Operating System based Software Generation for
Systems-on-Chip

Dirk Desmet D. Verkest Hugo De Man
IMEC,Kapeldreef 75 IMEC,Kapeldreef 75 IMEC,Kapeldreef 75
3001 Leuven,Belgium 3001 Leuven,Belgium 3001 Leuven,Belgium

also Professor at

desmetd@imec.be Katholieke Univ. Leuven

ABSTRACT tational models, for different components at the different stages of
In this paper we propose a system-level design environment, aimedrefinement. Itis not our intention to elaborate on the library support
at System-on-Chip (SOC) designs, including real-time embedded needed for every one of these models. Equally important is a con-
software. While many SOC modeling languages originate from sistent way of instantiating and interconnecting these component
hardware description languages, and thus tend to describe staticamodels into an unambiguous system model. The required services
architectures, we observe that embedded software makes SOC deare : run-time component instantiation and termination, run-time
signs essentially dynamic, and so a SOC modeling environmentallocation and deallocation of resources (CPU/hardware, memory,
must include dynamic behavior. Such behavior is analogous to thecommunication channels) and access to these system resources. It
services an Operating System offers in the software world, hence can be observed that these are the type of services that are offered

the term System-on-Chip Operating System (SoCOS). by (Real-time) Operating Systems in software development. Hence
the idea to start system level design using a similar type of library
1 INTRODUCT'ON (further called SOCOS).

Various system-level design languages have been proposed in th
recent past, to bridge the productivity gap between silicon integra-
tion capability and design productivity. There is a growing consen-

sus in the design community that a general programming I"’mguagedesign flow [12] is integrated in SOCOS. In this paper we will show

like C++, already familiar to software designers, can be accommo- more in detail how SoCOS can be used in embedded software de-

dated to be used also in hardware design. For this purpose Ilbrarlessign. The emphasis will be on the task concurrency issues. Mem-

were added to the basic C++ language, rather than extending the . - .)
language itself. (SystemC [7], CynApps [2], OCAPI [12]). ory management is an equally important design aspect in SoCOS,

which is already extensively covered in other tools [14], and will
Most of th f tioned librari based on tvoical hard not be further discussed here. It is important to notice that the ma-
ost ol these alorementioned libraries are based on typical har “jor difference with an RTOS is, that SoCOS is used for simulation

ware design requirements, and thus add to the C++ language CONHnd analysis of the system, including its real-time behavior, on a

cepts as signals, clocks, registers, parallel synchronous and .as.yn\'/vorkstation, while an RTOS is an implementation library running
chronous processes (concepts known from hardware description

languages like VHDL and Verilog). However these libraries tend to on the target platform.

pff?rclittltehsugport fqrtheletmbegdﬁd s.yst.er?hdeggrt]er, Whodwlan_lgi.to Various design methodologies exist for embedded real-time soft-

|dnc ude t? hV“‘f"m'C real- |_m:a t?] aV|ort|n be tsrzlsl'aeThmo eb' dd'sdware design. Many of these start from OMT/UML [11] (Rational

e o et oes 24101, Octopus) In ot pprcach he OMTIUNIL desin o
W y 'gu ware. ! can be followed up to an intermediate level, where an executable

pec_ts, with which the designer deals at the early phases of SySterr\/ersion of the embedded software is made, so that the remaining
design, are nqt addressed by the clogked synchronous PrOCESSER finement steps (task scheduling, resource allocation, inter-task
of these libraries. In system-level design various components of

the system will be described at very different timing abstractions communication) can be verified on the executable model. This of-
 SY > yad 9 ' fers a major advantage over a theoretical analysis. An automated
which can not be efficiently synchronized by a common system

clock synthesis also allows a quick evaluation of alternative implementa-
: tions.

PSoCOS, as a system-level design environment, is used for modeling
and simulating the system, analysis of the system and implementa-
tion through gradual refinement. An existing C++ based hardware

At the system level a design team will use many different compu- The remainder of this paper is organized as follows. Section 2 ex-

plains the basic principles of our system level modeling, and sec-
tion 3 makes a comparison with other existing approaches. Section
4 elaborates on the approach for embedded software support. Sec-
tion 5 shows how our approach was applied to an industrial design,
i.c. an ADSL modem.

2. SOCOS PRINCIPLES
2.1 Communicating processes

Permi ssion to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, thetitle of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or afee.

DAC 2000, Los Angeles, California

(c) 2000ACM 1-58113-188-7/00/0006..$5.00

396

A systemmodelin SoCOSconsistsof communicatingprocesses.
Eachprocesss executedin a separatehreadin the OS.Processes
canbe statically or dynamicallycreated. Staticalthreadsare in-
stantiatecbeforethe simulationschedulerstartsrunning, and are
destrgyedonly afterthe simulationhasended.

2.2 Communication

Processelare communicatiomports. Communicatiorportsarede-
claredasmemberof the processobject,andcanhave typeinput,
outputor infout. Portsareconnectedo communicatiorchannels.
Also communicatiorchannelsanbestaticallyor dynamicallycre-
ated,andcanhave following attributes:

e event/data whetherthechannetransportonly anevent(to-
kenis presenbr not), or alsodata

e datatype: floatingpoint, fixed point
e buffersize: (default=1)

e blocking andnon-blocking: blockingcommunicationgan
causehe calling threadto wait.

2.3 Timing

Real-timebehaior of the differentprocessess expressedy the
simulatedlocal time of eachprocess. The simulatedtime is ex-
pressedby the statementsoc_delay(t), wheret is the time incre-
ment. It is very importantto notice the differencebetweenthis
soc_delay(t) statemenin SoCOSandasimilartimer-callin aRTOS
(somethinglik e os wake_after(t)). The SoCOSdelayis merelya
modelingfeature thatexpresseshe estimatedime executionwill
take in the final implementation,and which SoCOSwill useto
schedulgheprocesses thesystemmodel. Theschedulingnech-
anismis explainedin moredetailin [13]. A similar scheduling
library canbefoundin [5].

2.4 How isit implemented

Sincethe supportfor analysisand refinementis an essentiafea-
tureof the SoCOSlibrary, aninternalobject-orientedlatastructure
is built at run-time, which storesthe systemconfigurationthat is
createdusing the API calls describedabove. This datastructure
is usedfor simulation, but also supportsanalysisand synthesig
throughcodegeneration). Analysis routinesoperateon this data
structure. Examplesare communicatiorprofiling (hov mary ac-
cesse$o communicatiorchannelsandatwhichtime points),anal-
ysisof deadlockgcausedy blockingcommunications).

SinceSoCOSis meantfor simulation,analysisandrefinementthe
main focus is not on efficiengy (codesize, executiontime), but
ratheron obsenrability. In the final steptowardsthe embedded
software code,an efficient RTOS-basedmplementatioris gener
atedthroughcodegenerationwhereall overhead,causedby the
SoCOSdatastructurds eliminated.

2.5 Computational models
Severalcomputationaimodelswill coexistin asystemevel model.
Library supporthasto beprovidedto offer thesemodelsto the sys-
temdesigner This sectiondemonstratehov SoCOScanbe used
asa basiclayerto build suchmodels.

397

cl ass Soc_async_gener at or
public Soc_object {
const int out_port;

Soc_async_gener at or (const char* nane,
const Soc_channel & _out
) A

int tid = soc_thread_create(

this, Soc_async_generator::run, 0);
out_port = soc_port_creat¢g(
"out", tid, OUTPUT);

soc_port_connect (out_port,
soc_thread_start(tid);

_out);

}

voi d Soc_async_generator::run(int arg)
{
int token;
while(1) {
token = cal cul ate_t oken();
soc_del ay(T); /1 est exec tinme
soc_port_write(

out _port, NOMIT, token);

Figure 1: Example of an asynchronousmodel

25.1 Asynchronous models

Thefull strengthof the SoCOSapproachhecome<learin asyn-
chronousmodels. Asynchronousmodelscommunicatewith the
restof the systemwithoutary relationshipto a system-wideclock.
The executiontime of an asynchronousnodelis determinedoy
the soc_delay(t) statementst contains. In additionto soc_delay,
an asynchronousnodel can have blocking input and output port
accessesThis waiting time will addto the executiontime of the
process.

Thecodeexamplein Figurel shawvs anasynchronouprocesghat
generatesindinfinite streamof outputtokens. The time between
the tokensis only determinedby the soc_delay statement.In this
simpleexampletherearenoblockingcommunicationgNOWAIT),
sothis processs synchronizedwith its environmentonly through
the soc_delay statement.The delayis essentiahere,sinceother
wiseanendlesdoopwould becreated.

2.5.2 Reactive models

Reactve modelscontainprocesseshat are triggeredby an event
on a communicatiorchannel.In thatrespecthey arevery similar
to interruptroutinesin software. Theseprocessearedynamicby
nature. SoCOSprovides a system-callsoc_set_event_handler that
definesareactve process.

Reactve processegancontain’delay’ statementsor not. When
they do not, a zero-eecution-timemodelis built. Thesewill gen-
erally be usedat the highestabstractionlevels, where execution
timeis notyetrelevant. Suchmodelsarealsousefulto modeltest-
benchesprobesgtc...

Reactve modelscanbeusedbothfor hardwareandsoftwareblocks.

cl ass Soc_react publi ¢ Soc_object {
const int in_port;
const int out_port;

Soc_react (const char* nane,
const Soc_channel & _in,
const Soc_channel & _out

)
int tid = soc_thread_create(
this, Soc_react::run, 0);
in_port = soc_port_create(
"in", tid, INPUT);
soc_port_connect(in_port, _in);

out _port = soc_port_create(

"out", tid, OUTPUT);
soc_port_connect(out_port, _out);
soc_set_event _handler(in_port, tid);

}

void Soc_react::run(int arg)

{
int in_token = soc_port_read(
i n_port, NOMIT);
int token = cal cul ate_t oken(i n_token);
soc_del ay(T); /] est exec tinme
soc_port_write(
out _port, NOMIT, token);
}

Figure 2: Example of areactive model

In softwareblocksthesecorresponahbviouslyto interruptroutines.
In hardwaremodelsthey canbe usedatthe highestabstractioriev-
elsin combinationwith synchronousindasynchronoumodels.

Figure2 shaws a reactve model,wherethe Soc_react::run() func-
tion is attachedasan eventhandlerroutineto in port, soit is trig-
geredby anincomingeventon thein port. It reactsaftertime T
by producinganoutput.By settingT equalto zero(or omittingthe
statement)a zero-eecutiontime modelis obtained.

25.3 Synchronous models
Synchronousnodelscommunicatewith the restof the systemon
the edgesof a clock. This conceptis well known to hardwarede-
signers,andis usedto build registertransferlevel descriptions.It
canaswell be usedat a higher level to make e.g. sample-rate
dataflav models.

The executiontime of a synchronougprocesss fully determined
by the clock, andhenceit cannotcontainasynchronousoc_delay
statementsorblockinginput/outpuportaccessest heclockitself
however is modeledasan asynchronouprocess.A masterclock
canbeeasilymodeledn SoCOShy anasynchronouprocesscon-
sistingof aninfinite loop with a soc_delay(clock_period) All syn-
chronousgprocessesensitve to this clock aretriggeredin thisloop.
Derivedclockscanbe modeledassynchronouprocessesensitve
to amasterclock.

3. COMPARISON TO PREVIOUS WORK

398

Syst em Requi renent s

1
!
|
1
: l
1
|
!
J
|
!
|

System Architectures

[

|
|
Subsystem | |Subsysten) Subsyst em
anal ysis | | |analysis anal ysi s

|

|
- __ J‘,,,A ,,,,,,, L
‘! T‘ SW 7‘ HW I
| [

| | |
| [
‘§ ' |Mbdul e , |Mbdul e ' |Mbdule - dataflow | | ,
1S 1 lexec | |exec. ' |exec. - RT C++ L
:w : spec I |spec : spec L
o l ! X
v oC-CC L___ ! [
************ R et el
! |
|

|
rodet Platform v |
si nul ation simul ation | % :
| 3

Figure 3: Systemlevel designflow

OtherC++basedsystem-lgel modelshave beernproposedecently
SystemCis one of the mostcomprehense of these,andit cov-
ersalsomary of the modelsdiscussedbove. Thetiming model
usedis however fundamentallydifferentfrom SoCOSIn SystemC
one system-widemasterclock controlsthe simulation. As a con-
sequencasynchronouprocessebave inherentlyazero-eecution
time. This is very well suitedto model relaxation-simulatiorin
combinationwith a synchronousnodel. The SoCOSapproachs
however moregeneralandbecomesspeciallyusefulwhencom-
bining several models,describedat very differentabstractioriev-
els.

Othersystemevel models Jike CoWare[6], alsoaccommodatéhe
mix of mary differentabstractiorevelsin onesystemmodel. The
main differencehereis however the dynamiccharacteiof the So-
COSmodel,asopposedo the statical(compile-time)modelcom-
positionin CoWare. The dynamicalcharactemakes the model
more suitedto model the embeddedoftware, aswill be demon-
stratedin section4. Also the simulatedtime notion is absentin

CoWare,which malkesmodelseitherclocked (synchronousdr un-
timed.

Anotherervironmentwheremultiplecomputationainodelscanbe
cosimulatedijs Ptolemy[4, 9]. In SoCOSall modelsaresynchro-
nized by the commonnotion of the real-timebehaior (simulated
time). In Ptolemynotall modelshave to betime-awvare,soit offers
amoregeneraWway of synchronizingdifferentdomains.Dynamic
proces<reationis alsopossiblein Ptolemy However Ptolemyis

mainlyintendedasa simulationervironmentwhile supportfor im-

plementatiorthroughrefinemenis anessentiapartof the SoCOS
approach.

4. DEVELOPMENT OF EMBEDDED SOFT-
WARE

4.1 Designflow

Processl ProcessN
inter- CGener at ed Gener at ed
pr ocessor Application Application
\ _eofm \ sw sSw .
\ Tn / N L—1
Sw T1 target proc
Gener ati on porting
/
intra-
processor
comm
GsAPI GsAPI
__S0C0s _ ___ RTGS
| SS

(a) Communi cating
processes

(b) Application SW
on wor kst ation

(c) Application SW
on target platform

Figure 4: EmbeddedSw Generation

This sectionexplainstherefinemenbf thesoftwarepartof thesys-
temlevel model. Contrarilyto the hardwareimplementatiorpath,
whichhaswell definedstepsn goingfrom ahigh-level model,over
a RT-level refinementto synthesizabldHDL (seee.g. [12]) the
stepstaken in real-timesoftware implementationare lessclearly
defined.

Figure 3 shaws the positioningof the SoCOServironmentin a
global systemdesignflow. Systemdesignstartswith a systemre-
quirementsspecificationphase followed by a systemarchitecture
phase. As a result, the systemis divided in subsystemsand for
every subsystenananalysiss made.Theabore mentionediesign
phasesare coveredin OMT/UML basedmethodologiedor soft-
waredesign,suchasOCTOPUSJ3]. The next stepis subsystem
designfor every subsystemHerehardwareandsoftwaredesignof
coursefollow very differentdesignflows, however for both, C++
baseddesignervironmentsexist, which resultin executablespeci-
ficationsin SoCOS.

Our designflow is intendedto be complimentaryto existing soft-
ware designflows. The startingpointin SoCOSis the mostab-
stract,yet executableevel of descriptionwhich is calledfurther
uncommittecparallelprocessedJncommittedneanshaving max-
imum parallelism(all threadsrun virtually in parallelon different
processors)having zeroexecutiontime, andunlimited communi-
cationresourcegi.e. a dedicatedchannelfor every communica-
tion). This uncommittedparallel processesnodel is the closest
we cangetusinga sequentialanguagdike C++to a purelyfunc-
tional specification. Although functional languagessuchas ML
[8], mightbeidealfor modelingparallelprocesseatapurelyfunc-
tional level, we believe thatthe C++ modelis preferabledueto the
largeacceptancef thelanguagen thedesigncommunity

In theimplementatiorrefinementprocesghe goalis to arrive ata
fully committeddescriptionwhich means

e executiontime: all processeareannotatedvith realisticex-
ecutiontimes. Thesewill have to beextractedfrom profiling
the codeon the target processor It hasto be remarled that

399

not giving realisticexecutiontimeswill not preventthe use
of ourdesigrflow to generatasoftwareimplementationbut
will of coursemalke it impossibleto evaluatethe scheduling
upfront.

e processoscheduling:processeareallocatedio processors,
andprioritiesaredefined.

e everyinter-procescommunicatioris allocatecto acommu-
nicationresourceHerewe mustmale a distinctionbetween
inter-processolnd intra-processocommunications.Intra-
processorcommunicationswill be implementedin the de-
signflow discussedbelar towardsa RTOS-baseimplemen-
tation. Inter-processorcommunicationgequire hardware-
softwareinterfaces.

No particularorderin therefinements imposed After everyrefine-
mentstep theresultwill haveto beverifiedby simulation.Profiling
resultscanbe comparedo previousexecutions.

4.2 EmbeddedSoftware Generation

For every softwareprocessqrapplicationsourcecodeis generated
from the fully committedcommunicatingorocessamodel. In gen-

eral, applicationsoftware will be basedon an RTOS. In this step

every SoCOSsystemcall, presentin the communicatingprocess
modelof Figure4.a,is replacedby a correspondingieceof code
basedon the RTOS library in Figure4.h In this translationthe

behaior is guaranteedo be kept consistentwhile the implemen-
tationoverheadf SoCOSis replacedby anefficient RTOSimple-

mentation.

4.3 EmbeddedSoftware Co-simulation

In our environmentthe final embeddedsoftware codeis cosimu-
latedin the systemmodelusing an OSAPI library (seeFig. 4).
The OSAPIlibrary providesthefunctionality of atypical RTOSto
the applicationcode. This functionality is implementedon top of
theunderlyingSoCOSsimulationenvironment. This approacttan
be used,eitherto cosimulateexisting software code,or generated
code,with therestof the systemmodel. This simulationwill run

HWRX DATAPATH Channel test bench
{ EC FPEW FFT HDSP FE} (synbol
I gener at or)
[Recru| [X crr | Model
[TX_DATAPATH
{ EC H MAP P’I FFTHDSP FE}

Tnterrupts }

RX Dat apat h ‘ H
t est bench
F2 []
‘TX DSTU‘ ‘ TX Datapath } SV“‘EJ

[rosctive s] [P d —

reg RAM\MIite l interrupts

Control SW

Figure5: ADSL Application

ordersof magnitudefasterthana simulationon an InstructionSet
Simulator(at the costof lesstiming accurag) andis usefulasa
last verification of the embeddedsoftware functionality and as a
referencebeforetransferringhe softwareto thetargetprocessor

Becausehe timing accurag is alwayslimited by execution-time
estimatesall assumptionsnuststill be verified on the target plat-
form (Fig 4.c). However a quick designpath exists to generate
alternatve implementationérom the samecommunicatingrocess
level description.

5. DESIGN EXAMPLE

The SoCOSdesignlibrary was successfullyappliedto the design
of an ADSL modem. This design(seeFig. 5) consistsof two
datapathseachdatapathcontrolledby a real-timeprogrammable
controller and embeddedontrol software (runningon an ARM
core)that controlsthe initialization and retrainingof the modem.
More detailsaboutthe designcanbefoundin [1].

5.1 Systemlevel model of the modem

The systemlevel modelof the ADSL modem,shavn in Fig. 6, is

built usingSoCOSasacombinatiorof variouscomputationaiod-

els eachmostappropriatdfor a specificcomponenof the system.
Both DSP datapathsvere modeledas samplerate dataflow using

synchronougprocessessontrolledby a samplerateclock (0.5- 2

MHz). Thereal-timecontrolunits (DSTU) weremodeledassim-

pleinstruction-sesimulatorsyunningassynchronouprocesseat

a instruction-gcle clock (here8 MHz). The high-level testbench
(which implementsthe behaior of the othermodem)is modeled
asareactve processtriggeredby atokenatits input port.

Thevarioushardwareblockshave outputs sendingnterruptevents
to the control software (e.g. the RX datapathwill producea sym-
bol _detected eventwhenagivensymbolwasreceved). At thislevel
the softwareis describedasa numberof reactve processestrig-
geredby theinterruptevents. While the hardwarecomponentsie-
scribedabove arestaticallycreatedthe configuratioris unchanged
during all the simulation),in the software the dynamicalfeatures
of SoCOSareused. SupposehethreadF1in Fig. 6 corresponds
to the softwareroutinehandlingthe detectionof the ACK-symbol.
Uponsuccessfutletectionof the ACK, the systemis reconfigured
to detectREVERB, and a henv processs connectedo the sym-
bol_detected interruptevent.

5.2 Refinementof the SW model

400

| Soc0s |

Figure 6: Systemlevel model of ADSL

Up to this point the SW was modeledwithout ary resourcecon-
straints,i.e. every threadrunsin a parallel processwith zero-
executiontime. This sectionexplainsthe stepstakento refinethis
uncommittedmodel towardsa software implementatiorusing an
RTOSonanembeddedoreprocessor

First estimatedexecutiontimes are addedto the modelfor time-
consumingcalculationsg.g. the calculationof the equalizercoef-
ficientsin threaddetectREVERB Sinceit wasdecidedto run all
control software on one ARM core, all SW threadswill run on
the sameprocessor At this point animplementatiorstratey for
theinterrupthandlingmustbe chosen.In our case(seeFig. 7) a
main routinewas added containingan infinite loop that waits for
anincomingevent,anddispatchedt accordingto the origin of the
interrupt.

Next, implementationdecisionshave to be taken concerningthe
task concurreng. Every event on a communicationchannel,to
which a reactie taskis attachedas an event handley canbe im-
plementeceithersynchronouslyr asynchronouslyin this context
synchronoushasthe meaningof a function call, andthe body of
the called processs executedin the calling processwhile asyn-
chronousameanghe calledprocesss executedn a separateéhread.
At this point the model can be simulatedto verify the decisions
madesofar. In our casethe secondletect-routinevasmadeasyn-
chronouspecausehe coeficient calculationis very time consum-
ing, and would block the handling of other interruptsif it was
meged into the main process. Figure 7 shavs that the software
now consistof 2 processes.

In a next stepmoredetailedimplementatiordecisionshave to be
taken concerningan RTOS basedmplementation(Fig. 8). ISRs
(InterruptServiceRoutines)are addedto the model, which trans-
latetheincominghardwareinterruptinto an RTOS event. Next all
inter-procesommunicationgwithin thesameprocessorareallo-
catedto RTOSresourcege.g.messagegueuessemaphoreshared
memory).Theseareaddedasattributesto theportsof theprocesses
andto the channels.Again at this point the simulationcanbe run
to verify all refinements.

5.3 EmbeddedSoftware Generation

The fully committedsoftware modeldescribedabore containsall
informationto generatehe RTOS-basedpplicationsourcecode.
Basicallyevery SoCOScall is replacedby a library-basedmple-
mentationpasedntheattributesgivenin thepreviousstepsusing
RTOSsystemcalls.

Thegeneratedoftwarecanagainbe simulatedon theworkstation,
usingan OSAPIlibrary, implementedn top of SOCOSThe OS-

det ect REVERB
{

N

\

e \
calc_teq_coeff()?
|

soc_del ay(T); l

-~ ~O%sync BN
! ~
I det ect ACK AN
! \
Sweont rol ()|, det &ct _sym
while(1) { |
| detect _symwai t();
fe—
‘\ - — -l handl er _start->send()
\ /’/ b :
-7 /’—_4>/\/ <—J7
e O~ asyrit~ \

I
|
|
|
I I
| I
| I
I I
I I
I
I

! } I I

i <
~~ " (O"sync RS

/ N
I |det ect ACK \ —
| \\ O
I
| Sweont rol ()|, detéct_sym | ISRL
|
i while(1) { |
“ detect_symwait();
‘\ e — - handl er _st art->send()
- - ~ I
\ - - ~ _ »4/ ‘ O/
, " OYasyrc. N X
, DN , I SRz
, detect REVERB '\ X
/ { \ |
/ \ I
|
I

/ cal i:_t eq_coeff ()}

1
I soc_del ay(T); | |
!
!
I

Figure8: Fully refinedSW

API library implementsall commonRTOSsystencalls. Thesame
generatedpplicationsoftwarecanbe compiledfor the targetpro-
cessorusingan OSAPI versionfor a specificRTOS (OSAPI acts
asasimpletranslatiorbetweerOSAPIcallsandRTOS calls).

5.4 Results

The completeADSL model consistsof the sample-ratelataflav
model of the datapathg8700lines of C++ code)andthe simple
instructionsetsimulatorfor the real-timecontrollers(980 lines of
C++ code). Theembeddedoftwareis describedat the communi-
catingprocessekevel by approx.5000linesof code which expand
to 22640linesof C++ codeafterrefinementThe simulationof the
entiremodelon a 366 MHz Pentiumwith Linux takesapprox.25
minutesfor simulating10sof real-timebehaior.

The SoCOSlibrary wasextendedwith Tcl/Tk GraphicalUserIn-
terface,throughwhich the simulationis controlled. Designobject
like registers RAMs, communicatiorchannelsetc. areobserable
in theGUI.

6. CONCLUSION

This papemroposeda C++ library for systemevel designthatof-
fersthedesignemwith servicesanalogougo anoperatingsystemn
software design. Software canbe functionally testedin combina-
tion with hardware. Real-timeaspectganbegraduallyintroduced,
without rewriting the code(by addingimplementatiorattributes).
We have elaboratedherefinemenstepsthatleadfrom the system
level modelto embeddedeal-timesoftwaresourcecode. This ap-
proachwasdemonstratedn a digital DMT ADSL modem.

7. ACKNOWLEDGEMENTS

This work was fundedby the FlemishIWT in the Medea-xDSL
project,andby the FlemishGovernmentimpulseProgramfor In-
formationTechnology(IT-IRMUT). The work wasmadepossible
thanksto the closecollaborationwith the systemengineersn Al-

catelMicroelectronics.

8

401

REFERENCES

K. AdriaensenF. VanBeylen, S.VanHoogenbemtH. Van
De Weghe,J. De LaenderG. VerhenneandP. Reusens.
Singlechip DMT-modemtranscerer for ADSL. In
Proceedings Ninth Annual |EEE International ASIC
Conference and Exhibit (Cat. No.96TH8186). |EEE, New
York, NY, USA; 1996; xvii+326 pp. p.123-6, 1996.

C.. C. Applications.http://www.cynapps.com.

M. Awad,J. KuuselaandJ. Ziegler. Object-Oriented
Technology for Real-Time Systems: A Practical Approach
Using OMT and Fusion. PrenticeHall PTR,1996.1SBN 0
132279436.

J.B. etal. PTOLEMY: A framework for simulatingand
prototypingheterogeneousystemslnter national Journal on
Computer Smulation, Januaryl994.

[1]

(2]
(3]

(4]

K. HinesandG. Borriello. DynamicCommunicatiorModels
in EmbeddedystemCo-Simulationln Proceedings of the
34th Design Automation Conference, pages395-400,June
1997.

(5]

[6
[7]
(8]

—_

C. Inc. http://www.covare.com.
T. O. S.Initiative. http://wwwsystemc.ag.

L. C. Paulson ML for the working programmer. Cambridge
University Press;1991.

[9] Ptolemyll.http://ptolemyeecs.berdey.edu/ptolemyill.
[10] Rational.http://www.rational.com/uml/indehtml.

[11] J.RumbaughOmt: ThedevelopmentprocessJournal of
Object Oriented Programming, May 1995.

[12] P. SchaumontS. VernaldeL. Rijnders,M. Engels,and
I. Bolsens A programmingenvironmentfor the Designof
Comple High SpeedASICs.In Proceedings of the 35th
Design Automation Conference, pages315-320,Junel998.

D. Verkest,J. Cockx,F. Potagent,H. De Man,andG. de
Jong.Ontheuseof C++for system-on-chiglesign.n
Proceedings of the |EEE Workshop on VLS, pagest2—47.
Orlando,FloridaApril 1999.

D. Verkest,J.daSilva, C. Ykman,K. Croes M. Miranda,
S.Wuytack,G. deJong,F. CatthoorandH. De Man.
Matisse:A system-on-chiglesignmethodologyemphasizing
dynamicmemorymanagementlournal of VLS Sgnal
Processing, 21(3):277-291July 1999.

[13]

[14]

