
CGaAs PowerPC FXU

Alan J. Drake, Todd D. Basso, Spencer M. Gold, Keith L. Kraver, Phiroze N. Parakh,
Claude R. Gauthier, P. Sean Stetson, and Richard B. Brown

University of Michigan
1301 Beal Ave

Ann Arbor, MI 48109
(734) 763-4207

ajdrake@umich.edu

it

ng

th

ic
ed
d

n
s
b
c
a
la

y
t
e
nd
 te

g
n-
n

s

in
l

and
sses
s,
),
h
-

 a
-
el-
gn
the
s
nges
mit
a-
ral

ed
he
ir-
ri-
ver,
 to a

 The
n-
ious
ng
nta-

is
-

and
alf-
che
e,
g

ABSTRACT
The development of a PowerPCTM fixed-point execution unit
(FXU) in a resource limited, radiation-hard technology is
described. Detailed architectural studies led to a design which
maximizes performance in a small transistor count implementa-
tion. Manufactured in Motorola’s 0.5−µm Complementary Gal-
lium Arsenide process, the device operates from 0.9 to 1.9 V w
a nominal frequency of 25 MHz at 1.3 V, dissipating 274 mW.

Keywords
Gallium Arsenide, Microprocessors, Design Methodology, Testi
Methodology

1. INTRODUCTION
The loss of the Galaxy IV satellite in May, 1998 demonstrated
increasing dependence of our society on space systems and
magnitude of the disruption when those systems fail. Commun
tions with the satellite were lost when the navigation system fail
disabling pagers, credit card transactions, and TV satellite fee
Components must be resistant to the harsh space environme
order to prevent recurrences of the Galaxy IV debacle. It is e
mated that thousands of new communications satellites will
launched over the next few years, fueling a need for more spa
tolerant components [2]. To this end, the PUMA processor,
MCM-based, multi-chip PowerPC implemented in the Motoro
Complementary Gallium Arsenide (CGaAsTM) process, was
designed at the University of Michigan. This paper will briefl
describe CGaAs technology and then present the developmen
the low transistor-budget Fixed Point Unit (FXU), which is th
nucleus of the PUMA project. The development, verification a
test environments for this exotic technology are described, and
results are presented.

2. CGAAS OVERVIEW
The Complementary Gallium-Arsenide process provides hi
electron mobility of the undoped Indium Gallium Arsenide cha
nel, as well as a P-device for low power complementary desig
The three-layer metal (Al) process produces threshold voltage
±0.55 V and allows logic gates to operate at voltages from 0.9
2.0 V. In addition, CGaAs is radiation hard, with resistance to s
gle event upset (10-10 upset/bit-day for complementary logic), tota

/or

di-
uld
nto
and
sed
ns

eep
hile

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

73
h

e
the
a-
,
s.

t in
ti-
e
e-
n

 of

st

h

s.
of
to
-

dose radiation (more than 108 rads), and latchup (more than 1012

rads).

CGaAs has some design challenges, including higher gate
source-drain leakage currents than comparable CMOS proce
[3]. As in CMOS, many logic styles can be realized in CGaA
including Complementary, Source-Coupled FET Logic (SCFL
Domino, Dual-Rail Domino, Differential Cascode Voltage Switc
Logic (DCVSL), and Pseudo-Direct Coupled FET Logic (P
DCFL) [3]. We evaluated Domino logic through the design of
PowerPC ALU [1], and DCVSL through the design of a multiply
accumulate unit [7]. Because of its low power dissipation, exc
lent radiation hardness, and compatibility with available desi
tools, we selected Complementary as the main logic family for
PUMA FXU. P-DCFL logic was used in the SRAM addres
decoders because of its superior speed. The greatest challe
presented by CGaAs are the high threshold voltages (which li
speed), and the comparatively low integration level of this imm
ture process, which provided the impetus for the architectu
study.

3. ARCHITECTURE
The architectural studies described in this section were perform
in the early stages of the PUMA project. At the inception of t
project, the CGaAs roadmap predicted that million-transistor c
cuits would be practical by the time the PUMA chips were fab
cated (a small transistor budget by CMOS standards). Howe
over the course of the project, process development delays due
lack of investment in needed equipment reduced this estimate.
FXU that was finally implemented consisted of only 383,000 tra
sistors. The studies described in this section evaluated var
aspects of the microarchitecture, with the objective of optimizi
the performance of processors that are constrained to impleme
tion using comparatively few resources.

The PowerPC instruction set was modified slightly for th
implementation; the 133 PUMA instructions include most Pow
erPC arithmetic operations (add, subtract, shift, rotate, logical
compare), all of the branch instructions, load and store byte, h
word and word instructions, load and store with update, and ca
management instructions. Floating-point, integer multiply/divid
64-bit arithmetic operations, load-store-multiple, and strin
instructions are not supported in this small-budget processor.

Some PowerPC instructions perform multiple operations and
modify several registers. To avoid the control complexity, ad
tional register file resources, and long critical paths that this wo
impose, the PUMA processor translates complex instructions i
simple unit operations, each of which executes one operation
modifies at most one architectural register. This approach is u
in modern X86 machines to execute the native CISC instructio
on a RISC core. In the PUMA processor, the unit operations k
the processor simple and help balance the critical paths, w
enabling this small processor to execute complex instructions.
0

he
on-
data
-chip
r the

lved
lay
y is
eral
ro-

re,
ign.
 (in
ns

bit
ve
vel
for
ally
e)
ient
edic-
bal
ed
gis-
ry)
also
ire

on

As
s
e
ip
cu-
get
ch
3.1 Simulation Methodology
A generic superscalar microprocessor similar to the one described
by Johnson [6] served as the baseline model. This baseline proces-
sor model is two-way superscalar, with on-chip 4 K-B instruction
and data caches. The baseline fetch mechanism neither prefetches
instructions nor predicts branches; performance improvement of
this model over a scalar machine is based solely on the ability of
the superscalar execution engine to extract parallelism from the
instruction stream.

A simulation environment was developed to facilitate rapid
evaluation of architectural features. Johnson’s superscalar simula-
tor, ssim [6], was used as the foundation for a cycle-level simula-
tor. Extensive modifications were required to convert the
simulator from MIPS to PowerPC architecture, and additional
extensions were added, such as instruction prefetch and branch
prediction. The Spec95 integer benchmark suite was used as the
basis for evaluating performance. This simulation environment
was used to study the performance effects of various cache param-
eters (size, associativity, latency and line size), stream buffer size,
superscalar width, reservation station size, reorder buffer size, and
various sizes and types of dynamic branch predictors. Brief dis-
cussions of cache and branch prediction analysis are included here
to illustrate this aspect of the design flow.

3.2 Architectural Analysis
The key features of the micro-architecture were simulated inde-
pendently to determine how they would affect the performance of
the baseline model; the metric for comparison was execution rate,
as measured in instructions per cycle (IPC). Only enhancements
that could be implemented with a relatively small number of tran-
sistors were considered.

3.2.1 Data Cache Optimizations
The simplest method of improving memory performance is to
make the data cache as large as possible, but constraints of the
CGaAs technology prohibit the implementation of a large on-chip
data cache.

Figure 1 plots the performance of the baseline machine with
various data cache sizes and access latencies. An on-chip data
cache configuration will have a single-cycle latency, whereas an
off-chip data cache may have a three-cycle latency: one cycle each
for transmitting the index, accessing the array, and returning the
data. From these simulations, a general rule is seen; to maintain a
given level of performance, the data cache must double in size for

every additional cycle of latency incurred. An off-chip data cac
must be 16 KB to provide the same performance as a 4 K-B
chip cache. Microprocessors that are unable to incorporate a
cache on the main processor die can place the data cache off
provided that the cache is made large enough to compensate fo
additional communication latency.

3.2.2 Dynamic Branch Prediction
Branch instructions are control dependencies that must be reso
to determine the correct path of instruction execution. The de
between instruction fetch and resolving the control dependenc
referred to as the branch delay. This delay may result in sev
cycles of inactivity, or wasted execution slots, in a pipelined mic
processor.

While the branch problem can be solved with enough hardwa
such an approach is impractical in a small microprocessor des
Figure 2 shows the relationship between prediction accuracy
terms of misprediction rate) and predictor cost. The configuratio
studied range from a simple one-dimensional array of two-
counters [9] (Ag) to the more complicated two-level adapti
schemes [10]. The one-level scheme outperforms all two-le
schemes in very small predictors (below 1 K-bits). However,
configurations above 1 K-bits, the two-level schemes are gener
superior. A 1 K-B predictor implementing global sharing (gshar
[8] can achieve about 90% accuracy, making a simple and effic
enhancement to a small microprocessor design. The gshare pr
tor is basically a GAg scheme (global branch history and glo
pattern history) where the Pattern History Table (PHT) is index
using a hash of the program counter and the Branch History Re
ter (BHR). GAs (global branch history and per-set pattern histo
and SAs (per-set branch history and per-set pattern history)
achieve approximately 90% prediction accuracy, but they requ
multiple pattern history tables, complicating the implementati
[1].

3.3 Architectural Summary
The architectural studies guided the development of the CGa
PUMA micro-architecture to an efficient (in terms of instruction
per cycle/million-transistors) implementation. A CMOS prototyp
of the PUMA FXU was implemented which incorporated on-ch
instruction and data cache, branch prediction, out-of-order exe
tion, and prefetching. In order to stay within the transistor bud
in the CGaAs version, neither instruction prefetching nor bran

Figure 1: Effects of primary data cache latency on
overall performance.

0 1 2 4 8 16 32

Data Cache Size (KBytes)

0.50

0.55

0.60

0.65

0.70

0.75

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 (I

PC
)

1-cycle
2-cycle
3-cycle
4-cycle

256 512 1024 2048 4096
Predictor Cost (bits)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
is

pr
ed

ic
ti

on
 R

at
e

Ag
GAg
GAs
SAg
SAs
PAg
PAs
gshare

Figure 2: Effects of predictor cost on misprediction rate.
731

n a
tor.
m
r to
ure.
ple,
pes,
den-
 and
ss

he
n-
ter

ct
is-
ri-

be
on
ion

ac-

ry
and

for
n,
ired
-
n-
s,
s,

tri-
ve
nd
prediction were included, a simple execution scheme was
employed, and the data cache was moved off-chip. The on-chip,
single-cycle instruction cache is 1 KB in size, and the off-chip
16 K-B data cache has a three-cycle memory access latency, the
effects of which are minimized through the use of a pipelined load-
store unit.

A block diagram of the CGaAs PowerPC processor is shown in
Figure 3. Instructions fetched from the L1 I-Cache or from off-
chip memory are cracked into unit operations in the decoder; most
PowerPC instructions remain single-word, single-cycle instruc-
tions, but some become multiple unit operations. Only the ‘rotate
and mask’ instructions are longer than two unit operations. The
dynamic instruction count growth, based on the Spec95 integer
benchmark suite, was 15%. In a PUMA processor that could issue
multiple instructions per cycle, the superscalar core would be able
to extract parallelism from the stream of unit operations, resulting
in a degradation in overall performance due to this code growth of
only 2.8% [1]. To stay within the CGaAs transistor budget, the
pipeline was implemented with a single-issue in-order execution
policy, which is not able to take advantage of this parallelism.

The instruction cache, fetch unit, and load-store unit (LSU) are
connected to the memory subsystem by a 128-bit data bus. The
Load-Store Unit communicates with the off-chip primary data
cache over a 128-bit bus (a full cache line). Despite the Micro-
architecture limitations, the CGaAs PowerPC achieves an execu-
tion rate of 0.50 instructions per cycle.

4. DESIGN METHODOLOGY
The processor design and implementation were carried out by six
graduate students in less than one year. The team created a gate-
level RTL model of the processor and ran exhaustive random tests
to verify the design. The team developed a library of CGaAs stan-
dard cells with which the chip was designed, and assembled them
using automated placement and routing tools.

4.1 Verification Environment
An automated verification environment was developed based o
PowerPC instruction simulator [4] and a random test genera
The verification environment is pictured in Figure 4. The rando
test generator (RTG) can be parameterized, allowing the use
specify the test length, number of branches, and loop struct
Other options build on the basic program structure. For exam
the RTG can generate tests that focus on certain instruction ty
restrict register usage to create more data and naming depen
cies, and allow a percentage of misaligned memory accesses
unimplemented instructions in the random instruction mix to stre
the exception-handling mechanisms. The RTL model of t
design was simulated in parallel with the PowerPC instructio
level simulator. The checker compared the architectural regis
values and memory contents as each instruction was retired.

This environment was first used to verify a highly abstra
behavioral model of the processor. Over time, the RTL was d
tilled into a gate-level RTL representation of the design. The ve
fication environment allowed some of the functional blocks to
behavioral while others were gate-level models. This verificati
environment was used to simulate the execution of over two bill
instructions.

4.2 CAD Tools
The CAD environment was customized around layout and extr
tion tools from Mentor Graphics, and the EpochTM design com-
piler from Cascade Design Automation, which was used for libra
generation, static timing analysis, and automated placement
routing.

4.2.1 Standard Cell Library
HSpiceTM was used to determine the optimum transistor sizes
logic gates having one to four inputs. Using this informatio
Epoch generated a basic CMOS cell for all gate types and des
drive strengths. IC StationTM from Mentor was then used to mod
ify the layout for CGaAs compliance. The PUMA CGaAs sta
dard cell library consists of thirty full-complementary logic gate
including most boolean functions of two and three variable
assorted complex functions, multiplexors, standard buffers,
state buffers, and flip-flops. Most gates are available in dri
strengths from 1x to 6x, while the inverters, standard buffers, a

Figure 3: Processor block diagram.

Decode

L1-Icache

BRU ALU LSU

RF

L1-Dcache

size (1 KB)

completion (1)

Dispatch

Fetch

MMU

128-bit

128-bit

32-bit

FXU Processor Die

miss penalty(12 cycles)
line size (16B)
associativity (1)
latency (1 cycle)

size (16KB)
line size (16B)

associativity (1)
latency (3 cycles, pipelined)

miss penalty (12 cycles)

PowerPC compiler

PowerPC
RTL model instruction

simulator

Checker

reg mem

Error?
No

Debug
Yes

Figure 4: RTL verification environment.

Random Test Generator
732

tri-state buffers are available with drive strengths of up to 64x. The
standard cell height was fixed at 48.05 µm, corresponding to the
vertical dimension of a 6x inverter. The width varied depending
upon the complexity of the logic gate. Care was taken with com-
monly-used cells such as the D flip-flop to ensure that the width
was kept to a minimum. Gate delays ranged from 137 pS to 676
pS, with a typical gate delay being approximately 350 pS.

4.2.2 RAM Compiler
An optimizing RAM compiler [5] was developed to generate
SRAM macrocells. This tool was designed to be process-indepen-
dent, allowing it to quickly adapt to design-rule changes and
device model updates. Optimized SRAM macrocells were gener-
ated by this tool in two phases. First, a spice-based, heuristic-
guided parallel optimization algorithm was used to iteratively
explore transistor sizes. This algorithm provides the data neces-
sary to define the achievable power-delay design space for a user-
specified SRAM configuration given a specific set of layout design
rules and device models. This design space defines the minimum
power dissipation that can be achieved for a range of operating fre-
quencies. MasterPortTM, a layout compaction tool from Cascade,
and commercial extraction tools were used to generate optimized
leaf cell layout masks and provide their parasitics to the optimizer.

In the second phase, the optimized SRAM layout is generated.
To accomplish this, the user selects a point within the achievable
power-delay design space for implementation. The tool then gen-
erates the leaf cells that correspond to this design point and tiles
them into the user-specified array configuration. The tool per-
forms power rail sizing and automatically generates corresponding
spice netlist and GDSII layout files.

4.2.3 Place and Route
The standard cells and memory modules were imported into the
Epoch design environment, where the Epoch tools performed auto-
mated placement and routing of these blocks. The Floorplanner
tool was used to manually optimize the top-level of the design. The
automated routing tool was then used to route the top-level and
size the power rails appropriately.

The entire clock grid was extracted and simulated using
HSpice. The clock buffers were manually sized to equalize the
clock skew at each functional block with the chip. The manufac-
tured chip is shown in Figure 5.

4.3 Testability
Due to low integration levels, test structures had to be efficient.
Furthermore, there were few I/O pads to devote to testing. A test
block, three scan paths, an instruction cache disable, and a data
cache disable were added to the design to maximum testing with a
minimum amount of hardware.

The test block consists of a pad ring, a 32-bit shift register, an
inverter ring-oscillator, a NAND gate ring-oscillator, and a clock
tree output. These units facilitate testing of the clock, I/O pads,
basic gates, and registers independent of the microprocessor.

The cache disable lines force the microprocessor into a miss
condition on every instruction and data access. This puts the
microprocessor into a state in which its operation is easily pre-
dicted, and allows testing to be performed independently of the
caches.

Complexity, controlability and observability were the primary
considerations in deciding which functional units would have scan
paths. Since the number of paths to be supported was limited, only
the decoder, dispatch unit, and ALU were given scan paths. These
functional units are the most complex and most critical to the oper-
ation of the microprocessor. The remaining functional units are
not scannable because they are fairly simple, consisting of registers
and a small amount of logic.

These test structures provide an incremental test flow that
begins with device level testing, moves to testing the microproces-
sor in a very simple state, and finishes with detailed testing of the
full ISA and scan paths.

5. TESTING
FXU testing was performed on an HP82000 IC Development Sys-
tem which has 240 individually configurable test channels. To use
the tester, it was necessary to package the FXU for testing and then
generate test vectors. Each of these issues provided interesting
challenges.

5.1 Packaging
Testing the FXU was a potentially expensive proposition. As
shown in Figure 3 there are two off chip buses, one to the Memory
Management Unit (MMU) and the other to the L1 data cache. The
MMU interface is routed through the peripheral pins, while the L1
cache interface is made through an array of bumps that would be
flip-chip connected on an MCM. The total number of I/O pins
(peripheral and area interconnect) exceeded the capabilities of the
HP82000. Rather than purchase an expensive die interface with
too many pins for the tester, we decided to initially package the
FXU in a pin grid array package and test everything but the data
cache interface. Data cache testing would have to wait for system
level testing. The FXU was packaged in a 391 pin, cavity-down
PGA purchased from Kyocera Corporation. Ten chips were pack-
aged by Norsk Engineering. A packaged FXU is shown in
Figure 6. A Device Under Test (DUT) board was also purchased
for the HP82000.

5.2 Test Vector Generation
The test environment consists of the hardware performing the test-
ing and the software used to generate the tests. The generation of
test vectors was a daunting task. The external FXU pins consist of
a 30-bit address bus, a 32-bit data-out bus, a 128-bit data-in bus,Figure 5: Photo of 13.1 x 11.4 mm CGaAs FXU die, showing

288 peripheral pins (228 I/O) and 250 area I/O pins.

D
M

A
Q

IC
A

C
H

E

FETCH

DECODE

DISPATCH

RF

LSU ALU BRU
WB

ROB

TESTAREA INTERCONNECT

Figure 5: Photo of 13.1 x 11.4 mm CGaAs FXU die, showing
288 peripheral pins (228 I/O) and 250 area I/O pins.
733

cal

for
rat-
 as
the
ting
i-
and various other control signals amounting to 228 I/O pins. Man-
ually entering test vectors was impossible and random generation
was difficult because input vectors had to be legitimate instructions
from the ISA. Fortunately, the verification environment described
earlier provided the answer to test generation.

The TDS Software System by Fluence Technology (formerly
Summit and TSSI) converts vector files from various simulators to
test vectors usable on many digital testers, including the HP82000.
The generation cycle is shown in Figure 7. The verification envi-
ronment was modified to dump FXU I/O line changes to a Verilog
variable change dump (VCD) file. TDS converts the VCD file to a
vector file usable by the HP82000. Our HP82000 has 80 400-MHz
channels and 160 200-MHz channels. TDS supports only the 100-
MHz mode of the 200-MHz channels. Since the buses were mixed
between 200-MHz and 400-MHz boards, they all had to be run in
200-MHz mode. A Perl script was written to convert the TDS gen-
erated vectors into the format required by each channel, making
the output compatible with our HP82000 configuration.

This test process provided flexibility to quickly generate both
simple and complex tests, providing a unified environment for all
levels of testing.

5.3 Test Cycle
Testing began with process and device characterization, which was
done by Motorola. Next, tests were written manually on the
HP82000 to verify the I/O pads, ring oscillators, clock tree, shift
register, and a reset of the FXU. The next group of tests were writ-
ten using the test environment to verify each of the functional units
with the caches disabled to reduce the amount of hardware being
exercised. These tests included: a string of no-ops to verify pipe-
line execution; immediate adds followed by stores to test the regis-
ters; loads and stores to verify the load/store unit; adds, shifts and
subtracts to test ALU functionality; and branches to check the
branch unit and special purpose registers. Next, the voltage/fre-
quency characteristics were tested by exercising the critical path
found from simulations. This path is the branch target address cal-
culation. A test was written in which a conditional branch must be
taken with a negative offset, forcing a full 32-bit add, the worst
case scenario. Power characteristics were measured with a test
that exercised stores, loads, branches, and ALU instructions in an
infinite loop. The last test involved turning on the instruction

cache and re-running the branch tests. Additional cache tests were
done on a 2 K-B SRAM chip fabricated on the same process run as
the FXU.

5.4 Results
For a first run in a new technology, on a chip that was pushing the
integration levels for that technology, the results are remarkably
good. Of the ten microprocessors packaged, all of them had func-
tional test blocks but only two passed the no-op instruction tests.
The most common problem with the failing chips was incorrect
address sequencing.

The two chips that passed had varying degrees of success with
the remaining tests. None of the devices passed all the tests com-
pletely. In general, the data output bus, which stores data to mem-
ory, was unpredictable, with some bits oscillating and others not
switching at all. Functionality of most units in the FXU had to be
determined by monitoring address sequencing. It was determined
that immediate instructions and program address sequencing
worked; however, instructions that manipulate register data failed.
Functionality of the ALU, load/store unit, and the branch unit can
be inferred from these tests.

The branch instructions worked properly. Using branches, the
critical path of the FXU could be tested, despite unpredictable out-
put data. Figure 8 shows the results of voltage vs. frequency test-
ing performed using a sequence of branches. The FXU operated at
a maximum frequency of 42 MHz at 1.9V. These results must be
viewed with some reservations, since only the branch unit’s criti
path could be measured with certainty.

Figure 8 shows the power curves at varying frequencies
both chips. There is not much difference in power between ope
ing frequencies, indicating that most of the power is dissipated
static power. The core dissipates 18% of the power, with
remainder being dissipated in the pads. At a nominal opera
voltage of 1.3 V, the FXU can be run optimally at 25 MHz, diss
pating 274 mW.

Figure 6: Packaged FXU

Test
Program

Random
Program

Verification
Environment

TDS

Conversion
Script

HP82000

Random
Test

VCD Output

Standard Vector

Test Vector

Figure 7: Test Generation Cycle.
734

r-
ity

,”

.
ter,
,
-

/

e
,”

e

,”

h

None of the devices passed the instruction cache tests, indicat-
ing non-functional caches. More detailed cache testing was per-
formed on a separate 2 K-B SRAM chip. It used the same SRAM
design as the FXU caches. These chips also failed; data-out
always followed the data-in, indicating that the decoder was not
working correctly. The decoder uses P-DCFL NOR gates. The
ratios of these gates were not sufficient to provide a low enough
output low over process corners, which proved much wider than
anticipated. Process data showed that the beta values, drive cur-
rents, and leakage currents of the N and P transistors, as well as the
threshold voltage of the P devices, had a much wider distribution
than anticipated. The variation of P device threshold indicated by
process data could also explain the other testing failures. Leakage
currents would be higher, and some gates may not turn off at all,
adding to static power and data errors. Further testing of the scan
path and circuit simulations with the measured process corners
should help identify the exact problems.

6. CONCLUSION
In this paper a radiation-hard, low-transistor-budget microproces-
sor has been presented. Commercial CAD tools were used in con-
junction with university-generated tools to optimize the
architecture, verify the design, implement the layout, and generate
test vectors. Compromises had to be made to stay within the
CGaAs integration level, that left some architectural features
underused. Wide variation in transistor parameters on this imma-
ture process rendered some circuits in the prototype non-func-
tional. Still, it was possible to verify functionality of two of ten
chips, which run optimally at 25 MHz and 1.3V. The architecture
is currently being translated to SOI for circuit studies.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge the funding for this project
provided by DARPA under contract ARO DAAH04-94-G-0327,
and thank Motorola Semiconductor for fabricating the FXU and
providing the information which facilitated the PUMA design. We
thank Cascade Design Automation, Mentor Graphics, MetaSoft
and Fluence for the use of their CAD tools, which were critical to
this project.

8. CONTACT INFORMATION
Todd Basso, Spencer Gold, and Claude Gauthier are currently at
Sun Microsystems and may be contacted at tbasso@East.Sun.com,
sgold@East.Sun.com, and Claude.Gauthier@Eng.Sun.com. Phi-

roze Parakh works for Monterey Design Systems. Sean Stetson is
at Texas Instruments and can be contacted at stetson@ti.com.
Keith Kraver and Richard Brown are both at the University of
Michigan and may be reached at kkraver@umich.edu and
brown@umich.edu, respectively.

9. REFERENCES
[1] T. Basso, “A Micro-architecture for Resource Limited Supe

scalar Microprocessors”, 1999 Ph.D. Dissertation, Univers
of Michigan, pp. 22-23.

[2] J. Benedetto, “Economy-Class Ion-Defying ICs in Orbit
IEEE Spectrum, vol. 35, no. 3, March 1998, pp 36-41.

[3] R. Brown, B. Bernhardt, M. LaMacchia, J. Abrokwah, P
Parakh, T. Basso, S. Gold, S. Stetson, C. Gauthier, D. Fos
B. Crawforth, T. McQuire, K. Sakallah, R. Lomax, T. Mudge
“Overview of Complementary GaAs Technology for High
Speed VLSI Circuits,” IEEE Transactions on VLSI Circuits,
March 1998, vol. 6, no. 1, pp 47-51.

[4] A. Cagney, PSIM: PowerPC Simulator, ftp://ftp.ci.com.au
pub/psim, 1994.

[5] S. Gold, B. Bernhardt, and R. Brown, “A Quantitativ
Approach to Nonlinear Process Design Rule Scaling
Proceedings of the 20th Anniversary Conference on
Advanced Research in VLSI, March 1999, pp 99-112.

[6] M. Johnson, Superscalar Microprocessor Design, Prentice
Hall, Englewood Cliffs, New Jersey, 1990.

[7] M. Kelley, M. Postiff, T. Strong, R. Brown, T. Mudge,
“Complementary GaAs (CGaAs) 32-bit Multiply Accumulat
Unit,” in Conf. Rec. 31st Asilomar Conference on Signals,
Systems, & Computers, Nov 2-5, 1997, pp 1507-1511.

[8] S. McFarling, “Combining Branch Predictors,” WRL
Technical Note TN-36, Digital Equipment Corporation, June
1993.

[9] J. E. Smith, “A Study of Branch Prediction Strategies
Proceedings of the 8th Annual International Symposium on
Computer Architecture, May 1981, pp 135-148.

[10] T. Yeh and Y. N. Patt, “Two-Level Adaptive Training Branc
Prediction,” Proc. of The 24th ACM/IEEE International
Symposium and Workshop on Microarchitecture,
November 1991, pp 51-61.

Figure 8: Voltage-Frequency and Voltage-Current Plots.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.2 1.4 1.6 1.8
Voltage

C
ur

re
nt

 (
A

m
pe

re
s)

1MHz

10MHz

20MHz

30MHz

0

5
10

15
20

25
30

35
40

45

0.8 1 1.2 1.4 1.6 1.8
Voltage

F
re

qu
en

cy
 (

M
H

z)
735

