Semantics-Based Optimization Across Uncoordinated Tasks in Networked Embedded Systems

Jie Liu
Microsoft Research
One Microsoft Way
Redmond, WA 98052
liuj@microsoft.com

Elaine Cheong
Department of EECS
University of California
Berkeley, CA 94720
celaine@eecs.berkeley.edu

Feng Zhao
Microsoft Research
One Microsoft Way
Redmond, WA 98052
zhao@microsoft.com

ABSTRACT

Microservers are networked embedded devices that accept user tasks on demand and execute them on real world information collected by sensors. Sharing intermediate sensing and computing results among these tasks is critical for optimal resource utilization. This paper presents a service-oriented microserver runtime — SHARE and its semantics-based task management design. Event semantics checking and conversion are based on a signal type system (STS) that captures both data values and service triggering. Based on the compatibility of event semantics, redundant computations in uncoordinated tasks are removed from the runtime. A prototype of SHARE has been experimented with a parking garage sensor network executing three uncoordinated user queries.

Categories and Subject Descriptors

C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS]: Real-time and embedded systems; F.3.3 [Studies of Program Constructs]: Type structure

General Terms

Design

Keywords

Type system, sensor network, service-oriented runtime

1. INTRODUCTION

Technology advances have greatly changed the landscape of embedded systems. Today, an embedded system may no longer be limited to a single application. Embedded software is no longer developed once for the entire lifetime of a product. The ubiquity of (wireless) networking has opened the gate for embedded systems to participate in the larger digital world. They can be re-tasked, re-configured, and reprogrammed on the fly. They can execute user defined tasks on demand.

In this paper, we consider a particular class of networked embedded devices called microservers, which can gather physical information through sensors and can respond to user defined tasks sent over the network. Like application servers in Internet/enterprise computing, microservers dynamically accept and host user tasks that define the application logic. But, unlike business applications, tasks on microservers are typically long-running and their inputs are physical events and sensor data in real time.

Microservers can take various forms. For example, in a healthcare scenario, the cellphone an elderly person carries can be a microserver. It can accept tasks from family members and healthcare providers sent through the cellular data link, and run them over real-time data gathered from wearable sensors (e.g. location sensing, activity sensing, and vital sign monitoring). The results can be returned to the family members and caregivers wirelessly. A telematics computer in a car can be a microserver. The car manufacturers, the dealers, and the car maintenance shops may inject different monitoring tasks into the microserver to gather specific events tailored to their interests. The results of those tasks can be sent back via a cellphone or a satellite link. In a retail warehouse, portable RFID readers with WiFi links, possibly equipped with location, temperature, and humidity sensors, can be microservers that track products and their storage environments on demand. In ad hoc sensor networks, a mesh network of microservers can serve as gateway nodes to connect resource-constrained embedded sensors to larger network/data infrastructures.

A common challenge for these microservers is that they must host uncoordinated tasks, such as user queries, simultaneously. By uncoordinated tasks, we mean that the tasks are injected by different users at unpredictable times. These tasks may have different life times depending on users’ interests. Since microservers are not general-purpose computers, the information they collect and process depends highly on their surroundings. It is very likely that there are partial overlaps among simultaneous user tasks. For example, in the health-care scenario, the caregiver may want to detect certain walking patterns as an early sign of Alzheimer disease. The daughter of the elderly person, seeing that the weather today is nice, wants to set up a reminder that if her parent has not gone out for a walk by 10AM, she will be notified so that she can give her parent a call. The two tasks are independent and have very different time scales — one is long running and the other expires at 10AM. However, parts of the two tasks, namely detecting the behavior of “walking” from various raw sensor data (e.g. from accelerometers or cameras), can be shared.

Many microservers are battery-powered mobile devices; they are constrained by CPU speed, memory size, communication bandwidth, and energy storage. Thus, it is crucial for microservers to find the maximum amount of overlapping sensing and computation in uncoordinated tasks and reduce runtime redundancy. This is an intermediate information reuse problem. In order to achieve this, a
microserver runtime system must:

I. identify overlapping operations from multiple tasks;
II. suppress parts of a task but keep the rest active;
III. share intermediate results from one task with another.

In this paper, we describe the architecture and task management design of SHARE with an emphasis on enabling intermediate information reuse\(^1\). SHARE has a component-based architecture. Each task is built using a set of event-driven components, called services. The communication between services has a publish/subscribe semantics. A user task is sent to a microserver as a service composition graph (SCG). For each incoming user request, the runtime system examines the existing tasks and tries to find out whether parts of the new request can be fulfilled by existing computations. If so, the redundant services are not instantiated, and their downstream services are subscribed to corresponding existing publishers.

There are several approaches to promote the sharing of intermediate results across tasks. For example, some commonly used services can be manually started and their outputs published in a local tuple space. New tasks can then subscribe to these intermediate results, so that they are computed only once. However, this introduces run-time overhead if those data are not used by any tasks. It is also hard to draw the line between what services should be system provided versus user defined. Another approach is to compare syntactically the composition of services. This is the most conservative and rigid approach. Two subtasks are considered redundant only if they are exactly the same, including service composition topology, service parameters, and internal states. For example, if task A uses a service vehicleSpeedDetection to compute both the presence and the speed of a vehicle, and task B plans to use vehicleDetection to obtain only the vehicle presence information, then B cannot use the outputs from vehicleSpeedDetection even though its outputs contain all the information B needs.

SHARE takes a different and more flexible approach by allowing users to annotate semantics of the data transmitted between services. We rely on a runtime signal type system (STS) to check and automatically convert between data semantics whenever possible. In fact, the input STS may not be followed verbatim, if the runtime system can find existing alternative services that provide intermediate results with compatible semantics. This is more subtle than simply giving each piece of data a name and matching names at runtime. Since services are event driven, the events passing between services not only carry their value information, but also serve as triggers for service execution. For example, a service that expects temperature reading sampled at 10Hz cannot be triggered by a 100Hz event source. A big advantage of STS is that it handles this sequencing property naturally within the type system and performs trigger rate conversions as well as data type conversions.

The rest of the paper is organized as follows. In Section 2 we present the architecture of SHARE, focusing on the features that enable information reuse. We then focus on the signal type system in Section 3, defining signal types and show how type checking and type conversion mechanisms can help identify and reduce redundant computation. Section 4 presents a testbed deployment of the runtime system in a parking garage microserver. Section 5 discusses related work. Section 6 concludes the paper and points out future directions.

2. SHARE ARCHITECTURE

We assume that microservers have computational power and memory sizes similar to cell phones or PDAs. That is, they can run an embedded operating system and a modern virtual machine such as JVM or a .NET framework. Figure 1 illustrates the architecture for SHARE. It consists of a runtime core and a set of receptionists. A receptionist is created for each user connected to the microserver. The tasks injected by the users are already componentized and the receptionists perform semantics-based task trimming, as described in later sections, before submitting the tasks to the runtime core. When existing intermediate computation results can be reused, the tasks submitted to the runtime core is “smaller” than the task injected by the user. The runtime core manages the execution of the services regardless of their originators.

2.1 Service and Composition

In order to facilitate the reuse of intermediate computation results, we must introduce some building blocks for creating user tasks. In SHARE, an atomic piece of computation is called a service. Services have input and output ports. Input ports accept events, and output ports produce events for other services. A service may have internal state, and its behavior depends on both input events and its internal state. To this extent, services are similar to actors in Ptolemy II [4], element classes in Click [17], actions in UML’s action semantics extension [20], among many component-based frameworks.

There is no global state in a task other than the data communicated between services. The communication has a publish/subscribe semantics. Conceptually, all outputs from services go into an event mediator that is visible to all other services. If one of the services is interested in processing an event in the mediator, it reacts to a copy of that event. Events are not cached. After it is delivered to every subscriber’s input port, it is garbage collected. Since the mediator separates the publishers and subscribers, a service does not care from where its inputs come nor to where its outputs go. Thus intermediate computation results can be easily shared across tasks.

Since all services are local to the microserver, the publish/subscribe semantics are efficiently implemented using an event/delegate mechanism [15] in SHARE. Objects called Relations\(^2\) are introduced to serve as mediators for publishers and subscribers. However, instead of having a single mediator for all publishers and subscribers, there is one relation per event type. The relation connects to one or more output ports (publishers) and zero or more input ports (subscribers). It maintains a list of all connected input ports, and registers itself to every connected output port as an event handler. Once an event is sent by an output port, the relation sends a copy of the event.

\(^1\)SHARE stands for Service sHAring Runtime Environment.

\(^2\)The name is influenced by Ptolemy II.
to every connected input port. The connections between ports and relations are established only once — when a user task is first injected to the microserver — and remain unchanged throughout the lifetime of that task. Since tasks on microservers are usually long-running, this implementation greatly reduces the overhead of data pattern matching in typical publish/subscribe architectures [6].

In SHARE, service executions are event-driven. Some events may carry time stamps, but service executions are triggered by the presence of events in the input ports. This kind of reactive execution is usually more resource efficient when the inputs are sparse, which is the case for many embedded applications such as wireless sensor networks. In SHARE, each service has its own thread. It reacts to every input event on a first-come-first-serve basis. Once triggered, it performs a finite piece of computation, which may change its internal state and may produce outputs, and then go to an inactive mode waiting for the next input event. An input port has a FIFO queue that triggers the service until the queue is empty.

2.2 Task Management

A user task is sent to a microserver as a set of services and the connections among their ports, called a service composition graph (SCG). It is given to SHARE as an XML document. For most of the paper we use a graphical representation as shown in Figure 2. Services are shown as blocks with their names annotated. Service ports are implicit. Connections between ports are indicated by arrows. A relation is implicit if it connects exactly one output port and one input port, otherwise, it is shown as a diamond.

Once given to the runtime system, the SCG may not be followed verbatim. It can be merged with existing tasks. Figure 2 illustrates the desired optimization result. If Task1 is already running on a microserver, and Task2 is later injected, we would like the run time image to be the bottom part of the Figure 2(a). When Task1 has finished, not all its elements are garbage collected, although they may have been started by Task1. Some can continue being used by other active tasks, as show in Figure 2(b).

Figure 2: Task management in SHARE.

Service lifetime management is achieved by demand analysis.

Each service is individually started and stopped. A service maintains a list of tasks that demand it. When a service subscribes to a relation, the subscriber’s task is propagated to all services backward-reachable from the relation. That is, all services that are used to generate the data that the subscriber needs becomes part of the task. When a task terminates, its corresponding entry is removed from all services it demands. When the list is empty, the service wraps up and hands itself to the garbage collector. Thus, requirement (II) and (III) introduced in Section 1 can be relatively easy to achieve in our service-oriented architecture. The rest of the paper focuses on achieving requirement (I) — how to maximally identify redundant sensing and computation in an efficient way.

3. A SIGNAL TYPE SYSTEM

The approach we take to reducing runtime redundancies is based on event semantics. To reiterate, events in event-driven systems serve two roles: carrying values and triggering downstream services. When reusing events, we must consider both properties. The mechanism by which we capture and reason about event semantics is a signal type system (STS). The goal of the STS is to capture the property that events produced from an output port “contain all the information needed” by an input port. This section first defines the signal types and then describes how the STS is used to help information reuse.

3.1 Signal types

Inspired by the tagged signal model [14], we define an event as a pair: a tag and a value. A signal is simply a sequence of events. Thus, a signal type consists of two parts: its value type and its tag type.

Value types: In STS, we treat the values of an event as a record, and its type is a tuple:

\[
\nu = (name, \{(n_1, t_1), (n_2, t_2), \ldots, (n_k, t_k)\})
\]

where,

- \(name\) represents the name of the signal;
- \((n_i, t_i)\) is called a field type, where \(n_i\) is the name of the field and \(t_i\) is a primitive data type\(^3\).

A name in STS serves as an identifier for data. It can encode the ID, location, or object identity information, among others. For example, the outputs of a relative humidity (RH)/temperature sensor in room 102 may have value type:

\[
\{"room102", \{"RH", float\}, \{"temp", float\}\}
\]

We use the set \(V\) to represent all value types. The compatibility relation between value types is a simple extension of record types in programming languages (see e.g. [16]). Let \(v = (name, \{(n_1, t_1), (n_2, t_2), \ldots, (n_k, t_k)\}), v' = (name', \{(n'_1, t'_1), (n'_2, t'_2), \ldots, (n'_m, t'_m)\}) \in V\), we say \(v\) is compatible with \(v'\), written as \(v \leq v'\) if the following holds:

- \(name = name'\);
- for each \((n_i', t'_i)\) of \(v'\), there exists \((n_i, t_i)\) of \(v\), such that \(n_i = n_i'\) and \(t \leq t_i\). By \(t \leq t'\) we mean \(t\) is a subclass of \(t'\), or for primitive types converting \(t\) into \(t'\) will not lose data precision.

That is, the fields in \(v'\) need to be a subset of that in \(v\) subject to primitive type compatibility. For example, if a service requests a

\(^3\)Here, we use the term primitive types loosely. It represents both primitive data types, like int and double, and object-oriented classes as well.
temperature reading in room 102 as (*room102*, \{"temp", double\}), then the type in (2) is compatible with it.

Tag types: Tags represent timing and ordering relations among the events in a signal. To deal with real world signals, especially sensor outputs, we assume tags take values from \(\mathbb{R} \), the set of reals. In particular, we focus on the following subsets of \(\mathbb{R} \):

- \(\mathbb{R} \) is the whole connected set.
- \(\mathbb{Z}^0 \subset \mathbb{R} \) is the set of non-negative integers.
- \(\mathbb{D} \subset \mathbb{R} \) is discrete if it can be order-preserved and bijectively mapped to a subset of integers \([12]\). We denote this map \(\mathcal{M}_D \), which is unique for every \(\mathbb{D} \).
- \(\mathcal{P}(t_0, p) = \{ t = t_0 + i \cdot p, i \in \mathbb{Z}_0 \} \) is the set of integer multiples of \(p \) starting from \(t_0 \). This is a periodic discrete set with period \(p \). We also write \(\mathcal{P}(p) \) if the start time is understood, say \(t_0 = 0 \).

The tag sets form the basis of tag types. However, they alone are not sufficient to differentiate sampled continuous signals from periodic discrete event signals such as a clock. For this reason, we extend the tag type system to capture the notion of continuity of underlying signals. We introduce a class of signals called **discrete-time continuous signals** (DTCSs). A DTCS has a discrete set as its tags, but represents a continuous signal. One implication of the underlying continuity is that we can approximate data values (e.g. through interpolation) even though they are not present in the signal. A DTCS is different from a (timed) discrete event signal (DES) even though they may have the same tag set, because DES cannot be interpolated.

We call untimed signals **sequences**, and their tags are \(\mathbb{Z}_0 \).

We further introduce a base type called **continuous-time signal** (CTS), which can never be instantiated in a digital computer, but serves as the bottom of our type lattice. The CTS is the only signal that has tag type \(\mathbb{R} \).

With these notions, we define the following **coarse-grained signal types** lattice, as shown in Figure 3. Intuitively, a CTS can be sampled to get a DTCS and can generate DESs through event detections. A DTCS can be treated as a discrete event signal by losing the notion of underlying signal continuity. A DES can be converted to a sequence by applying \(\mathcal{M}_D \), i.e. losing its timing properties.

The coarse-grained type lattice can be further refined by the containment relations among tag sets, for example, \(\mathcal{P}(p) \supset \mathcal{P}(2p) \supset \mathcal{P}(6p) \ldots \). In general, we use \(C \) for DTCS tags and \(D \) for DES tags. Let \(C(p) \) represent a DTCS whose tag set is \(\mathcal{P}(p) \), and \(D(p) \) be a discrete event signal with the same periodic tags. The fine-grained tag type lattice, denoted as \(\mathcal{T} \), is shown in Figure 4, where \(C_1, D_1, D_2 \) are aperiodic and \(C_1 \) and \(D_1 \) have the same tag set. \(\mathcal{T} \) is an infinite lattice. We denote \(\sigma : \mathcal{T} \rightarrow \mathbb{R} \) the function that maps a tag type to its underlying tag set.

Using this lattice, we define compatibility on tag types: let \(t_1, t_2 \in \mathcal{T} \), \(t_1 \leq t_2 \) if \(t_1 \) is lower in the lattice than \(t_2 \). For example, according to this type lattice, a continuous-time temperature waveform is compatible with its 10Hz sampling, which is compatible with its 1Hz sampling, which is compatible with a discrete set of temperature events defined on the same time instances, which in turn is compatible with untimed temperature sequences.

We call the overall type system that captures both tag types and value types the **signal type system** (STS). In STS, \(s = (\tau, v) \) is compatible with \(s' = (\tau', v') \) (i.e. \(s \leq s' \)) if \(\tau \leq \tau' \) and \(v \leq v' \).

3.2 Using STS in SHARE

In SHARE, STS is used by the receptionists to check for information reusability. Intuitively, if an input port \(I \) of service \(A \) requests events of type \((\tau, v) \), and an (existing) output port \(O \) produces events of compatible type \((\tau, v) \), then by connecting \(I \) and \(O \), each event \(A \) receives will contain all the data fields \(A \) needs for a correct reaction, and \(A \) will be triggered at least as often as it is expected. For \(A \) to be triggered exactly as often as it expects, we must have \(\sigma(\tau) = \sigma(\tau') \).

3.2.1 Signal Type Specification

Task SCGs are sent to microservers in an XML format, called Microserver Tasking Markup Language (MSTML), which is an extension of MoML \([4]\). A MSTML file has four sections: Sockets, Services, Relations, and Connections. Sockets, which do not necessarily mean TCP sockets, are interfaces to other devices: microservers, wireless sensors, or actuators; the services section specifies the services used in this task, including a list of all ports and parameters for each service; the relations section specifies the mediators to connect the ports, and the connections section lists which port connects to which relation. The semantics annotation is part of the port declaration in the services section.

Figure 5 shows a segment of the services section in MSTML. Signal types are annotated as properties of ports. For example, the figure shows an instance of MagVehicleDetection service that detects the presence of vehicles using magnetometer readings. The service has two ports: "in" and "out." The input port needs a sampled magnetometer signal at 10Hz. Each data sample is an integer. The service produces an output whenever a vehicle is detected. The vehicle detections are timed discrete events with a field `timeStamp`.
A task can also specify that certain signals should not be substituted by omitting its signal type properties, so that parts of the SCG must be followed verbatim. This feature is important since not all tasks are aimed at getting the final output. For example, one can use the MagVehicleDetection service to check whether the magnetometer is working correctly. Replacing it with other vehicle detection mechanisms defeats the purpose.

3.2.2 Type Checking

The goal of reusing services from existing tasks is achieved by type checking the newly injected MSTML specification against existing signals. We assume that each application, when given to SHARE, is already type checked for correctness, and is self-contained. When an MSTML file is injected, the STS checks that for each input port \(i \) in the new task and for the collection of existing output ports \(O \), there exists \(o \in O \) such that \(\text{type}(o) \subseteq \text{type}(i) \). This boils down to matching the names of the signals, checking the subset relations among the fields, checking the primary types compatibilities in each field, and most importantly checking the tag type compatibility.

For aperiodic signals, the tag type checking can simply use the coarse-grained type lattice in Figure 3: \(C \leq D \leq 2^{|O|} \). For periodic signals, it is possible to perform finer grained checking such as checking the sampling rate. For example, \(C(p) \leq C(k \times p) \) for any natural number \(k \), and similarly for discrete events.

3.2.3 Type Conversion

Notice that type compatibility does not imply that an input port in one task can connect to an output port in another task. To ensure correct triggering, the tag types must be equal. This is achieved by type conversion of compatible types, based on type checking results. To simplify discussion, we assume that when a service accesses data values from its input events, it always uses the name of the field and casts it to its local type, e.g.

```java
int magValue = (int)event.getValue("magneticField");
```

In this section, we focus on the conversion of tag types.

The purpose of type conversion is to provide an input port with exactly what it expects, for both the data values and the triggering times. Analogous to conversions in data type systems, we have developed similar notions of lossless and lossy conversions in STS.

A **lossless** conversion preserves both value and tag precisions in the output signal, when the input events are a subset of the output events. Here, we only consider conversions of periodic signals.

Let output port \(o \) and input port \(i \) be type compatible, e.g. \(\tau(o) = C(p) \), and \(\tau(i) = C(q) \), then the type converter inserts a \(k \)-DownSampler service, which for every \(k \) input events, produces one output event, as shown in Figure 6. Similar conversions can be performed for periodic DESs.

Lossy conversions change event values in order to match tag types. It applies only to DTCSs, taking advantage of the underlying continuity of the signal it represents. By using a lossy conversion, the input port will be triggered exactly as requested, but the values of the input events are only approximations to the real values. The accuracy of this approximation depends on the continuity of the underlying signal and the sampling rate at both the output port and the input port. An **Interpolator** service performs lossy conversion. There can be many interpolator services based on different interpolation algorithms. In SHARE, we use a linear interpolator. In order to reduce approximation errors, we perform lossy conversion only when the output signal has a lower sampling period than the input requirement. Let \(\tau(o) = C(p) \), \(\tau(i) = C(q) \), and \(p < q \) and \(q \neq k \times p \). A **LinearInterpolator** service starts with an internal counter \(m \) set to 0. It is activated by every output event from \(o \). It produces its \(m \)-th output when receiving the \(k \)-th input, where \(k \) satisfies \((k-1)p < mq \leq kp \). The value of the \(m \)-th output event is

\[
\begin{align*}
y_0' &= y_0 \\
y_m' &= y_{k-1} + (y_k - y_{k-1}) \frac{mq - (k-1)p}{p}, k \geq 1.
\end{align*}
\]

where \(y \) are the input values and \(y' \) are the output values.

Conceptually, an interpolator first converts the DTCS to its underlying continuous-time signal, and then re-samples it according to the frequency required by the downstream input port. For this reason, lossy conversion does not apply to timed discrete event signals.

3.3 More on signal names

Notice that the compatibility of event values defined so far means that when a service reacts to its input event, it can cast all the expected data fields without runtime exceptions. There are still questions of whether events with the same name actually have the same meaning.

For example, a service **counter** in task \(A \) produces a signal with name **vehicleCount**, and another service in task \(B \) also expects a signal called **vehicleCount**. Is it correct to connect them together? Although the presence of a vehicle is a physical fact, it is possi-
ble that A counts vehicles starting at 9AM, while B expects the counting to start at 10AM. The encoding “vehicleCount” is not a unique identifier for the semantics. On the other hand, names like
\[
\text{vehicleCountFromUTC1-1-2005:09:00:00}
\]
and
\[
\text{vehicleCountFromUTC1-1-2005:10:00:00}
\]
will differentiate them.

In general, in order to uniquely identify events, the names of the signals must be universal and rich. That is, uncoordinated users must first agree on how to name physical and virtual events in the particular application domain, and secondly, the name should reflect runtime information such as time duration, space, units, and precision. Very likely, the name is a structure rather than a simple string.

Recent movements in semantic web services propose ontologies for various application domains [3, 2]. In the sensor communities, IEEE 1451.2 [1] and OGC SensorML [21] are both attempts to standardize semantic descriptions of sensor outputs. Currently, these standards do not include high-level information interpretations, but further extensions are possible.

Another approach to prevent users from specifying arbitrary data semantics is to have an automatic service composition engine as the front end for microservers. Instead of having users directly compose services, which would be difficult for non-technical users, one can provide users with a high-level query interface. Users can specify something like “give me a histogram of vehicle arrival times starting from 9AM today” through a query language; and a query processor generates a SCG with unified signal types annotated. A query language and its processing engine, based on constraint logic programming, has been prototyped for SHARE [25].

4. EXAMPLE

SHARE has been prototyped on the .NET framework using C#. The runtime system, without the service library, is less than 100KB, in addition to the standard .NET framework.

We also built an experimental setup in a parking garage to prototype our service-oriented networked embedded computing architecture and SHARE. The testbed allows users to run multiple simultaneous queries on real-time parking garage sensor data.

The testbed is located near the entrance of the second floor in a parking garage with one-way traffic, as shown in Figure 7. The focus of the network was a 4x5 meter area directly in front of an elevator. All vehicles entering this floor of the parking deck pass through this area, as do most pedestrians using the elevator.

There are three types of sensors in the system: a network camera, a magnetometer and infrared breakbeam sensors. A breakbeam sensor bounces an infrared beam against a distant reflector. When an object comes between the sensor and the reflector, it detects that the beam has been broken; when the object moves away it detects that the beam has been re-detected. This is the same type of sensor that might be found at a store entrance to detect customers entering and leaving.

The breakbeam sensors and the magnetometer are each connected to a micaZ mote4. Each of these motes is equipped with a 2.4GHz IEEE 802.15.4 (ZigBee compliant) radio. Five infrared breakbeam sensors are placed in a row across the area, 1m apart and about .5m from the ground, such that the beams are broken in succession by any passing human or vehicle. Each blocking or unblocking event generates an interrupt to the mote. Slightly down traffic from the breakbeam sensors, we installed a magnetometer-equipped mote that can detect the changing magnetic field of a moving vehicle. A headless Cappuccino EZ-GO small form-factor PC5 with a 1.0GHz Pentium III equivalent processor and 256MB memory is used as a microserver that communicates with the micaZ motes via a 802.15.4 radio, while connected to the company intranet via wired Ethernet. The Axis2100 network camera6, with an embedded web server, is also connected to the Ethernet.

We run the following three queries in the system:

Task T. Traffic engineer Todd wants photographs of all vehicles moving faster than 25mph.

Task E. Employee Emma wants to know at what time she should arrive at work in order to get a parking space on the first floor of the parking deck.

Task C. Corp security officer Cory wants to collect magnetic field signatures whenever there is a moving object (human or vehicles) passing through the section.

There are two ways to detect a vehicle in our system: by using the breakbeam sensor array or by using the magnetometer. The breakbeam sensors can estimate the speed of the vehicle, while the magnetometer cannot. To detect a vehicle, Task E only needs to sample the magnetometer at 16Hz, while to collect the magnetic field signature, the magnetometer needs to be sampled at 256Hz.

As a prototype, we use Ptolemy II as a graphical interface for users to build their tasks and annotate data semantics. Each user builds the task from his/her own standpoint, without considering possible resource sharing. For example, Todd’s must detect the vehicles using the breakbeam array since he wants speed information. His application is shown in Figure 8(a). Emma may find using magnetometers to detect vehicles more straightforward, so she builds an application as shown in Figure 8(b). She sets the magnetometer to sample at 16Hz. Cory turns on the magnetometer at 256Hz and logs the data in a running buffer. The buffer triggered by object detections from the breakbeams to output corresponding magnetometer

5 Available from www.cappuccinopc.com
6 Available from www.axis.com
Figure 8: Three tasks are sent to the parking garage microserver. Some port names are labeled in circles. Todd uses the breakbeam array to detect speeding vehicles. Emma intends to use magnetometer at a low sampling rate (16Hz) to detect entering vehicles. In Cory's application, high sampling rate magnetometer readings are sent to a circular buffer. Object detections trigger the buffered data to send to Cory.

The semantics of the data are also annotated in the model. For example, using a short notation, in Task T:

\[
\text{type}(T3) := (\{0\}, \text{"sortedEdges"}, \{\{\text{"timeStamps"}, \text{long}[]}\}); \\
\text{type}(T4) := (\{0\}, \text{"vehicle"}, \\
\{\{\text{"timeStamp"}, \text{long}],[\text{"speed"}, \text{double}]}\});
\]

in Task E:

\[
\text{type}(E2) := (\{1/16\}, \text{"magnetometer"}, \\
\{\{\text{"magneticField"}, \text{int}[]}\}); \\
\text{type}(E4) := (\{0\}, \text{"vehicle"}, \{\{\text{"timeStamp"}, \text{long}[]}\});
\]

Figure 9: A conceptual run-time image when all tasks are running. The tasks are injected in particular order: Task C, Task E, and Task T. Notice that if they are injected in a different order, the run-time image may be different.

in Task C:

\[
\text{type}(C1) := (\{0\}, \text{"sortedEdges"}, \{\{\text{"timeStamps"}, \text{long}[]}\}) \\
\text{type}(C2) := (\{0\}, \text{"movingObject"}, \\
\{\{\text{"timeStamp"}, \text{long}],[\text{"speed"}, \text{double}]}\}) \\
\text{type}(C4) := (\{1/256\}, \text{"magnetometer"}, \\
\{\{\text{"magneticField"}, \text{int}[]}\})
\]

STS derives the following type relations, among others:

\[
\text{type}(T3) = \text{type}(C1) \\
\text{type}(T4) < \text{type}(E4) \\
\text{type}(C4) < \text{type}(E2)
\]

Note that using a syntax-based approach, only (3) can be detected. The semantics-based approach gives better information reusability. For example, when Task T is already running and Task E is injected, neither Magnetometer nor MagVehicleDetection services are instantiated. The input E4 is subscribed to the output T4. If Task C is already running when Task E is injected, a 16-DownSampler service is automatically inserted between C4 and E2. If the magnetometer in Task C were set to a sampling frequency that is not a multiple of 1/256, a LinearInterpolator service would be inserted to perform a lossy conversion. When Task C, Task E, and Task T are injected in that order, the runtime image looks like the one shown in Figure 9.

On the microserver, MSTML parsing for these tasks takes about 30 milliseconds, while performing type checking and service instantiation takes hundreds of milliseconds. Due to the limited complexity of our tasks, the execution time of the tasks are negligible. We plan to conduct studies with more complex tasks to examine the improvement on systems’ response time, i.e. the time period from receiving the corresponding sensor data to notifying the users.

Figure 10 shows the execution results for the tasks: a photo of a speeding vehicle, a histogram of vehicle arrival counts for every 6 minutes, and a magnetometer signature of a vehicle.

5. RELATED WORK

Componentizing computation is a trend in networked systems. It has the benefits of software reuse, information hiding, and some degree of fault tolerance [23]. In Internet and enterprise computing, web services [5] are pre-built software components that can be assembled across organizations and over the network to form new applications. Component-based and service-oriented approaches
to organizing embedded software is also emerging [24, 13, 9, 17]. Publish/subscribe models like those in LINDDA [8], CORBA event service [22], and JavaSpaces [6], are popular approaches to mediate uncoordinated tasks. Although caching and replication are very common in these architectures, little work has been done on removing redundant publishers.

Resource constraints have pushed sensor network development environments to look into component sharing. SNACK [10] analyzes nesC component compositions and try to “weave” applications together to share the same communication layers. It is a compile-time approach and only performs syntactic analysis. The IrisNet project [9] studies service composition in resource rich sensor networks. It shares many commonalities with our vision, where a network of sensor enabled embedded devices provides services to end users, and the framework tries to remove redundant sensing and computation at run time. IrisNet uses a caching-based approach for data sharing [18]. In fact, it has a trace-based naming scheme such that the name of the data encodes the sequence of functions that has been applied to get the data. It is essentially an effective way to achieve syntax-based redundancy removal.

Semantics-based type checking and conversion has been seen in unit type systems, where the type system automatically converts measurement units, for example from inches to centimeters, given its understanding of their semantics (i.e. units) [19]. Treating time and sampling rates as part of system semantics has been seen in engineering design frameworks. Clock calculus in synchronous languages such as Signal [7] and trigger analysis in time-triggered languages such as Giotto [11] are both capable of reasoning about sampling rates. However, these analyses are performed statically at compile time. We formulate timing properties as part of the data semantics, which allow dynamic information reuse at runtime.

6. CONCLUSION AND FUTURE WORK

Microservers need to respond to uncoordinated user tasks in a resource efficient way. In this paper, we have presented a service-oriented architecture in SHARE, and have shown the effectiveness of using semantics information to help reduce redundant computation. We have defined a signal type system that makes data semantics precise in terms of both data values and tag types. Using the type system, we can check signal compatibility and perform runtime adaptation using down sampling and interpolation.

A type system is a systematic way of encoding constraints together with efficient algorithms to solve them. It is a powerful concept that puts semantics-based optimization into a formal framework. Next, we discuss some of the limitations of SHARE and our plans for future work.

Task injection order dependencies. As seen in Section 4, the optimization results depend on the order in which the tasks are injected to the microserver. This is because we only prune the new tasks and keep the existing tasks unchanged. The advantage is that it preserves the continuity of existing tasks. But the disadvantage is that the final computation graphs may be sub-optimal. For example, in our parking garage system, using five breakbeam sensors to detect a car consumes more communication energy than using a single magnetometer. It is a good idea to prune Task E if Task T is already running. However, when Task T finishes, it is no longer resource optimal to continue using the breakbeam sensors. We plan to further extend our data annotation to include the resources needed to generate each signal in a SCG. Then SHARE will have the information needed to dynamically optimize resources based on currently running tasks.

Runtime type resolution. Currently, in SHARE all port types are fixed at the time at which tasks are injected. This constrains our

Figure 10: Examples of execution results for the three tasks in section 4.
capability to further reduce redundancy. For example, two tasks may both need samples from sensor A, one with 5Hz sampling frequency and the other with 2Hz sampling frequency. If the first task is started before the second one, the sampling rate will be fixed at 5Hz, and the second task will receive interpolated input. Ideally, when the second task is injected, we should change A’s sampling frequency to 10Hz and automatically down sample the outputs for each task, such that no lossy conversion is necessary. This information is readily captured in our STS. However, to effectively use it, we need runtime type resolution capabilities. A service would only specify constraints between its input tag types and output tag types, (e.g. equality), rather than fixing it to a specific set. The runtime system then solves the set of constraints, so that new constraints can propagate through the SCG.

Data fidelity. We described in Section 3.3 the need for enhanced naming schemes to embrace richer semantics information. This is particularly important when dealing with real world signals and information processing. Vehicle detections are not crisp values. It is particularly important when dealing with real world signals and information processing. Vehicular detections are not crisp values.

We are interested in extending our type system to capture data fidelity concerns. For example, the breakbeam array may have a higher false alarm rate than the magnetometer in terms of detecting cars (e.g. it may treat two people walking side-by-side as a vehicle.) So the fidelity of the vehicle detection output using breakbeams is lower than that of using the magnetometer. If the required detection fidelity in Task E is higher than what the breakbeam can provide, then Task E cannot be pruned.

Work in these future directions will make the semantics-based task optimization more powerful and practical.

7. ACKNOWLEDGMENTS

The authors would like to thank Prabal Dutta and Kamin Whitehouse for their contributions to the parking garage testbed deployment and service implementations.

8. REFERENCES

