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ABSTRACT
This paper presents a systematic methodology for developing struc-
tural nonlinear macromodels for analog circuits. The methodology
includes two steps: first, a nonlinear system is represented as a sys-
tem with nonlinear inputs and linearly coupled blocks. Then, the
linear couplings are removed. The methodology also uses a novel
description of circuit nonlinearities as a successive composition of
three operators. The generated nonlinear models are scalable, tun-
able according to the required accuracy, and offer insight into the
circuit operation.

Categories and Subject Descriptors
I.6.5 [Model Development]: Modeling methodologies

General Terms
Algorithms, Design

Keywords
Analog circuits, Structural macromodel, Nonlinear macromodel

1. INTRODUCTION
Circuit linearity is one of the most important design specifica-

tions for analog and mixed-signal circuits, as it limits the dynamic
range of a system [7, 8]. The overall circuit linearity is usually eval-
uated by detailed circuit simulation. However, simulation has two
main drawbacks: (1) insight into circuit operation and performance
tradeoffs is difficult to acquire, and (2) time-domain simulation is
time consuming and has often poor convergency. These limitations
can be tackled by developing compact macromodels for capturing
the nonlinear behavior of a circuit. Nevertheless, macromodeling
is challenging because of the complexity of representing and un-
derstanding the nonlinear behavior of strongly coupled devices in
an analog circuit.

Modeling of the nonlinear behavior of analog circuits is largely
an unsolved problem. Existing nonlinear modeling approaches are
grouped into two main categories: (1) analytical methods, e.g.,
Volterra series based [7], perturbation analysis [9], and root local-
ization [5], and (2) simulation-based methods, such as per-nonline-
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arity method [3] and piecewise approximation [1, 4]. In addition,
model order reduction techniques are employed to reduce the com-
plexity of the modeling space [2, 10]. Analytical methods have
the advantage of computing symbolic expressions for the nonlinear
circuit performance, and thus offer some limited description of the
distortion generating mechanism. However, analytical techniques
mostly produce blackbox models that are just mathematical equiva-
lents of a circuit, without offering insight into the physical meaning
of the circuit operation and performance tradeoffs. New methods
are needed for structural nonlinear macromodeling.

This paper presents a systematic methodology to create struc-
tural nonlinear macromodels customized for a specific analog cir-
cuit. The idea is to approximate a nonlinear system as a system with
nonlinear inputs and linear dependencies of its composing blocks.
Then, the linear dependencies are removed through uncoupling to
get the structural macromodel of a circuit. The proposed nonlinear
macromodeling technique incorporates three novel contributions:
(1) a new description format for circuit nonlinearities. The for-
mat is highly regular, and is based on successive composition of
three operators (called F , G, and H). (2) A nonlinear decoupling
algorithm that uses the operator based description to approximate
higher order nonlinear dependencies by lower order nonlinear de-
pendencies and nonlinear transformation of the inputs, and (3) an
iterative algorithm that automatically generates the equivalent non-
linear current sources according to the desired modeling accuracy.

Produced macromodels capture the circuit distortion by symbol-
ically characterized nonlinear current sources. Models are struc-
tural, thus each of their composing elements has a physical inter-
pretation in terms of the original circuit. In addition, macromod-
els are scalable, and their accuracy is controllable. Experiments
showed that models have good prediction accuracy compared to
SPICE simulation. The method requires a low modeling effort, as
there is little designer input or data sampling required. In addition,
there are several other advantages compared to existing nonlinear
modeling approaches. Unlike Volterra-based methods [7], which
require separate models to capture different orders of distortion,
our technique produces an integrated nonlinear model that captures
all circuit nonlinearities of different orders. Also, as opposed to the
per-nonlinearity method [3], the suggested technique provides fine
distortion diagnosis about the contribution from a particular non-
linearity, and does not require iterative simulation of the circuit.

The paper has the following structure. Section 2 summarizes
related work. Section 3 presents the transformation algorithm to
describe MOSFET nonlinearities. Section 4 introduces the nonlin-
ear decoupling algorithm. Section 5 discusses experimental results
for two analog circuits. Finally, conclusions are offered.
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Figure 1: Nonlinear model of a MOSFET transistor

2. RELATED WORK
Volterra-based methods [6, 7] are widely used for distortion

analysis. The produced behavioral models predict the dominant
nonlinear effects using a composition of linear transfer functions
and multiplications. However, this method is only suitable for fre-
quency domain analysis of weakly nonlinear circuit, and the mod-
eling complexity grows exponentially with the number of nonlin-
ear components in the circuit. Perturbation-based nonlinear distor-
tion analysis [9] is an alternative to Volterra series methods. Un-
like Volterra series, this method can be applied to nonlinearities of
any type, given that the Fourier coefficients of periodic functions
are calculated in a closed form (i.e., polynomial, exponential, and
so on). Li and Pileggi [2, 3] suggest linear-centric circuit mod-
els to generate the individual distortion contributions of each non-
linear component in a circuit. The method is simpler and more
efficient than Volterra series based approaches. However, linear-
centric models cannot distinguish the contributions from the differ-
ent nonlinear coefficients of a nonlinear element, which Volterra se-
ries can do. PWP approach [1] approximates a nonlinear system as
piecewise polynomials (PWP) over a number of regions, followed
by reducing the model of each region via polynomial model re-
duction. Model order reduction (MOR) techniques have been used
to reduce the modeling space [2, 11]. The major problem is that
the techniques are either applicable to only weakly nonlinear sys-
tems, or they work only for some input signals close to some special
training input, which was used during model extraction. Moreover,
produced models are just mathematical equivalents of the original
circuit, are basically uninterpretable, and have poor reusability.

To conclude, present circuit modeling methods are mostly for
blackbox modeling in the frequency-domain. There are few sys-
tematic techniques for creating structural nonlinear macromodels
that offer insight into the circuit operation without requiring itera-
tive excitation of the circuit.

3. DESCRIPTION OF NONLINEARITIES
This section summarizes the nonlinear model of a MOS tran-

sistor based on power series. Then, it proposes a transformation
algorithm for deriving the nonlinearity of a MOS transistor by it-
eratively composing three linear operators (called operators F , G,
and H) on the terminal voltages.

3.1 Preliminaries on MOSFET modeling
using Volterra series

Figure 1 presents the nonlinear model of a MOS transistor with
the bulk as a reference. The model has three nonlinear elements,
the drain current iD, and capacitors Csb and Cdb. This nonlinear
equivalent circuit for a MOS transistor is valid for low and medium-

high frequencies, typically up to a tenth of the cutoff frequency [8].
The nonlinear elements can be described by power series. Ca-

pacitors Csb and Cdb are modeled as voltage controlled current
sources depending on the voltages vsb and vdb. The power series
for the capacitors can be expressed as [8]:

iCsb = d
dt (Csbvsb +K2Csb

v2
sb +K3Csb

v3
sb + · · ·)

iCdb = d
dt (Cdbvdb +K2Cdb

v2
db +K3Cdb

v3
db + · · ·) (1)

Where, the nonlinearity coefficients K2Csb
,K3Csb

, · · · , K2Cdb
,K3Cdb

, · · ·
are the derivatives of the currents iCsb and iCdb with respect to the
voltages vsb and vdb.

The drain current id depends on all the three terminal voltages,
vgb, vdb, and vsb. This three dimensional dependencies make the
power series of the drain current much more complex than those
for the nonlinear capacitors.

The drain current can be described as the power series [8]:

id = ild +
∞

∑
k=2

ink
d (2)

Where, ild is the linear component, and ink
d is the kth-order non-

linear component. In general, the nonlinear components are

ink
d =

k

∑
i=0

k−i

∑
j=0

Kkig, jd,(k−i− j)s vi
gbv j

dbvk−i− j
sb (3)

The nonlinearity coefficients K are the partial derivatives of the
drain current with respect to the terminal voltages, and can be de-
rived from the device model, as shown in equation (4) [8].

Kkig, jd,(k−i− j)s =
∂kid

∂vi
gb∂v j

db∂vk−i− j
sb

· 1
i! j!(k− i− j)!

(4)

As an example, we presented the formula for the linear, the sec-
ond order, and third order nonlinear terms:

ild = ggmvgb +gmd vdb −gmsvsb (5)

in2
d = K2g v2

gb +K2d v2
db −K2s v2

sb +K2g,d vgbvdb +K2g,s vgbvsb +K2d,s vdbvsb (6)

in3
d = K3g v3

gb +K3d v3
db −K3s v3

sb +K32g,d v2
gbvdb +K3g,2d vgbv2

db +K32g,s v2
gbvsb

+K3g,2s vgbv2
sb +K32d,s v2

dbvsb +K3d,2s vdbv2
sb +K3g,d,s vgbvdbvsb (7)

3.2 MOSFET modeling using operators F, G,
and H

We observed that the nonlinear components ink
d of the drain cur-

rent id can be expressed in a new format by factoring out the com-
mon terminal voltages. The factored form is highly regular as it
describes MOSFET nonlinearities as compositions of three linear
operators, called operators F , G, and H. The next section ex-
plains that the proposed factored form (which replaces equations
(1)-(3) by equations (13)-(19)) is essential in systematic develop-
ing of structural nonlinear macromodels.

Following are the factored representations for the second and
third order nonlinear components of drain current id :
in2
d =vgb(K2g vgb +K2g,d vdb +K2g,s vsb)+ vdb(K2d vdb +K2d,s vsb)+ vsb(−K2s vsb) (8)

in3
d =vgb(vgb(K3g vgb +K32g,d vdb +K32g,s vsb)+ vdb(K3g,2d vdb +K3g,d,s vsb)+ vsb(K3g,2s vsb))

+vdb(vdb(K3d vdb +K32d,s vsb)+ vsb(K3d,2s vsb))+ vsb(vsb(−K3s vsb)) (9)

Then, F = K2g vgb + K2g,d vdb + K2g,s vsb; G = K2d vdb + K2d,s vsb;
H = −K2s vsb for the second order nonlinearity, and F = K3g vgb +
K32g,d vdb + K32g,s vsb; G = K3g,2d vdb + K3g,d,s vsb, K3d vdb + K32d,s vsb;
H = K3g,d,s vsb, K3d,2s vsb, −K3s vsb for the third order nonlinearity.

By generalizing for nonlinear components of any order, we in-
troduced the following three linear operators F , G, and H:


F(t11, t12, t13) = t11 · vgb + t12 · vdb + t13 · vsb

G(t22, t23) = t22 · vdb + t23 · vsb

H(t33) = t33 · vsb

(10)

Where, ti j is the coefficient for the terminal voltages.
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Figure 2: Nonlinear model for drain current of a MOSFET
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Figure 3: Single-stage OpAmp (a) topology (b) linear model
We showed next that any nonlinear component of the drain cur-

rent id can be expressed as a composition of the three operators.
The kth order nonlinear component of the drain current id can

be written as:
ink
d = F( f(k,1)|F ,g(k,1)|F ,h(k,1)|F ) (11)

Where, f(k,1)|F , g(k,1)|F , and h(k,1)|F denote the coefficients of

operator F at level 1 for the kth order nonlinearity. These coeffi-
cients can be further extended as


f(k,1)|F = F( f(k,2)|FF ,g(k,2)|FF ,h(k,2)|FF )
g(k,1)|F = G(g(k,2)|FG,h(k,2)|FG)
h(k,1)|F = H(h(k,2)|FH)

(12)

Where, f(k,2)|FF , g(k,2)|FF , and h(k,2)|FF are the coefficients of
operator F at level 2 for the coefficient f(k,1)|F of level 1. g(k,2)|FG
and h(k,2)|FG denote the coefficients of operator G at level 2 for the
coefficient g(k,1)|F of level 1. h(k,2)|FH denotes the coefficients of
operator H at level 2 for the coefficient h(k,1)|F of level 1.

Similarly, the coefficients at level 2 can be further extended and
expressed using the functions from level 3. After k− 1 steps, the
coefficients at level k− 1 are expressed as functions from level k,
whose coefficients are the nonlinearity coefficients Kk derived from
the MOSFET device model (equation (4)).

Hence, the general form for the kth nonlinear component of the
drain current can be expressed as:

ink
d =F(F · · ·(F︸ ︷︷ ︸

k−1

(F(Kkg ,Kk(k−1)gd
,Kk(k−1)gs

)+G(Kk(k−2)g2d
,Kk(k−2)gds

)

+H(Kk(k−2)g2s
))+ · · ·)+ · · ·)+G(G · · ·(G︸ ︷︷ ︸

k−1

(G(Kkd ,Kk(k−1)ds
)

+H(Kk(k−2)d2s
))+ · · ·)+ · · ·)+H(H · · ·(H︸ ︷︷ ︸

k−1

(H(−Kks ))

(13)

For example, the second order nonlinear component is
in2
d = F( f(2,1)|F ,g(2,1)|F ,h(2,1)|F ) (14)

Where,


f(2,1)|F = F( f(2,2)|FF ,g(2,2)|FF ,h(2,2)|FF ) = F(K2g ,K2g,d ,K2g,s )
g(2,1)|F = G(g(2,2)|FG,h(2,2)|FG) = G(K2d ,K2d,s )
h(2,1)|F = H(h(2,2)|FH) = H(−K2s )

(15)

Similarly, the third order nonlinear component is

in3
d = F( f(3,1)|F ,g(3,1)|F ,h(3,1)|F ) (16)

Where, 


f(3,1)|F = F( f(3,2)|FF ,g(3,2)|FF ,h(3,2)|FF )
g(3,1)|F = G(g(3,2)|FG,h(3,2)|FG)
h(3,1)|F = H(h(3,2)|FH)

(17)

and,


f(3,2)|FF = F( f(3,3)|FFF ,g(3,3)|FFF ,h(3,3)|FFF ) = F(K3g ,K32g,d ,K32g,s )
g(3,2)|FF = G(g(3,3)|FFG,h(3,3)|FFG) = G(K3g,2d ,K3g,d,s )
h(3,2)|FF = H(h(3,3)|FFH) = H(K3g,2s )
g(3,2)|FG = G(g(3,3)|FGG,h(3,3)|FGG) = G(K3d ,K32d,s )
h(3,2)|FG = H(h(3,3)|FGH) = H(K3d,2s )
h(3,2)|FH = H(h(3,3)|FHH) = H(−K3s )

(18)
Since the nonlinear capacitors Cdb and Csb only depend on the

voltages vdb and vsb, respectively, they can be expressed using only
operator H as

iCsb = d
dt (Csbvsb +H(H(K2Csb

))+H(H(H(K3Csb
)))+ · · ·)

iCdb = d
dt (Cdbvdb +H(H(K2Cdb

))+H(H(H(K3Cdb
)))+ · · ·) (19)

Figure 2 illustrates the representation of the drain current as
composition of operators F , G, and H. In general, the kth order
nonlinear component is described by k levels of composition. Op-
erators F , G, and H are linear compositions of the terminal voltages
(vgb, vdb, vsb) and the outputs from the level below.

4. STRUCTURAL NONLINEAR MODELING
Structural analog circuit macromodeling is difficult because of

the strong coupling between the nonlinear devices of the circuit.
Macromodeling requires in essence removing the feedback con-
nections in a circuit. In a recent paper [12], a systematic method-
ology for producing linear structural macromodels is proposed by
decoupling of the feedback connections in a circuit. The method-
ology eliminates the feedback voltage dependencies by equivalent
current sources, as shown in Figure 3 (eliminated dependencies are
represented in dashed line). Model uncoupling is done in two steps:
(1) it defines the decoupling sequence of the blocks by signal path
tracing, and (2) the symbolic expression for the equivalent current
sources is calculated in the order of the decoupling sequence. The
generated macromodels not only give insight into circuit operation,
but also significantly reduce the simulation time. For nonlinear cir-
cuits, symbolically eliminating the feedback dependencies requires
solving a set of nonlinear equations. It is well known that symbolic
nonlinear equations of a general form cannot be solved. Therefore,
the decoupling of nonlinear circuits cannot be performed exactly
(like for linear circuits), and some sort of controlled approximation
must be performed.

For nonlinear circuit decoupling, we propose a technique that
approximates a nonlinear system of order K by a nonlinear system
of order K − 1 and a correspondingly transformed input. By re-
cursively applying this idea, a nonlinear system is first transformed
into a system with linear dependencies of its building blocks, and
nonlinear inputs. Then, the resulting linear feedback dependencies
are removed by solving linear equations. The decoupling algorithm
is based on the representation of MOSFET nonlinearities as com-
positions of three linear operators F , G, and H, as well as the de-
pendencies between the voltages for each node in the circuit.

Next, we introduced the nonlinear decoupling algorithm based
on the previous two properties.

For an analog circuit composed of N nodes and M inputs (M = 1
or 2), each transistor is replaced by its nonlinear model (Figure 1).

1025



% Part I: Nonlinear transformation

k = K; % for Kth order nonlinearity

while k > 1

for i = 1 : I % I is the total number of nonlinear elements

ink
di ⇒ F,G,H(in(k−1)

di );
end for

Calculate symbolic T
G

(k)
n

, T
C

(k)
n

, T
G

(k)
in,n

;

k = k−1;

end while

Calculate symbolic ∑k T
G

(k)
n

, ∑k T
C

(k)
n

, ∑k T
G

(k)
in,n

;

Calculate symbolic v;

% Part II: Model generation

i = 1;

while e > ε % ε is the required accuracy

i++;

Calculate ∑k T[i]

G
(k)
n

, ∑k T[i]

C
(k)
n

, ∑k T[i]

G
(k)
in,n

;

Calculate v[i];

Calculate e = v[i] −v[i−1];

end while

Figure 4: Nonlinear decoupling algorithm
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Figure 5: Extensible nonlinear model

Using Kirchhoff’s current laws (KCL), the following equation set
is set up

GLv+∑K
k=2 G(k)

n v(k) + d
dt

(
CLv+∑K

k=2 C(k)
n vk

)
= Gin,Lvin + d

dt (Cin,nvin)+∑K
k=2 G(k)

in,nv(k−1)vin

(20)

Where, v = [v1(t),v2(t), · · · ,vN(t)]′ is a voltage vector, vin =
[vin,1, · · · ,vin,M ]′ are inputs, and v(k) is the nonlinear voltage vector
with elements of the form ∏k

j=1 vi j , and vi j ∈ (v1, · · · ,vN). Matrices
GL and CL are the coefficient matrices of the voltage vector due
to the linear response of the system by the resistive elements and
capacitive elements, respectively.

Matrices G(k)
n and C(k)

n denote the impact of the kth order non-
linearity of the resistive elements and capacitive elements on the
system, respectively. Matrices Gin,L and Cin,L are the resistive and

capacitive linear coefficient matrices of the input vector vin. G(k)
in,n

are the kth order nonlinear coefficients for the inputs.
An example of the above matrices was given in equations (25)-

(27) in Section 5.
LEMMA 1. The Kth order nonlinear system in equation (20)

can be transformed into the following expression(
GL +T

G(K)
n

)
v+∑K−1

k=2 G(k)
n v(k) + d

dt

((
CL +T

C(K)
n

)
v+∑K−1

k=2 C(k)
n vk

)
=

(
Gin,L +T

G(K)
in,n

)
vin + d

dt

(
Cin,nvin

)
+∑K−1

k=2 G(k)
in,nv(k−1)vin

(21)
Where, T

G(K)
n

, T
G(K)

in,n
, and T

C(K)
n

, called transformation matrices,

are linear functions of the node voltages expressed using the three
linear composition operators F, G, and H.

As an illustrating example for the lemma, for the single stage
OpAmp in Figure 3(a), the above transformation matrix is expressed
symbolically as equation (29) (Section 5).

After a sequence of (K −1) steps, equation (20) becomes

id3
nkΣ

k
id1
nkΣ

k
iCdb3
nkΣ

k
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nkΣ
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Figure 6: Nonlinear macromodel for single stage OpAmp(
GL +∑K−2

k=0 T
G(K−k)

n

)
v+ d

dt

((
CL +∑K−2

k=0 T
C(K−k)

n

)
v
)

=
(

Gin,L +∑K−2
k=0 T

G(K−k)
in,n

)
vin + d

dt

(
Cin,nvin

) (22)

Where, matrices T
G(K−k)

n
, T

C(K−k)
n

, and T
G(K−k)

in,n
are the nonlinear

symbolic transformation matrices. If the voltage variables in the
above matrices are replaced by the symbolic functions of the inputs
derived for the linear case (as in [12]) then, the Kth order nonlinear
system is reduced to a nonlinear system with linear dependencies
of the macromodel parameters and nonlinear dependencies of the
inputs. This system can be solved to remove the linear feedback
dependencies. We denote this solution as v[1], meaning that it is the
solution for the first iteration.

If the above solution does not meet the required modeling accu-
racy, v[1] is substituted into the transformation matrices again. In
general, at iteration i + 1, by substituting v[i], transformation ma-

trices T[i]
G(K−k)

n
, T[i]

C(K−k)
n

, and T[i]
G(K−k)

in,n

are calculated, and the solution

v[i+1] for iteration i + 1 is obtained from equation (22). Hence, by
a sequence of substitutions and solvings of linear equations, the
solution (and the corresponding macromodel) converges to a fixed
point, if the following condition is satisfied:

det
([

e1 e2 · · · en · · · eN

])
�= 0 (23)

Where, en is the N dimensional vector in equation (24), denoting
the difference between the solutions for iterations i−1 and i.

∑K−2
k=0 ∂

(
T

G(K−k)
n

+ d
dt

(
T

C(K−k)
n

))
∂vn

v[i] −
∑K−2

k=0 ∂
(

T
G(K−k)

in,n

)
∂vn

vin (24)

If the determinant of the error matrix is not equal to zero then 0
is the only solution of e = 0. Therefore, the solution converges.

The nonlinear decoupling algorithm is summarized in Figure
4. First of all, the symbolic expressions for matrices T

G(k)
n

, T
C(k)

n
,

T
G(k)

in,n
are derived by applying the transformation (21) for trans-

forming the system from an order k to order k − 1 through using
the three operators F , G, and H. Then, the symbolic expression for
voltage v is derived from equation (22), as shown in Part I of the
algorithm. Then, the symbolic expression v[i] is iteratively substi-
tuted into matrices T

G(k)
n

, T
C(k)

n
, and T

G(k)
in,n

to calculate v[i+1], until

the required accuracy is met, as shown in Part II of the algorithm.
Figure 5 shows an example of the equivalent model capturing

up to the Kth order nonlinearities. Each nonlinearity is replaced by
several equivalent current sources, which are nonlinear functions
of the input voltages. The number of the extension stages of the
current sources is determined by the required modeling accuracy.
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Figure 7: HD2 and HD3 for SPICE and macromodel

5. CASE STUDIES FOR NONLINEAR MODEL

5.1 Single-stage OpAmp
Figure 3(a) shows the topology of a single-stage OpAmp. We

used the modeling of the second order nonlinearity as an example to
explain how the proposed nonlinear decoupling algorithm is used.

If only the second order nonlinearity is considered, the circuit is
described by the following equation(

GL +T
G

(2)
n

)
v+

d
dt

((
CL +T

C
(2)
n

)
v
)

=

(
Gin,L +T

G
(2)
in,n

)
vin +

d
dt

(Cin,nvin)

(25)
Where,

GL =


−G1 gmd3 gmd4

gms3 −G2 0
gms4 −gmg2 −G3


 , CL =


−C1 0 0

0 −C2 Cgd3
0 Cgd2 −C3


 (26)

Gin,L =


−gmg3 −gmg4

gmg3 0
0 gmg4


 , Cin,L =


−Cgs3 −Cgs4

−Cgd3 0
0 −Cgd4


 (27)

In which,


G1 = gms3 +gms4 +gmd5
G2 = gmd3 +gmg1 +gmd1
G3 = gmd4 +gmd2
C1 = Cgs3 +Csb3 +Cgs4 +Csb4 +Cdb5 +Cgd5
C2 = Cgd3 +Cdb3 +Cgs1 +Cgb1 +Cdb1 +Cgs2 +Cgd2 +Cdb2
C3 = Cgd4 +Cdb4 +Cgd2 +Cdb2

(28)

If we use symbols f , g, and h to denote f(2,1)|F , g(2,1)|F , and
h(2,1)|F in equation (14), respectively, then

T
G(2)

n
=

(
h3 +h4 −h5 g3 g4

−h3 − f1 −g1 −g3 0
−h1 0 −g4 − f2 −g2

)

T
C(2)

n
=


−(K2Csb3

+K2Cdb5
)v1

−(K2Cdb3
+K2Cdb1

)v2

−(K2Cdb4
+K2Cdb2

)v3


 · I3×3 , T

G(2)
in,n

= −


 f3 f4

f3 0
0 f4


 (29)

Please note that symbols f , g, and h are linear function of the
node voltages. For example,

f3 = f3(2,1)|F = F(K2g,3 ,K2gd,3 ,K2gs,3 ) = K2g,3 vin1 +K2gd,3 v2 +K2gs,3 v1

(30)
Then, voltages (v1,v2,v3) in the matrices T

G(2)
n

, T
C(2)

n
, and T

G(2)
in,n

are replaced by the voltages derived from the linear circuit (v[1]
1 ,

v[1]
2 , v[1]

3 ). The above matrices become T[1]
G(2)

n
, T[1]

C(2)
n

, and T[1]
G(2)

in,n

.

This step removes the nonlinear dependencies between the node
voltages. The nonlinear terms only come from the functions of the
inputs, which are known. In the frequency domain, equation (25)
becomes(

GL +T[1]

G
(2)
n

+ s

(
CL +T[1]

C
(2)
n

))
V =

(
Gin,L +T[1]

G
(2)
in,n

+ sCin,n

)
Vin (31)

M5

Vin2M4

n3

M8

M9

RL CL

M6

CfRf
n2

M3Vin1

Ibias

M1 M2

M7M10

n5

n4

n1

Figure 8: Two-stage OpAmp with output stage

i n,M1d

i n,M1d

i n,M3s i n,M4s

i n,M3d
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i n,RfCfi n,M6d i n,M7d

i n,M8s i n,M9d

i n,RfCfi n,M2d

v3
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v4 C5 G5

v5

(sCgd2−gmg2)
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vin2 gms4v1

(s(Cf+Cgd8)
(1/Rf))v4eq C3 G3
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v3eq
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gms3v1 (sCgd2)v3eq C2 G2(sCgd3−gmg3)vin1

v2

v4

(s(Cgs6+Cf)

+1/Rf−gmg6)v3
(sCgs8)
v5eq C4 G4

Figure 9: Macromodel for two-stage OpAmp

Where, s = 2π f is the frequency variable. From equation (31),

a new set of voltages (V [2]
1 ,V [2]

2 ,V [2]
3 ) is obtained. By iteratively

substituting (V [i]
1 ,V [i]

2 ,V [i]
3 ) into operators f , g, and h, a new set of

equations is set up and solved. The more iterations are considered
in the process, the better accuracy for the macromodel results.

The resulting nonlinear macromodel for the single-stage differ-
ential OpAmp is shown in Figure 6. For example, the equivalent
nonlinear current source for the drain current of transistor M3 is

iL2
3 = K2g3 v2

in1 +(K2gd3 +K2d3 )T Fv2 v2 +(K2gs3 +K2d3 −K2s3 )T Fv1 v1 (32)

Where,
T Fv1 =(C3C2 +C3G2 +G3C2 +G3G2 + s2Cgd2Cgd3 +gmg2sCgd3)((−gmg3 − sCgs3)vin1

+(−gmg4 − sCgs4)vin2)+(gmd3G3 +gmd4gmg2 +gmd4sCgd2 +gmd3C3)
(gmg3 − sCgd3)vin1 +(gmd4G2 +gmd4C2 +gmd3sCgd3)(gmg4 − sCgd4)vin2

T Fv2 =(gms3C3 +gms3G3 +Cgd3sgms4)((−gmg3 − sCgs3)vin1 +(−gmg4 − sCgs4)vin2)
+(G1G3 +G1C3 +C3sC1 +G3sC1 +gmd4gms)vin1 +(sCgd3G1 + s2Cgd3C1
+gms3gmd4)(gmg4 − sCgd4)vin2

(33)

Figure 7 presents simulation results for the second order and
third order harmonic distortion for the produced macromodel and
SPICE simulation of the original circuit. We can observe that the
nonlinear macromodel predicts well the changing of the harmonic
distortion with frequency. For example, HD2 stays around −60dB
for frequencies up to 1MHz, it increases by around 8dB at 10MHz,
and then drops again until −80MHz. HD2 grows quickly for higher
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Figure 10: HD2 due to each transistor of the two-stage OpAmp
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frequencies. For third order harmonic distortion, both curves in-
crease dramatically beyond 60MHz. The modeling error is small,
being below 6dB for the frequency range from 1kHz to 500MHz.

The convergency condition of the nonlinear decoupling algo-
rithm was checked by substituting matrix (31) into the error ma-
trix (24). For the considered set of transistor dimensions, the deter-
minant of the error matrix converged to a none-zero number, which
means that the accuracy of the macromodel converges to a fixed
point by extending the equivalent nonlinear current sources.

Figure 12 presents the dependency of the accuracy of the nonlin-
ear macromodel with respect to the complexity of the model. For
frequencies up to 10MHz, the error of the model is reduced from
10% to 4.5% by using a second iteration to insert more nonlinear
current sources. Using more iterations, the modeling error is re-
duced to 3%. The modeling error increases for higher frequency,
as shown in solid curve.

5.2 Two-stage OpAmp
Figure 8 shows the topology for a two-stage OpAmp. Figure 9 is

the generated nonlinear macromodel. The simulations showed that
the produced macromodel is much faster than the SPICE simulation
of the original circuit. For example, our model needs less than 1
second in order to calculate third order harmonic distortion from
1kHz to 500MHz, while SPICE simulation of the original circuit
takes about 2 minutes.

Figure 10 shows the contribution of the second order harmonic
distortion of each transistor. The solid curve is the total HD2 con-
sidering all the nonlinearities of all transistors. It is about −63dB
for low frequencies, and increases up to −28dB at 10MHz. As
opposed to blackbox models, the produced macromodel gives in-
sight into the circuit operation. For example, the distortion caused
by transistor M8, shown as a dashed line, is much larger than that
caused by the other transistors (which means that it dominates the
total distortion). The distortion caused by one of the current sources
M5 is extremely small (below −200dB). This means that the non-
linearities of the current sources have very little impact on the lin-
earity of the circuit.

Figure 11 presents the comparison for the third order harmonic
distortion obtained through our macromodel (dashed curve), Volterra
series analysis (dashed curve with plus marker), and SPICE simu-
lation of the original circuit (solid curve). It shows that our macro-
modeling method has similar accuracy as Volterra series analy-
sis. It also has good agreement with SPICE simulation for low
to medium-high frequencies. However, the prediction of the non-
linear behavior at high frequencies is worse, due to the neglecting
of some nonlinear sources for the MOSFET transistor. More non-
linear elements ought to be considered in Figure 1 to achieve better
accuracy at high frequencies.

Figure 12 presents the accuracy of the model for different num-
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Figure 12: Macromodel accuracy vs. complexity

ber of iterations in the nonlinear decoupling algorithm. For fre-
quencies up to 10MHz, an error of 3% can be achieved by us-
ing three iterations. The improvement of accuracy is not signifi-
cant (about 1%) by using more stages for the equivalent nonlinear
sources. For higher frequencies, as shown in the solid curve with
plus marker, the modeling error becomes large, e.g., the macro-
model fails capturing the increase in HD2 between 20MHz and
100MHz, as shown in Figure 11. For that frequency range, HD3 is
around −34dB for our model and larger (−20dB) for SPICE simu-
lation of the original circuit. However, at that frequency, the circuit
stopped to operate properly, and therefore, the modeling error of
the macromodel is not as critical as for a well-behaved circuit.

6. CONCLUSION
This paper presents a systematic methodology to automatically

generate structural nonlinear macromodels customized for a spe-
cific analog circuit. The idea is to approximate a nonlinear system
as a system with nonlinear inputs and linear dependencies of its
composing blocks. The novel contributions include (1) regular de-
scription of circuit nonlinearities based on three operators F, G, H,
(2) a nonlinear decoupling algorithm to approximate nonlinear de-
pendencies by linear dependencies with nonlinear transformation
of the inputs, and (3) an iterative algorithm to create macromodels.
The produced models are symbolic, and are extendable to incorpo-
rate more stages according to the required accuracy. Experiments
are offered for two OpAmp circuits. Produced models offer insight
into the circuit, and good accuracy compared to SPICE.
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