
Low Power Network Processor Design Using Clock Gating
Yan Luo, Jia Yu, Jun Yang, Laxmi Bhuyan

University of California Riverside
Riverside, CA 92521

{yluo, jiayu, junyang, bhuyan}@cs.ucr.edu
ABSTRACT
Network processors (NPs) have emerged as successful plat-
forms to providing both high performance and flexibility in
building powerful routers. Typical NPs incorporate multi-
processing and multi-threading to achieve maximum parallel
processing capabilities. We observed that under low incom-
ing traffic rates, most processing elements (PEs) in NPs are
nearly idle and yet still consume dynamic power. This pa-
per develops a low power technique to reduce the activities of
PEs according to the varying traffic volume. We propose to
monitor the average number of idle threads in a time window,
and gate off the clock network of unused PEs when a subset
of PEs is enough to handle the network traffic. We show that
our technique brings significant reduction in power consump-
tion (up to 30%) of NPs with no packet loss and little impact
to the overall throughput.

Categories and Subject Descriptors: B.9.1: Low-power
design General Terms: Design Keywords: Network Pro-

cessors, Low Power.

1. INTRODUCTION
Network processors (NPs) have emerged as a new class of

programmable processors for packet processing. New genera-
tion of NPs offer high performance through parallel processing
architecture, which incorporates multiple processing elements
(PEs) configured as either parallel or pipelined units. Being
programmable, NPs support new applications with improved
time to market, product’s life time and lower cost.

A number of challenges for NP implementation are already
evident, and power dissipation is one of them. Typical routers
mount a few racks containing groups of line cards (e.g. 8,
16) each of which contains one or two NPs. Such routers
are extremely dense in power dissipation, which results in
high operating temperature. Moreover, the clock frequency
of many commercial NPs keeps increasing and more PEs are
added to an NP to deliver high performance and throughput.
This trend implies that the NP’s power consumption will keep
rising. For example, Intel IXP2850 contains 16 PEs operating
at 1.6GHz with 19∼ 25W power consumption [11], while it’s
predecessor IXP1200 contains 6 PEs operating at 232MHz
with 4.5W power consumption.

This paper develops a low power technique by exploiting
the variation of the network traffic load. Routers, especially
edge routers, experience different volumes of traffic during
different times of a day. From some of the NLANR [9] router
traces, we can observe that traffic volume varies, for example,
from 5 to 50 Mbps in a 24-hour period with low rates at the
nighttime. This implies that much less processing power is re-
quired at nighttime compared to the daytime. The low traffic
load leaves the NP underutilized, which brings challenges and
opportunities for low power NP design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

We propose a low power technique to save active power
of NPs without sacrificing the throughput. Our approach is
to use the clock gating technique on PEs when the packet
processing requirement is low, and reopen the clocks when
the need is high. The motivation of using clock gating is to
effectively “turn off” PEs but not actually power them down
completely considering the high cost of powering them up.
The cost mainly comes from the long latency of loading the
program code into the PE memory. The decision of turning
on/off PEs is made dynamically according to the utilization of
PEs. A good indication is the number of idle threads that are
present in the system. If some of them are idle, it means that
there are more processing power than the amount required
by the incoming packets. Therefore, we propose to use the
number of idle threads to determine how many active PEs are
necessary. To determine when to turn on a PE, we observe
the pressure arising from the packet incoming buffer. A full
buffer indicates low processing capability from NP, and packet
drops may happen. Our goal here is not to introduce extra
packet loss due to clock gating the PEs, but to guarantee
enough processing capability at low power consumption.

We investigate the potential problems after turning off the
PEs and give solutions to overcome them. We design tech-
niques to avoid possible extra packet loss due to turning off of
PEs. To accurately measure and test the effectiveness of our
technique, we implemented our scheme in an NP simulator
[6]. We added clock power modeling to the simulator, and
also studied the proper timing to apply clock gating in NP.
We measured the power savings and throughput using real
world router traces from NLANR [9]. Our experiments show
that up to 30% of power savings can be achieved when the
traffic is non-saturated.

The remainder of the paper is organized as follows. In
section 2, we introduce the network processor model that is
used in our design. Section 3 to 5 discusses in detail about
our clock gating algorithms, the problems encountered and
their solutions, and the modeling and the justification of us-
ing clock gating. We show the results of our clock gating
technique in section 6 and discuss related work in section 7.
Finally, section 8 concludes this paper.

2. NETWORK PROCESSOR MODEL
A network processor usually contains multiple processing

cores, dedicated hardware for common networking operations,
memory interfaces, high-speed I/O interfaces etc. Here we use
NePSim simulator [6] to model the NP architecture. NePSim
is based on Intel IXP1200 NP and includes a cycle-accurate
architecture simulator and a power estimator. IXP1200 con-
sists of a StrongARM processor, six multi-threaded PEs called
microengines (MEs), memory interfaces and high-speed buses.
The StrongARM processor is used for management functions
such as initializing MEs, running routing protocols, exception
handling. The MEs can be programmed to perform high-
speed packet inspection and data manipulation. The memory
modules outside IXP1200 are used to store control data infor-
mation and packets. The bus interface, IX bus unit, transfers
packets between MEs and network interfaces. The usage of
each component is highly dependent on the application and
workload.

3. CLOCK GATING POLICIES
In this section, we discuss the policies of turning off and on

PEs, and the parameters with their thresholds we use in the
policies.

43.3

712



3.1 Selecting the parameters
The idea of turning off PEs originates from the observa-

tion of the network traffic variation over time. Such variation
is usually specified in terms of packet arrival rate in unit of
megabits per second (Mbps). It is natural to use this infor-
mation as a guide to making decisions. However, it is very
difficult to set common thresholds on arrival rate because dif-
ferent applications support different line speeds.

When the NP is overloaded, incoming packets start to be
dropped at network interfaces, which indicates that current
NP processing power is not enough and more PEs are needed.
Thus, packet loss is a good indication of the saturation of an
NP. Although it can serve the purpose of waking up inac-
tive PEs, this parameter implies that a packet has been lost,
whereas one of the design goals of our scheme is to avoid extra
packet losses that are introduced due to the reduced number
of PEs for power savings.

Alternatively, a PE should be turned off(on) when the re-
quired workload for the entire NP is low(high). Such a status
can be indicated by (1) the idle time of a PE during which
the PE does no effective work; (2) the length of the thread
queue in which a thread waits for incoming packets; and (3)
the fullness of an internal packet buffer where packets come
in and wait to be processed. We will analyze each of these
parameters next.

The idle time of a PE is a measure of the PEs being put
into the sleep mode. A multi-threaded PE “sleeps” when all
of its threads go to “sleep”. A thread is put into sleep mode
when it needs to wait for certain events. Two major events
are memory access and new packet arrival, as they are both
time consuming. Thus, the idle time of a PE is a mixture
of different events, not a direct suggestion of low workload.
Therefore, we will not use this parameter in guiding the de-
cision of turning off the PEs.

The thread queue holds threads that are waiting for the
arrival of new packets. When a new packet arrives, the head
of the queue wakes up to service the packet. The lower the
packet arrival rate the longer the thread queue. In fact, the
number of threads waiting in the queue is the number of ex-
cessive threads for the current traffic load. In addition, the
length of the waiting queue can be easily monitored with little
hardware overhead and is not application-specific. Thus, we
will use it as the main parameter to determine when to clock
gate a PE.

The internal packet buffer is a place to hold temporarily the
incoming packets before a thread fetches them for processing.
In IXP1200, the RFIFO is a buffer of this kind [10]. When
the RFIFO starts to saturate, it implies that current PEs are
almost inadequate, and more processing power is required.
When partial PEs are operating, a full RFIFO implies that
more PEs should be brought up to clear off the buffer. Oth-
erwise, packets will be dropped. Thus we use the fullness of
the internal buffers as an indicator to activate more PEs.

In summary, the parameters we will use are the length of
the thread queue and the fullness of the internal packet buffer.
Both of them are monitored on-chip. The queue length is
compared with certain thresholds at fixed time intervals. If a
pre-defined condition is satisfied, the PEs will be turned off
or on. Next, we will discuss how to determine the thresholds
for the parameters.

3.2 Determining the thresholds
As explained earlier, the length of the thread queue, l, indi-

cates the excessive processing power of the NP. If the number
of threads each PE supports is T, then we could use one fewer
PE if l > T to sustain the network traffic. However, l is a
varying number since the packet arrival rate is varying due to
the network conditions. Therefore, we need to estimate the
averaged l during a period of observation time, P, to decide
the excessive processing power in the NP.

We monitor the thread queue length l for a period of P cy-
cles. During this time, l may exceed T for a certain number of
cycles, C. If C accounts for the majority of cycles in P , then
we have high confidence of l being greater than T . Hence,

we use a threshold th (th < P ) in unit of cycles that, when
C is greater than th, a PE will be clock gated. Note that
the value of th reflects how aggressively we shutdown PEs.
The smaller the th the more aggressive our scheme is. We
initially set th as half of P . This indicates a medium aggres-
siveness. After that, we allow th to be updated dynamically
so that different applications and traffic condition can find
their own appropriate thresholds. This is because the th is
very application and network condition dependent. The up-
dating algorithm is as follows. The th is increased (up to the
value of P ) if negative impacts, such as internal packet buffer
full, have been observed. On the other hand, th is lowered if
it has not introduced negative impact to the NP. This means
that there still might be excessive processing power left on
average. The advantage of allowing th to adjust itself is that
we can let th converge for an application without the need to
find a common value across all applications.

>

+

counter

True

+alpha

−alphaM
U

X

Buf_pressure+PE−PEl>=T

Shutdown Control

th

Figure 1: Threshold self-adjusting logic.
We then develop a control logic, as illustrated in Figure 1,

for choosing PE configurations using the thresholds. counter
stores the number of cycles when l >= T . We turn off a PE if
counter is greater than th. When buffers experience pressure,
i.e., the buffer is full, we turn a PE back on. During every
period P , th is increased by alpha if the internal packet buffer
has been full once, or is decreased by alpha otherwise.

4. CHALLENGES IN GATING OFF PE’S
4.1 Terminating threads safely

To turn off a PE completely, the hardware needs to termi-
nate all the threads first. However, the threads are either in
the middle of processing a packet or just finished processing a
packet. For the latter case, it is safe to kill the thread immedi-
ately. For the former case, the thread should finish processing
the current packet and then terminate. Otherwise, the packet
occupying the spaces in the packet buffer (or memory) cannot
be removed from the system, creating “leakage” in resources
which would be drained out eventually.

When a decision is made on turning off a PE, we set an “off”
flag in that PE informing it to prepare for shutting down. In
IXP1200, there is a “kill” instruction that a thread can use
to terminate itself. For the threads that are responsible for
receiving packets and processing them, they need to check
the “off” flag right after finishing processing a packet. If the
flag is set, it executes the “kill” instruction and relinquish the
pipeline resources. Therefore, implementing this part requires
a flag bit per PE and an extra conditional branch and “kill”
instruction in the program.

4.2 Reschedule packets for orphan ports
In some NPs such as IXP1200, the packet incoming ports

are statically assigned to the PEs. Hence, when a PE is turned
off, the ports from which the PE reads packets become “or-
phans”, i.e., there will be no threads that receive and process
packets from those ports. As a result, the packets coming
from those ports would be dropped. To address this problem,
we develop a dynamic mapping scheme, i.e., every thread
can take packets from every port as long as there is an in-
coming packet. Such a dynamic mapping can be found in
IXP2400/2800 implemented in software as well [11], which
demonstrates the readiness of applying our technique in up-
to-date NPs. The main advantage is to provide flexible pack-
ets dispatching to threads as explained next.

713



The dynamic mapping is accomplished by adding very sim-
ple hardware, shown in Figure 2, in the interface controller.
Basically, it determines which port has new packets and assign
them to the first awaiting thread. This simple scheduler scans
an existing register, the “port rdy status”, that indicates the
readiness of each port. The first available port number Ps

is then assigned to the thread Ti at the head of the thread
queue. Thread “Ti” is then woken up to read a packet from
“Ps”. The scheduler scans through the register in a round-
robin fashion.

��������

port_rdy_status

P

Ps Pt Pv

1 1 1

issue rcv requestrcv thread

Ti

Tm

Tn

Tj

grant

External Bus
<from interfaces>

packets

Interface Controller

PE

extra buf Thread Queue

Figure 2: Dynamic thread-port mapping design.

The dynamic scheduler will take some extra time to per-
form mapping between the ports and the threads. This is
because the scheduler needs to read and test the bit one by
one to find the first bit that is set. Also, the thread’s request
needs to be enqueued and dequeued which are both extra
operations compared to the static scheme. Though reading
and testing the status register bit can be done very quickly,
we conservatively charge 1 clock cycle of the 232MHz NP
to every operation, i.e., if m bits are scanned, m cycles are
charged. We also charge 1 cycle to thread enqueue and de-
queue respectively. In addition, the controller will also take
up some power which will be included in calculating the net
power savings of the NP.

4.3 Avoid extra packet loss
In general, packet loss may happen when the incoming traf-

fic load exceeds the maximum processing capacity of the NP.
We cannot avoid this kind of packet loss since it is the nature
of the NP even if all the PEs are running. However, when we
clock gate some PEs, packets may be lost when they come in
burst but the NP has not responded to such a burst. Specifi-
cally, the packets will quickly fill up the internal packet buffer
so that newer packets are dropped. We have discussed earlier
that when the buffer is full, we immediately wake up a PE to
drain the packet buffer.

A clock-gated PE can be woken up very quickly in several
cycles [5]. However, it still takes some more cycles before an
entry in the packet buffer can be cleared. This time includes
some initialization of a thread upon execution and the time
to put a thread into the thread queue. In the NP we modeled,
this time is within 50 cycles. If a new packet arrives in this
period, it cannot be moved into the already saturated internal
buffers.

Therefore, we need to use extra buffer space to hold the
packets that arrive before a thread comes to fetch packets.
The extra buffer space is calculated as follows. The delay
before a thread is ready to receive packets is about 50 cycle.
The maximal packet throughput we observed in NePSim is
about 1Gbps (higher than OC12 supported by IXP1200 typ-
ically due to the smaller routing table we used). Thus we
need about 30 bytes (1Gbps*50cylces/232MHz) extra buffer
space. That is, there are at most 30 bytes coming into the NP
during the initiation of a new PE. Since the IXP1200 frag-
ments packets into 64-byte “mpackets”, only one additional
“mpacket” entry is needed to the packet buffer (RFIFO) as
shown in Figure 2. Thus, the extra buffer space needed to
avoid packet loss is very minimal.

5. CLOCK GATING
There are many circuit-level approaches proposed to save

dynamic or static power. Examples are dynamic voltage scal-
ing(DVS), power gating, clock gating etc. When applying
DVS to NPs [6], the adjustment of voltage/frequency requires
long latency which is critical for Giga-bit NPs. Similarly, the
power gating technology has notable latency considering the
huge capacitance on the power supply nodes in a unit. Com-
pared with the above two techniques, clock gating is suitable
for NPs because it’s simple to implement and quick to take ef-
fect. We choose to use coarse-grained scheme that deactivates
PEs for substantially long periods. It requires less hardware
overhead in terms of enabling gates, gating controllers and
wires. It also involves less cycle-to-cycle current variation
which could introduce large transient power on chip.

5.1 Clock power model
We followed the clock models in [1, 2] and made modifi-

cations according to physical features of the IXP1200. The
major sources of clock power we considered include: (1) the
clock distribution tree; (2) the clock generator (PLL); (3) the
clock buffers; (4) pipeline latches; (5) bitline precharging in
memory structures; and (6) the clock capacitance in execution
units such as the ALU and the worldline decoders. We use
TSMC 0.25 µm technology parameters to estimate the power
of the clock loading. The above clock load in PEs consumes
0.21W, and Figure 3 captures how the different components
contribute to the clock power. Here PLL’s power is not in-
cluded in the pie chart, because it’s located outside the PEs.

W iring
18%

Buffers
48%

Pipeline Reg
8%

M em ory
25%

ALU clock
1%

Figure 3: Clock
power breakdown
for six PEs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

url ipfwdr m d4 nat avg

P
o
w
e
r

static

cm dfifo

ctlstore

xferreg

gpr

shifter

alu

clock

decoder

Figure 4: Total power
breakdown in one PE.

Figure 4 shows the power consumed by individual compo-
nent inside a PE, obtained through the NePSim simulations
with unlimited uniform traffic input. We observe that the
clock load on average consumes 22% of the total PEs’ power,
while the dynamic logic modules (i.e. ALU, decoders) con-
sume 21%. During clock gating, we gate off the circuitry in
the clock network, as well as the activity in the dynamic logic
modules. Taking these two factors, we find the total clock
related power can achieve 43% of total PEs’ power. Addi-
tionally, no new accesses to the remaining components will
happen, so some of the functional units accesses, which con-
sume the rest 50% dynamic power, can also be saved.

6. EXPERIMENT EVALUATION
6.1 Benchmarks and traffic inputs

There are four benchmarks that are currently ported to
NePSim: ipfwdr, url, nat, and md4. The ipfwdr implements
an IPv4 router which forwards IP packets between networks.
The url is a content-aware routing program that routes pack-
ets based on their contained URL request. The nat is a net-
work address translation program. The md4 is a cryptog-
raphy algorithm used in SSL or firewall to generate 128-bit
digital signature on an arbitrary length message. We will use
all these four benchmarks in our design and experiments.

We evaluate our design with real network packet traces (e.g.
Leipzig-I) from NLANR[9]. The advantage of using real net-
work traces is that they represent typical Internet traffic, in
terms of packet size and arrival rate, seen by a router. How-
ever, due to the limited simulation speed of NePSim, it is
too expensive to simulate the entire traces of dozens of hours.
We therefore sample a few seconds of real traffic with different
arrival rates as individual inputs to the simulator.

714



6.2 Power overhead of the control logic
We extended the NePSim simulator with clock power mod-

eling (discussed in section 5), so that we can measure the
power savings of clock gating. For the execution units, pipeline
latches, memory wordline decoders, the dynamic and static
power is included if it is not clock-gated. If the circuit is
clock-gated in a cycle, zero power is added.

We also take into account the power overhead associated
with the additional control logic in Figure 1. We included the
power overhead of the counters, threshold registers, thread
queue and comparators measured both with Cadence and the
Wattch model using 0.25µm technology, and found they con-
sume negligible power, i.e. 0.00038 Watts for a 20-bit counter
or register, 0.002 Watts for a comparator, 0.0065 Watts for
24 entry thread queue. The extra buffer we added increase
the buffer access energy by 3.4% which is very small, consid-
ering the fact that the original receive buffer only contributes
less than 2% of NP power ([6]). Additionally, the controller
includes a finite state machine (FSM) which decides the PE
on/off decision and an adder. Both FSM and the adder are
used just once in each time window, so their contribution to
the overall power consumption is very small. We conserva-
tively charge 2% of total PE power as the overhead of the
controller.

6.3 Experiment results
We experimented with several traces and present the results

of Leipzig-I trace because its link speed falls in the capacity
of the IXP1200 NP system. Using other traces have similar
results. We scan the trace and extract four segments with
different packet arrival rates. For each segment of traces, We
feed it to the 16 input ports of NePSim. In this way we
formed four traces with the overall arrival rates of, from low
to high, ∼90Mbps, ∼180Mbps, ∼360Mbps and ∼480Mbps
respectively. We tested different length of shutdown period P
ranging from 125K to 8M cycles and found that it affects little
to the results. We thus choose 1M cycles as the shutdown
period since it can hide well the longest PE shutdown latency
observed (60K cycles for url). The initial th is set to 500K
cycles (half of 1M cycles) to represent medium aggressiveness.
The threshold adjustment amount alpha is set to 2% of P .
The metrics we evaluate are power consumption (in Watts)
and throughput (in Mbps).

Figure 5 shows the power saving of four benchmarks at
different input traffic loads. The power savings are significant
in all cases we tested. At the lowest traffic load, up to 30%
of the power can be saved for ipfwdr and nat. md4 and url
saved about 15% and 14% respectively. As the traffic load
increases, the power saving amount decreases because less
power saving opportunity can be exploited. At the highest
traffic load, power reduction numbers are the lowest, but still
there are 17%, 15%, 12%, 6% of the total power saved for nat,
ipfwdr, md4, url respectively. Among the four benchmarks,
nat has the most power savings while url has the least. This is
because the per-packet processing time of nat is the shortest,
so on average the thread queue is the longest. This implies
that more power saving opportunities can be exploited by our
scheme. On the other hand, url has the longest processing
time, resulting in the shortest thread queue and the least PE
shutdown opportunity.

Our clock gating scheme has very little impact on the sys-
tem throughput as shown in Figure 6. Deactivating PEs re-
duced throughput by at most 4% (url with high traffic load).
When less number of PEs are active, the packets tend to
stay longer in the internal buffer before they are processed
and drained out of the NP system. As a result, the system
throughput decreases. Note that lower throughput does not
imply packet losses; there is no packet loss with the help of the
extra one-entry buffer. In addition, if the traffic load contin-
ues to increase towards the NP system capacity, the internal
buffer will become saturated and clock gating to PEs will not
be applied.

Note that the power saving data we present here is in one
second period. The overall power saving on a daily basis is

tremendous considering that low traffic period contributes to
a large portion of a day.

0%

5%

10%

15%

20%

25%

30%

35%

90 180 360 480

M bps

p
o
w
e
r 
s
a
v
in
g

Ipfwdr

Nat

M d4

Url

Figure 5: Power saving
vs packet arrival rate.

0%

1%

2%

3%

4%

5%

Ipfwdr nat M d4 Url

T
h
ro
u
g
h
p
u
t 
R
e
d
u
c
ti
o
n

90M bps 180M bps
360M bps 480M bps

Figure 6: Throughput
reduction vs packet ar-
rival rate.

7. RELATED WORK
Recently, power reduction techniques for NPs have appeared

at various levels. Our earlier work used dynamic voltage scal-
ing (DVS) to reduce NP’s power [6]. It exploited the PE
idleness when the PE and the memory speed gap is signifi-
cant. Our clock gating technique in this paper proceeds fur-
ther to exploit the variation of the network traffic, achieving
higher power conservation. Kaxiras et al. proposed IPStash
memory architecture to act as a TCAM (used in packet classi-
fication and routing) replacement, which significantly reduces
the memory set associativity and thus power [4]. Franklin and
Wolf developed an analytic performance-power model for typ-
ical NPs. They explored the design space of NPs and showed
performance-power impact of different systems [3]. Mallik
and Memik investigated the relation between transient errors
and lowering the voltage for the cache memories of an NP to
save power [7].

8. SUMMARY
We investigated mechanisms to lower the power consump-

tion of NPs under non-saturated incoming traffic rates in
routers. We studied thresholds parameters that can be used
to turn on/off PEs. We presented scheduling policies to ad-
dress the problems that occur to PE shutdown. In addi-
tion, we described the clock power and clock-gating technique.
Our experiments show a significant reduction in power con-
sumption of an NP taking network traffic traces of real-world
routers.

9. REFERENCES
[1] D. Brooks, V. Tiwari, M. Martonosi, “Wattch: a framework for

architectural-level power analysis and optimizations,” ISCA-27,
pp. 83-94, 2000.

[2] D. E. Duarte, N. Vijaykrishnan, M. J. Irwin, “A Clock Power
Model to Evaluate Impact of Architectural and Technology
Optimizations,” IEEE TVLSI, pp. 844-855, Vol. 10, Iss. 6, 2002.

[3] M. Franklin and Tilman Wolf, “Power Considerations in
Network Processor Design,” Workshop on Network Processors
– NP2, in conjunction with HPCA9, pp. 10–22, 2003.

[4] S. Kaxiras and G. Keramindas, “IPStash: a Power-Efficient
Memory Architecture for IP-lookup,” MICRO-36, pp. 361-372,
2003.

[5] H. Li, S. Bhunia, Y. Chen, T.N. Vijaykumar, K. Roy,
“Deterministic Clock Gating for Microprocessor Power
Reduction,” HPCA-9, pp. 113-122, 2003.

[6] Y. Luo, J. Yang, L. Bhuyan, L. Zhao, “NePSim: A Network
Processor Simulator with Power Evaluation Framework,” IEEE
Micro Special Issue on Network Processors for Future
High-End Systems and Applications, Sept/Oct 2004.

[7] A. Mallik and G. Memik, “A Case for Clumsy Packet
Processors,” MICRO-37, pp. 147-156, 2004.

[8] M. D. Powell, S. Yang, B. Falsafi, K. Roy, T. N. Vijaykumar,
“Gated-Vdd: A Circuit Technique to Reduce Leakage in
Deep-Submicron Cache Memories,” ISLPED, pp. 90-95, 2000.

[9] The NLANR Measurement and Network Analysis,
http://www.nlanr.net/

[10] Intel Corporation, “IXP1200 Network Processor Family
Hardware Reference Manual,”
http://developer.intel.com/design/netwrok/ixa.html, 2001.

[11] Intel IXP2XXX Product Line of Network Processors, http://
www.intel.com/design/network/products/npfamily/ixp2xxx.htm

715


