genotype-phenotype symmetry due to
the fact that sequences close to the master sequence in Hamming distance have
more offspring than the equally fit genotypes that are further away. In this case
R(η, η′)S (Pη(t), f) ◦ T (Pη(t), p) �= S (Pη′(t), f′) ◦ T (Pη′(t), p′) and the natural
effective degrees of freedom are Hamming classes rather than phenotypes.

Another important class of coarse grainings is that of “schemata”, which we
will denote by α with Pα(t) its relative frequency at time t. In this case the ac-
tion of the coarse graining operator is: R(x, α)Px(t) = Pα(t) =

∑
x∈α Px(t).

Schemata have a simple geometric interpretation in the binary case, a par-
ticular schema being represented by an (N − N2)-dimensional hyperplane in
X which passes through the 2N−N2 vertices that represent the loci that have
been coarse grained. A schema partition then consists of 2N2 of such 2N−N2-
dimensional hyperplanes. Thus, there is an effective dimensional reduction from
a 2N -dimensional configuration space X to a 2N2-dimensional one, Xα, and a
corresponding reduction in the number of degrees of freedom from N to N2.

Unlike the simple case of the coarse graining to phenotype, here the coarse-
grained fitness is time-dependent, with the “renormalized” fitness now being
a highly non-trivial function of the original microscopic fitness, being defined
as fα = R(x, α)fx =

∑
x∈α fxPx(t)/

∑
x∈α Px(t). As there exist 3N possible

schemata a full schema basis is over-complete and non-orthonormal. However,
the space of schemata is not the natural one for recombination, as we shall see.

4.2 Embeddings

In the case of embeddings one passes from a lower to a higher dimensional
configuration space. An example would be that of passing from a representation
where objects are represented by variable-length strings, of up to maximum size
Nm with binary alleles, to a fixed-length representation of size Nm, by including
a third allele value that specifies that there was no corresponding bit in the
variable length case. The original configuration space is of dimension 2(2Nm −1).
However, due to the addition of a third allele the dimension of the embedding
space is 3Nm . Of course, for these more general transformations development of
the operators and the theory necessary to maintain syntactic correctness of the
offspring is a open issue. In this case, one might be better off using the theory
for variable length structures already developed in GP. Lest the reader think
that this type of transformation is somewhat exotic we may mention the case
of protein structure where the protein can be specified at the level of a linear
sequence of amino acids but which later forms a two-dimensional secondary
structure and finally a three-dimensional tertiary structure.
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4.3 Coordinate Transformations

Coordinate transformations are a standard tool in the mathematical analysis
of physical models where one seeks a set of variables that is well-adapted to
the internal structure of the model and hence simplifies the structure of the
equations that have to be analyzed. For our purposes we will only need linear
transformations which can be described in terms of matrices. We restrict our
discussion of explicit examples to the case of binary strings. In this case the
standard string basis is: x = (x1, . . . , xN ) with xi = 0, 1 and the configuration
space the N -dimensional Boolean hypercube.

The three alternative bases we will consider: the Walsh basis, the Taylor
basis and the Building Block Basis are all related to the standard basis via
linear transformations. In (14), (15) and (16) we show the explicit transformation
matrices for the case of three loci.

Walsh (Fourier) Basis. Probably the most important alternative basis is the
Walsh basis ψ, consisting of Walsh functions, ψI(x) = 1/

√
|X|

∏
j∈I xj , where

I is a subset of {1, . . . , N} and xj = ±1. The Walsh functions are normed
and orthogonal and of order |I|, the number of loci that are multiplied. The
Walsh-transform, f̂ , of a function f is defined implicitly by f(i) =

∑
I f̂(I)ψI(i)

Multiplying with ψK(x) and summing over all i ∈ X we obtain
∑

i∈X

f(i)ψK(i) =
∑

I

f̂(I)
∑

i∈X

ψI(i)ψK(i) =
∑

I

f̂(I)δIK = f̂(K) (7)

In matrix form f̂ = Ψf , where the matrix Ψ has the Walsh functions ψK as its
rows. One of the most important properties of the Walsh functions is that they
are eigenfunctions of the mutation operator P that satisfies PψI = (1−2|I|/N)ψI

The mutation operator is therefore diagonal in the Walsh basis. Equation (2)
reads in these coordinates

P̂I(t+ 1) =
∑

i

(ΨP)IiP
c
i =

(
1 − 2

|I|
N

)
P̂ c

I (8)

The Walsh basis will be particularly useful if the transformed selection-crossover
term P̂ c

I also has a simple form.

Taylor Series. While the standard basis and the Walsh basis ψ are orthonor-
mal, this is not necessarily the case in general. In [16], for instance, the Taylor
series of a landscape on the Boolean hypercube is introduced in terms of the
polynomials τI(i) =

∏
i∈I x̃i, such that f(i) =

∑
I f̃(I)τI(i). Let us write i ⊂ I

if x̃i = xi = 1 for all elements of I. We define the matrix Υ by ΥIi = 1 if i ⊂ I
and ΥIi = 0 otherwise, i.e., ΥIi = τI(i). Thus, we can write the Taylor series
expansion in the form f = Υf̃ , i.e., f̃ = Υ−1f . The matrix Υ is invertible [16]
but is neither normalized nor orthogonal. i.e. the basis functions τI(i) do not
form an orthonormal basis. In fact, we have

∑
i∈X τI(i)τk(i) = 2N−|I∪K| since

τI(i)τk(i) = 1 whenever xi = 1 for all elements of I ∪K, and 0 otherwise.
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The Building Block Basis. Coordinate transformations such as the Walsh
transform and the Taylor series are general. Here, however, we wish to consider
a particular coordinate transformation that arises as an almost inevitable conse-
quence of the action of recombination. We saw that representing recombination
in terms of the fundamental, microscopic objects is very inefficient due to the
sparsity of the interaction matrix. This is an indication that individual objects
are not the natural effective degrees of freedom for recombination. So what are?
To form the string 111 with a mask 100 one can join strings 111, 110, 101,
and 100 with either 111 or 011. In other words, for the first parent the second
and third bit values are unimportant and for the second the first bit value is
unimportant. Thus, it is natural to coarse grain over those strings that give rise
to the desired target for a given mask.

If one picks, arbitrarily, a vertex in X, associated with a string i, one may
perform a linear coordinate transformation Λ : X → X̃ to a basis consisting of
all schemata that contain i. For instance, for two bits X = {11, 10, 01, 00}, while
X̃ = {11, 1∗, ∗1, ∗∗}. The invertible matrix Λ is such that Λαi = 1 ⇐⇒ i ∈ α.

Λ =

111 110 101 011 100 010 001 000
111 1 0 0 0 0 0 0 0
11∗ 1 1 0 0 0 0 0 0
1 ∗ 1 1 0 1 0 0 0 0 0
∗11 1 0 0 1 0 0 0 0
1 ∗ ∗ 1 1 1 0 1 0 0 0
∗1∗ 1 1 0 1 0 1 0 0
∗ ∗ 1 1 0 1 1 0 0 1 0
∗ ∗ ∗ 1 1 1 1 1 1 1 1

(9)

Υ =

ooo loo olo ool llo lol oll lll
111 1 1 1 1 1 1 1 1
110 1 1 1 0 1 0 0 0
101 1 1 0 1 0 1 0 0
011 1 0 1 1 0 0 1 0
100 1 1 0 0 0 0 0 0
010 1 0 1 0 0 0 0 0
001 1 0 0 1 0 0 0 0
000 1 0 0 0 0 0 0 0

(10)

Ψ =
1√
8

111 110 101 011 100 010 001 000
111 −1 +1 +1 +1 −1 −1 −1 +1
110 +1 −1 −1 −1 −1 −1 +1 +1
101 +1 −1 +1 −1 −1 +1 −1 +1
011 +1 −1 −1 +1 +1 −1 −1 +1
100 −1 −1 −1 +1 −1 +1 +1 +1
010 −1 −1 +1 −1 +1 −1 +1 +1
001 −1 +1 −1 −1 +1 +1 −1 +1
000 +1 +1 +1 +1 +1 +1 +1 +1

(11)
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We denote the associated coordinate basis the Building Block basis (BBB)1

in that one may think of the elements of this basis as the BBs2 that are joined
together by crossover to form i.3 The BBB is complete but not orthonormal.
Note that the vertex i by construction is a fixed point of this transformation.
Apart from the vertex i, the points in X̃, being schemata, correspond to higher
dimensional objects in X. For instance, 1∗ and ∗1 are one-planes in X while ∗∗
is the whole space. In the BBB one may transform (3) to find

P̃ c
α(t+ 1) = (1 − pc)P̃ ′

α(t) +
2N∑

m=1

∑

β,γ

λ̃αβγ(m)P̃ ′
β(t)P̃ ′

γ(t) (12)

where λ̃αβγ(m) = ΛαiλijkΛ−1
βj Λ−1

γk .
The advantage of this new representation is that the properties and sym-

metries of crossover are much more transparent. For instance, λ̃αβγ(m) is such
that for a given mask only interactions between BBs that construct the target
schema are non-zero, i.e., λ̃αβγ(m) = 0, unless γ corresponds to a schema which
is the complement of β with respect to α. Also, λ̃αβγ(m) = 0 unless β is equiv-
alent to m, whereby equivalent means that for any 1 in the mask we have a 1
at the corresponding locus in β and for any 0 we have a ∗. These two important
properties mean that the summations over β and γ in (12) disappear to leave
only the sum over masks with an “interaction” constant pc(m) which depends
only on the mask. For example, for two bits, if we choose as vertex 11, then 11
may interact only with ∗∗, while 1∗ may interact only with ∗1.

In X this has the interesting interpretation that for a target schema α of
dimensionality (N − d) only geometric objects “dual” in the d-dimensional sub-
space of X that corresponds to α may interact. In other words, a k-dimensional
object recombines only with a (N − d − k)-dimensional object. Additionally, a
(N − d)-dimensional object may only be formed by the interaction of higher
dimensional objects. In this sense interaction is via the geometric intersection
of higher dimensional objects. For example, the point 11 can be formed by the
intersection of the two lines 1∗ and ∗1. Similarly, 1111 can be formed via inter-
section of the three-plane 1 ∗ ∗∗ with the line ∗111 or via the intersection of the
two two-planes 11 ∗ ∗ and ∗ ∗ 11.

As mentioned, one of the primary advantages of the BBB representation is
that the sums over j and k disappear thus obtaining

P c
i (t) = (1 − pc)P ′

i (t) +
2N∑

m=1

pc(m)P ′
im

(t)P ′
im̄

(t) (13)

1 This basis is implicit in the work [7,8] but has only been considered in more detail
recently [17].

2 Note that these BBs are not the same as their well known counterparts in GA theory
[6] being dynamic, not static, objects. Neither are they necessarily short or fit.

3 Given the arbitrariness of the choice of vertex there are in fact 2N equivalent BBBs
each transformable to any other by a permutation.
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where P ′
im

(t) is the probability to select the BB im (note that the mask uniquely
specifies which element, im, of the BBB to choose) and P ′

im̄
(t) is the probability

to select the BB im̄, which is uniquely specified as the complement of im in i.
Both im and im̄ are elements of the BBB associated with i. The above equation
clearly shows that recombination is most naturally considered in terms of the
BBB. In the standard basis there were of the order of 22N elements of λijk to be
taken into account for a fixed i. In the BBB there is only one term. Of course,
the coarse grained averages of im and im̄ contain 2N terms, still, the reduction
in complication is enormous. Thus, crossover naturally introduces the idea of a
coarse graining, the associated effective degrees of freedom being the BBs we
have defined. This is an important point as it shows that evolution is acting in
the presence of crossover most naturally at the level of populations, the BBs
representing populations with a certain degree of “kinship” to the target object.

Inserting (13) in (2) we can try to solve for the dynamics. However, in order
to do that we must know the time dependence of xm and xm̄. Although the
number of BB basis elements is 2N we may generalize and consider the evolution
of an arbitrary schema, α. To do this we need to sum with

∑
x∈α on both sides

of the equation (2). This can simply be done to obtain [7,8] again the form
(2), where this time the index α runs only over the 2N2 elements of the schema
partition and where again Mαβ = pdH(α,β)(1−p)N−dH(α,β). In this case however
dH(α, β) is the Hamming distance between the two schemata. For instance, for
strings with three loci the schemata partition associated with the first and third
loci is {1 ∗ 1, 1 ∗ 0, 0 ∗ 1, 0 ∗ 0}. In this case dH(1, 2) = 1 and dH(1, 4) = 2.
P c

α(t) =
∑

x∈α P
c
x(t) is the probability of finding the schema α after selection and

recombination. Note the form invariance of the equation after coarse graining.
To complete the transformation to schema dynamics we need the schema analog
of (13). This also can be obtained by acting with

∑
x∈α on both sides of the

equation. One obtains

P c
α(t) = (1 − pcNα)P ′

α(t) +
∑

m∈Mr

pc(m)P ′
αm

(t)P ′
αm̄

(t) (14)

where αm represents the part of the schema α inherited from the first parent and
αm̄ that part inherited from the second. N(α) is the number of crossover masks
that affect α, relative to the total number of masks with pc(m) �= 0, the set of
such masks being denoted by Mr. Obviously, these quantities depend on the
type of crossover implemented and on properties of the schema such as defining
length. Note that the BBB naturally coarse grains here to the BBB appropriate
for the schema α as opposed to the string x.

Thus, we see that the evolution equation for schemata is form invariant, there
being only a simple multiplicative renormalization of the recombination prob-
ability pc. This form invariance, shown in [7], demonstrates that BB schemata
in general are a preferred set of coarse grained variables and, more particularly,
the BBB is a preferred basis in the presence of recombination. It has also been
shown [1] that schemata, more generally, are the only coarse graining that leads
to invariance in the presence of mutation and recombination.
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Considering again the structure of (13) and (14) we see that variables associ-
ated with a certain degree of coarse graining are related to BB “precursors” at an
earlier time, which in their turn ... etc. This hierarchical structure terminates at
order-one BBs as these are unaffected by crossover. Thus, for example, the level
one BB combinations of 111, i.e., BBs that lead directly upon recombination
to 111 are: 11∗ : ∗ ∗ 1, 1 ∗ 1 : ∗1∗ and 1 ∗ ∗ : ∗11. The level two BBs are 1 ∗ ∗,
∗1∗ and ∗ ∗ 1. Thus, a typical construction process is that BBs 1 ∗ ∗ and ∗1∗
recombine at t = t1 to form the BB 11∗ which at some later time t2 recombines
with the BB ∗ ∗ 1 to form the sequence 111.

In the case of recombination note also that the coarse graining operator
associated with the BBs satisfies

R(η, η′) = R(ηm, η′m)R(ηm̄, η′m̄) (15)

where R(ηm, η′m) represents the action of the coarse graining on the BB S while
R(ηm̄, η′m̄) represents the action on the BB m̄.

5 Conclusions

In this paper, based on a coarse-grained, or schema-based, formulation of ge-
netic dynamics we have seen how various branches of EC, in particular GAs
and GP, can be understood in a more unified framework. Additionally, we have
explicitly demonstrated how to pass between different formulations of genetic
dynamics, such as the Vose model and schema-based models, via coordinate
transformations on the configuration space, showing how the most natural basis
for crossover – the BBB – can be obtained from the standard string basis. The
emphasis here has been on how transformations of the configuration space of
the model – such as coarse-grainings/projections, embeddings and coordinate
transformations – link these different, disparate elements and alter the standard
taxonomic classification of EAs and theories of EAs. We firmly believe that a
more profound understanding of EC in general will result from a deeper under-
standing of these, and other, transformations. Finally, it is important to note
that such a unified viewpoint has already led to several notable advances, such
as proofs of the well known Geiringer’s theorem to the case of variable-length
strings in the case of subtree crossover [18] and homologous crossover [19], as
well as an extension, in the case of fixed length strings, to the case of a non-flat
landscape with weak selection [9].
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