
Voronoi Diagrams Based Function Identification

Carlos Kavka1 and Marc Schoenauer2

1 LIDIC, Departamento de Informática, Universidad Nacional de San Luis
D5700HHW, San Luis, Argentina

ckavka@unsl.edu.ar
2 Projet Fractales, INRIA Rocquencourt
BP 105, 78153 Le Chesnay Cedex, France

Marc.Schoenauer@inria.fr

Abstract. Evolutionary algorithms have been applied to function iden-
tification problems with great success. This paper presents an approach
in which the individuals represent a partition of the input space in
Voronoi regions together with a set of local functions associated to each
one of these regions. In this way, the solution corresponds to a combina-
tion of local functions over a spatial structure topologically represented
by a Voronoi diagram. Experiments show that the evolutionary algo-
rithm can successfully evolve both the partition of the input space and
the parameters of the local functions in simple problems.

1 Introduction

The objective when dealing with a function identification problem is to find an
approximation that matches as closely as possible an unknown function defined
in a certain domain. There are methods that can be used to optimize the pa-
rameters of the unknown function given a model, and also methods than can get
both the model and the parameters at the same time. A well known example is
the least squares method (LSM), than can compute the coefficients of a linear
combination of base functions. Also non linear regression methods do exist, but
they tend to be very time consuming when compared with the linear approaches.
Neural networks have also been used for function approximation [7]. A neural
network can be considered as a model of connected units, where usually the un-
known parameters are the so called weights. The usual training algorithms can
be used to obtain the weights, but there are also methods that can obtain both
the connection pattern and the weights.

Evolutionary algorithms have been shown very effective in function identifi-
cation problems in a wide range of domains [3] [1]. The Genetic Programming
approach [8] uses a tree structure to represent an executable object (model)
that can be a function – and has been successful addressing regression problems.
Classifier systems have also been used for function approximation. In the XCFS
classifier system [11], the value of the dependent variable is considered as a payoff
to be learned, given the values of the independent variables.

But the choice of a method to solve a given function identification problem
also depends on the available data: when examples of input/output patterns of

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 1089–1100, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

1090 C. Kavka and M. Schoenauer

the unknown function are given, function identification, also then called data
fitting, can be addressed by standard deterministic numerical methods. This is
not the case, however, for the so-called inverse problems: In control for instance,
candidate controllers cannot be specified just by a set of samples of values of
the independent and dependent variables; but a good simulation of the plant is
usually available, and allows one to evaluate candidate controllers. Even worse,
it is usual that some regions of the space are oversampled, while others are
undersampled.

This work is part of a series of investigations regarding the usefulness of
a particular representation and operators defined to solve the inverse approxi-
mation problem with evolutionary algorithms. The objective is to find both a
partition of the domain into a set of regions and a set of functions to be applied
in each region. In this way, instead of the solution being defined by a single
global function, it is defined by a set of local functions. The partition of the
domain is defined in terms of Voronoi regions, a geometric structure that proved
to be useful in interpolation [4] [2] and evolution applied to structural mechanics
problems [10]. No restrictions are defined for the local functions, but they are
expected to be simple functions. Two possible rules for their combination are
proposed in order to get a solution in the whole domain.

The paper is organized as follows: section 2 presents the details on the do-
main partition based on Voronoi regions, section 3 presents details on local ap-
proximators and the way in which they are combined, section 4 introduces the
representation and the evolutionary operators, section 5 some numerical results
on simple problems and section 6 presents the conclusions and the current lines
of research.

2 Domain Partition

The domain partition strategy is based on Voronoi diagrams. A Voronoi dia-
gram induces a subdivision of the space based on a set of points called sites.
An important property is that a number of operations can be executed on its
topological structure just by operating with the sites.

Formally [5], a Voronoi diagram of a set of n points P is the subdivision of
the plane into n cells, one for each site in P , with the property that a point q
lies in the cell corresponding to a site pi if and only if the distance between q
and pi is smaller than the distance between q and pj for each pj ∈ P with j �= i.
In other words, the cell of the site pi contains all the points in the plane for
which pi is the closest site. The Voronoi diagram of P will be denoted by Vor(P)
and the cell (or region) that corresponds to pi by Vor(pi). Figure 1 illustrates
an example of a Voronoi diagram in IR2. The definition can be straightforward
extended to IRn, with n ≥ 2.

A related concept that will be used in the paper is the so called Delaunay
triangulation. A triangulation [5] of a set of points P is defined as the maximal
planar subdivision whose vertex set is P . A maximal planar subdivision S is a
subdivision such that no edge connecting two vertices can be added to S without

Voronoi Diagrams Based Function Identification 1091

destroying its planarity. In other words, any edge that is not in S intersects one
of the existing edges. A triangulation T of a set of points P is a Delaunay
triangulation if and only if the circumcicle of any triangle in T does not contain
a point of P in its interior. A circumcicle of a triangle is defined as the circle that
goes through its three summits. Figure 1 illustrates an example of a Delaunay
triangulation in IR2.

Fig. 1. An example of a Voronoi diagram (left) and a Delaunay triangulation (right)
for a set of points in IR2

3 Approximation

A solution to the function identification problem is defined by a partition of the
domain in Voronoi regions together with a set of local functions. Two ways of
recombining local functions are proposed: a non continuous combination, where
each function defines the approximation in its own region, and a continuous
combination, where the local functions are adapted in order to get a continuous
approximation in the complete domain.

3.1 The Non-continuous Combination

Given a set of points P = {p1, p2, . . . , pn} and a set of continuous local func-
tions F = {f1, f2, . . . , fn}, each fi being defined on V or(pi), the value of the
approximation F is defined as follows:

F(x) = fi(x) if x ∈ Vor(pi) . (1)

The value of the approximation F is computed as the value of the local function
fi associated to the Voronoi region to which the input value x belongs. The
definition of F presents the following properties:

– It is defined on every point in the domain, provided that the local functions
are defined, since the Voronoi diagram induces a partition of the complete
domain.

– It is a (possibly) discontinuous function, presenting discontinuities at the
Voronoi region boundaries.

1092 C. Kavka and M. Schoenauer

3.2 The Continuous Combination

Given a set of points P = {p1, p2, . . . , pn}, a set of continuous local functions
F = {f1, f2, . . . , fn} and a set of real values V = {v1, v2, . . . , vn}, the value of
the approximation F is defined as follows:

F(x) = fi(x) ∗ D(x) + L(x) if x ∈ Vor(pi) . (2)

The value of the approximation F is computed as the value of the local function
fi associated to the Voronoi region to which the input value x belongs to, scaled
by a distance factor D, with the addition of the value of a global function L
evaluated on x.

The distance factor D is defined as follows:

D(x) =

{
φ

(
d(x,boundary(x))
d(pi,boundary(x))

)
if boundary(x) is defined

1 if boundary(x) is not defined
(3)

where pi is the center of the Voronoi region to which x belongs to, boundary(x)
the point that corresponds to the Voronoi regions boundary, d(a, b) the Euclidean
distance between the points a and b, and φ a continuous function defined in the
range [0..1] such that φ(0) = 0 and φ(1) = 1. boundary(x) is defined as the
intersection of the line joining pi and x and the boundaries of V or(pi), if that
intersection lies within the domain of the definition of the problem.

The global function L is defined based on the Delaunay triangulation as
follows:

L(x) =
d+1∑
j=1

vj ∗ lj . (4)

where d is the dimension of the input space, l1, . . . , ld+1 are the barycentric
coordinate of x in simplex T (triangle the case if d = 2), and v1, . . . , vd+1 are
given values, each one associated with the corresponding Voronoi site (see section
4.1). The definition of F presents the following properties:

– It is defined on every point in the domain, provided that the local functions
are defined, since the Voronoi diagram induces a partition for the complete
domain, and D and L are continuous functions.

– The value of the first term is the local approximator in the center of the
region and 0 in the boundaries, since the distance factor D produces a value
in the range [0..1], with the value 0 in the boundaries of the Voronoi region
and the value 1 in the center. The function φ controls the shape of the
change of D between 0 and 1. It can be linear, quadratic, exponential,
Ultimately, different functions could be attached to different Voronoi sites.
In the external area of unbounded Voronoi regions the value of D is 1.

– The function L is global since it depends on the values vi associated to the
sites and their positions in the space. It is a piecewise linear continuous
function. The vertices of the triangles defined by the Delaunay triangulation
are the sites from P . Given a point x that belongs to the triangle T in the

Voronoi Diagrams Based Function Identification 1093

Delaunay triangulation, the value of the global function L is computed by
performing an interpolation of the values associated to the vertices by using
the barycentric coordinates of the point x in the triangle. The barycentric
coordinates of a point x are the local coordinates of x in T representing
the ratios of the areas of the sub-triangles formed by x and the sides of
the triangle. It corresponds to what is called a triangular element in the
Finite Elements Method terminology [12]. As an example, there are three
barycentric coordinates for a point in IR2: l1, l2, l3, with

∑
li = 1. The value

of one of each of the barycentric coordinates is 1 in a vertex while the value
of the others barycentric coordinates is 0. Figure 2 presents the value of the
three barycentric coordinates for a triangle in IR2, together with an example
of the global function L evaluated on the same triangle. Note that even if

1

p2

p3p1
p1

p2

1

p3

p1

p2

p3

1

p2

p3

v3

v1

v2

p1

Fig. 2. Barycentric coordinates in a triangle in IR2 (from left to right): barycentric
coordinate l1, barycentric coordinate l2, barycentric coordinate l3, the global function
L in the triangle T

it is true that every point in the domain belongs to a Voronoi region, it is
not the case with the Delaunay triangulation. Some points that belong to
unbounded Voronoi regions do not belong to any triangle defined by the
Delaunay triangulation (see figure 1). In order to define L on these points,
a large triangle covering the whole domain and containing all points in P is
defined with values 0 associated to its vertices [5].

4 The Evolutionary Algorithm

This section introduces the representation used for the individuals and the defi-
nition of the evolutionary operators.

4.1 The Representation

Each individual has to represent a complete solution, or in other words, a com-
plete approximation F . A convenient representation is a list of variable length
of Voronoi sites, local approximator parameters and global function values (if
used), represented as real values.

1094 C. Kavka and M. Schoenauer

In order to formalize the definition, let us define a local vector as the vector
that contains all parameters associated to a Voronoi region: the coordinates that
define the site, the parameters of the local approximator and the value of the
global function (if applicable). A local vector lvi of an individual ind with non
continuous approximation is defined as the vector:

lvi = [c1, . . . , cd, par1, par2, . . . , parm]

or as the following vector with the continuous approach:

lvi = [c1, . . . , cd, v, par1, par2, . . . , parm]

where the site coordinates are (c1, . . . , cd), d the dimension of the domain, v the
value of the global function on the site and par1, . . . , parm the m parameters
that defines the local approximator.

An individual ind can be represented as a vector of variable length that
is built from the concatenation of the local vectors that represent the local
approximators in the solution:

ind = lv1 + lv2 + . . . + lvn

As an example, an individual in IR with 3 local approximators defined with two
parameters (a and b) each one is:

with non continuous approximation: [p1, a1, b1︸ ︷︷ ︸
lv1

, p2, a2, b2︸ ︷︷ ︸
lv2

, p3, a3, b3︸ ︷︷ ︸
lv3

]

with continuous approximation: [p1, v1, a1, b1︸ ︷︷ ︸
lv1

, p2, v2, a2, b2︸ ︷︷ ︸
lv2

, p3, v3, a3, b3︸ ︷︷ ︸
lv3

]

The representation proposed does not impose restrictions on the shape of the lo-
cal approximators. In this work, we have used linear, quadratic and RBF approxi-
mators. They were defined in IR2 respectively as f(x) = ax+b, f(x) = ax2+bx+c

and f(x) = exp (−(x − p)2/a2)b + c, where a, b and c are the parameters, and p
the center of the corresponding Voronoi region.

4.2 The Operators

Three mutation operators and one crossover operator have been specifically de-
fined for individuals that represent a Voronoi diagram. They are described below:

Voronoi crossover: This crossover operator is based on the crossover defined
in [10] and exchanges the local vectors of the individuals by using geometric
properties of the Voronoi diagrams. A random hyperplane h of dimension
d − 1 is randomly defined. The first child receives the local vectors from the
first parent that lie on the left of h, and the local vectors from the second
parent that lie on the right of h. The second child receives the remaining
local vectors. Figure 3 presents an example of the application of this operator

Voronoi Diagrams Based Function Identification 1095

Fig. 3. An example of the application of the Voronoi crossover in IR2

in IR2. Formally, given two individuals ind1 and ind2 with n and m local
vectors respectively:

ind1 = [lv1
1 , ..., lv1

n] ind2 = [lv2
1 , ..., lv2

m]

The two children child1 and child2 are:

child1 = {lv1
i , lv2

j /lv1
i ∈ Left(h), lv2

j ∈ Right(h)}

child2 = {lv1
i , lv2

j /lv1
i ∈ Right(h), lv2

j ∈ Left(h)}
where h is a random hyperplane of dimension d−1, a local vector belongs to
Left(h) if its site is on the left of h and a local vector belongs to Right(h) if
its site is on the right of h. The concept of being on the right or on the left
of an hyperplane can be found in computational geometry textbooks, like
for example [5].

Mutation: This operator modifies the coordinates of the Voronoi site, the pa-
rameters of the approximator or the global function value (if used) by up-
dating the values as follows:

xi(t) =
{

xi(t) + ∆(t, ubj − xi(t)) u < 0.5
xi(t) − ∆(t, xi(t) − lbi) u ≥ 0.5 (5)

where xi(t) is the i-th parameter at time t, u is a uniformly generated random
number in [0 : 1], lbi and ubi are respectively the lower bound and the upper
bound for the parameter xi, and ∆ is a function defined as follows:

∆(t, y) = yv(1 − t/T)b . (6)

where v ∈ [0 : 1] is a random number obtained from a gaussian distribution
with mean 0 and standard deviation 0.3, T the maximum number of gen-
erations and b a parameter that controls the degree of nonuniformity. This
operator is used to search the space uniformly in the first generations and
very locally at the end, in order to fine tune the values in the individual. It
is based on the nonuniform mutation operator defined by Michalewicz [9].

Add mutation: This mutation operator is used to add a new random local
vector to the individual.

Del mutation: This mutation operator is used to remove a local vector from
an individual.

1096 C. Kavka and M. Schoenauer

5 Numerical Results

The objective of this section is to evaluate the representation and the operators
described in the previous sections, when applied to simple function identification
problems.

The first experiment consists in the approximation of the following func-
tion in IR, with linear, quadratic and RBF approximators, using both the non
continuous and the continuous approach:

f(x) =




sin(3πx)2

x −1 ≤ x < 0

1
x+exp(−x) − 1 0 ≤ x ≤ 1

(7)

The algorithm implemented is a classical generational genetic algorithm with
population size 100 and tournament selection (100 parents give birth to 100 off-
spring that replace the 100 parents). For the experimental test, the crossover rate
set to 0.7, mutation rate to 0.1, mutation b parameter to 0.2, adding mutation
rate equal to 0.1, delete mutation rate equal to 0.1, the maximum number of
function evaluations to 50 000. Individuals are evaluated by computing the error
on the approximation of a set of points, selected randomly for each individual on
each evaluation. It means that the individuals are not evaluated with the same
dataset – as would happen in inverse problems. The function φ (see equation
(3)) is the identity. The results are summarized in table 1, and corresponds to
10 independent runs for each set of parameters. The errors are specified as a
percentage of the output range, divided by 100. The error is computed by evalu-
ating the approximation obtained in 1000 points evenly selected from the whole
domain, and comparing its value with the real value obtained from the target
function. As a consequence of this fact, the fitness values are not the same as
the errors presented in this table. The figure 4 presents examples of the kind of
solutions obtained with the different kind of approximators. Each plot shows the
function to be approximated and the approximation obtained. The boxes in the
diagram correspond to the Voronoi regions in which the domain is partitioned.

The solutions obtained by all methods are comparable in quality. Better solu-
tions can be found by increasing the limit on the number of function evaluations.
The main difference is on the size of the approximators obtained. A continuous
combination can produce solutions with less local approximators, maintaining
the same quality in the approximation. The second experiment concerns the
crossover operator. Since the representation allows the use of standard one point
crossover, the objective of the second experiment is to compare the Voronoi
crossover with the one point crossover. The one point crossover tends to gener-
ate very long individuals, or in other words, individuals with a big number of
Voronoi regions. It was not possible to use just the one point crossover, with-
out adding a regularization term [7] in order to penalize long individuals. The
results are summarized in table 2, and corresponds to 10 independent runs for
each set of parameters. The value of the regularization parameter corresponds
to the factor used to weight the size of the individual against the error in order

Voronoi Diagrams Based Function Identification 1097

Table 1. Solutions found by the evolutionary algorithm for the first experiment. The
smallest (resp. largest) size values correspond to the size of the smallest (resp. largest)
best individuals found in the set of runs

approximator continuity best error std. dev. smallest largest

linear no 0.017882 0.00562 12 23
quadratic no 0.017015 0.00693 12 29
RBF no 0.013958 0.00561 11 53
linear yes 0.018051 0.00577 6 11
quadratic yes 0.011043 0.01041 5 13
RBF yes 0.011468 0.00353 4 16

(a)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f
app

(b)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f
app

(c)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f
app

(d)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f
app

(e)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f
app

(f)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

f
app

Fig. 4. Example of approximations obtained for the first function by using (a) linear,
(b) quadratic and (c) RBF local approximators with no continuity, and using (d) linear,
(e) quadratic and (f) RBF local approximators with continuity

1098 C. Kavka and M. Schoenauer

Table 2. Solutions found for the second experiment

approximator continuity crossover regularization best error smallest largest

linear yes voronoi no 0.018051 6 11
linear yes one point no - - -
linear yes one point 0.995 0.024664 23 41
linear yes one point 0.990 0.030236 11 29

to compute the fitness. The third experiment is intended to analyze the shape of
the Voronoi partitions obtained in the approximation of the following functions
in IR2, by using linear approximators and continuous combination:

f(x, y) = x exp(−x2 − y2) f(x, y) = sin(
√

x2 + y2) . (8)

The same parameters of the first experiment are used. The results are summa-
rized in table 3, and correspond to 5 independent runs. The figure 5 presents
the plot of the target functions, examples of the approximations obtained by the
algorithm and their corresponding Voronoi partitions.

Table 3. Solutions found by the evolutionary for the third experiment

approximator continuity crossover regularization best error std.dev.

linear yes voronoi no 0.021192 0.01092
linear yes voronoi no 0.028055 0.02411

6 Conclusions

This work presents preliminary results on the use of evolutionary computation
and Voronoi diagrams in function identification. The proposed representation
and the operators allow the algorithm to evolve both the partition of the input
space and the local functions to be applied in each region. The partition of the
input space is performed through Voronoi diagrams. Two ways to combine the
local approximators are proposed. The representation of the partition does not
depend on the type of local approximators used. In this work, linear, quadratic
and RBF local approximators were used, but other kind of approximators can
also be used.

Experiments on simple problems show that good approximations can be ob-
tained with linear, quadratic and RBF local approximators. They also show that
continuity in the combination of local functions can help to obtain approxima-
tions with smaller number of local approximators. The Voronoi crossover showed

Voronoi Diagrams Based Function Identification 1099

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

Fig. 5. Target functions, examples of approximations and Voronoi diagram partitions

superior performance when compared to standard one point crossover. In par-
ticular, it was not necessary to add a regularization term in order to avoid the
solutions to be composed of a very large number of local approximators.

The evolution of individuals with RBF approximators produces an approxi-
mation F that is equivalent to an RBF neural network, since the computation
performed by the local approximators correspond to what the nodes of the first
layer do, and the combination strategy to the computation done at the output
node. The usual training strategy of an RBF neural network consists in two
steps [7]: a selection for the centers of the nodes in the first layer, and training
in order to compute the weights that connect the two layers. Usually the first
step is done through a non supervised technique (or by randomly selecting the
centers), and the second step with supervised training. With the evolutionary
algorithm, both steps are performed at the same time. An advantage of this
approach is that it is not necessary to define in advance the number of centers
(or regions) since the algorithm does the partition by itself.

It can be noted from the experiments that the evolutionary algorithm assigns
more local approximators in areas that are more difficult to approximate. The
concept of being difficult depends on the kind of local approximator. For exam-
ple, a linear segment is easy to approximate for a linear local approximator but

1100 C. Kavka and M. Schoenauer

more difficult for an RBF approximator. A representation that allows different
kinds of local approximators to be evolved at the same time in different regions
of the space is under analysis now.

Future experiments will include problems defined in terms of ordinary dif-
ferential equations, like for example, problems from control, or models of some
physical or chemical processes [6]. The main characteristic is the fact that these
problems cannot be defined just in terms of a set of input-output patterns. In
the experiments performed till now, even if it could have been possible to de-
fine the problems in terms of a fixed data set, it was preferred to follow this
approach as much as possible, generating new random patterns for each evalua-
tion of the individuals. It is expected that the local approximation properties of
the method proposed can demonstrate itself to be useful in the identification of
complex functions that do not pertain to data fitting.

References

1. Ahmed, M. and De Jong, K.: Function Approximator Design using Genetic Algo-
rithms. Proceedings of the 1997 IEEE Int. Conference on Evolutionary Computa-
tion, Indianapolis, IN, pp. 519–523 (1997)

2. Anton, F., Mioc D. and Gold C.: Line Voronoi Diagram based Interpolation and
Application to Digital Terrain Modeling. Proceedings of the 13th Canadian Con-
ference on Computational Geometry, University of Waterloo, (2001)

3. Back, T. Fogel, D. and Michalewicz, Z.(Eds.): Handbook of Evolutionary Compu-
tation. IOP Publishing Ltd and Oxford University Press. (1997)

4. Boissonnat, J. and Cazals, F.: Smooth Surface Reconstruction via Natural Neigh-
bour Interpolation of Distance Functions. Rapport de recherche de l’INRIA –
Sophia Antipolis (2000)

5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry, Algorithms and Applications. Second Edition. Springer-Verlag. (1998)

6. Fadda, A. and Schoenauer, M., Evolutionary Chromatographic Law Identification
by Recurrent Neural Nets. In J. R. McDonnell and R. G. Reynolds and D. B. Fogel,
Eds, Proc. 4th Annual Conference on Evolutionary Programming, pp 219–235. MIT
Press, 1995.

7. Fiesler, E. and Beale R. (Eds.): Handbook of Neural Computation. Institute of
Physics Publishing. (1997)

8. Koza, J.: Genetic Programming: On the Programming of Computers by means of
Natural Evolution. MIT Press. (1992)

9. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Third, Revised and Extended Edition. Springer-Verlag Berlin Heidelberg. (1999)

10. Schoenauer, M., Jouve, F. and Kallel, L. Identification of Mechanical Inclusions.
Dasgupta and Z. Michalewicz Ed. Identification of Mechanical Inclusions. Evolu-
tionary Algorithms in Engineering Applications. (1997)

11. Wilson, S.: Classifiers that approximate functions. Natural Computing, 1(2–3),
211–234 (2002)

12. Zienkiewicz, O. C. and Taylor R. L.: Finite Element Method: Volume 1, The Basis.
Fifth edition. Butterworth-Heinemann.(2000)

	Introduction
	Domain Partition
	Approximation
	The Non-continuous Combination
	The Continuous Combination

	The Evolutionary Algorithm
	The Representation
	The Operators

	Numerical Results
	Conclusions

