
A Heuristic Algorithm for the Fanout Problem

Kanwar Jit Sit&P Albert0 Sangiovami-Vincentelli

University of California, Berkeley - CA

Abstract
We present an algorithm to optimally distribute a signal to its required
destinations. The choice of the buffers and the topology of the distribu-
tion tree depends on the availability of different strength gates and on
the load and the required times at the destinations. The general problem
is to construct a fanout-tree for a signal so that the required time con-
straint at the source node is met and the fanout-tree has a minimum area.
Since the area constrained fanout problem is NP-complete and area is
not a major consideration in present high density designs, we restrict our
attention to the simpler problem of designing fast fanout circuits with-
out any area constraint. The proposed algorithm builds the fanout tree
by partitioning the fanout signals into subsets and then recursively solv-
ing each sub-problem At each stage the algorithm enerates a fanout
tree that is an improvement over the previous stage. + his feature allows
the user to specify the improvement desimd by the fanout correction
process. The performance of the algorithm, when run on randomly gen-
erated distributions of required times and on real design examples, is
very promising.

1 Introduction
As fast turn-around time becomes the major driving force in electronic
industry, there is an increasing need to consider performance aspects
during the synthesis process. No longer can a designer postpone look-
ing at the circuit performance until after he has a functionally correct
circuit. Doing so results in the designer spending a great deal of time try-
ing to manually increase the circuit speed. Timing analysis on a circuit
can isolate slow combinational sub-circuits that cause the circuit to fail
performance tests. Such combinational sub-circuits need to be resyn-
thesized either by reducing the length of the critical paths [2, 7] or by
appropriately disaibuting the load driven by gates on the failing paths.
As &vice sizes on integrated-circuits continue to shrink, capacrtive ef-
fects of parasitics and routing become increasingly significant. In many
present-day technologies the delay through a logic gate is dominated by
the loading (extrinsic delay) as opposed to the delay from the input to
output pin (intrinsic delay). This paper proposes methods of improving
performance by tackling the problems introduced by high fanout gates.

Hoover and Pippinger (31 presented an algorithm to bound the fanouts
in an arbitrary network with only a constant factor increase in circuit
size and depth. The delay of the network is computed as the number of
levels of fanin bounded gates. The algorithm does not take into account
the availability of different versions of gates and consequently does not

P.
rovide an adequate method for reducing the delay in a mnpped circuit.
t IS not known how to choose the best value for the fanout bound (except

trying all values and keeping the best).
More recent work [l] has tried to solve the problem of building a

fanout tree so that the required time at the root of the tree (the gate where
the signal originated) meets the timing constraint and the area of the tree
is minimum. The input to the algorithm is a set of required times at sig-
nal destinations and a target technology containing the gates that can be
used to implement the fanout tree. The constructive algorithm theypro-
pose uses dynamic programming techniques to select the gates/buffers
to drive subsets of signals and build up a tree structure that satisfies re-
quired time constraints with the minimum area. Optimum results are
achieved on a restricted class of circuits. They also propose a heuristic
algorithm for practical implementation. The restriction of the problem
to non-inverting buffers and the fact that the signal is distributed in the
same phase as the root, we feel is a major limitation of the algorithm.
Furthermore, an entry in the technology represents a specified gate driv-

*This r-h wad sqyorled by DARPA under contract 442427-25885, DEC, SGS-
Thomson, Texas Instmmenta, Philips and Intel.

ing a specified number of fanout loads. When the loads in the fanout set
are different, this assumption is inaccurate.

Our approach is motivated by the work of [6] on the optimal decom-
position of large gates into smaller ones. Under the assumption that the
delay through some gates (NAND, AND) is proportional to the number
of fanins, they develop a bi-recursive algorithm, based on the distribu-
tion of arrival times, to come up with an optimal decomposition of such
large gates. The inputs of the gate are distributed into subsets and the
m&i&urn saving that results tirn doing so is computed. These smaller
fates are then recursively decomposed. We observed that the delay of
a gate is proportional d the number of outputs it drives. This leif to
the realization that a recursive approach, similar to that in [6], can be
used to build fanout trees. The similarity between the two algorithms
is that both evaluate delay improving &sformations and accept the
best. They then recursively work on the sub-problems that result. The
main difference between the two algorithms (apart from the fact that
they solve different problems) is is that our algorithm exploits the phase
relationshins between the sienah to develoD shah fanout-trees. This
make3 our*algorithm more c&putationally intensive.

2 The buffering algorithm
In Section 2.1 we introduce some basic definitions in order to ease the
task of describing the algorithm. We explain the general outline of the
buffering process in Section 2.2. We will present a methodology to use
the algorithm for buffering a singlenode in order to reduce the constraint
violation in a circuit. In Section 2.3 we introduce the basic ideas in the
creation of the fanout tree for a single node. The problem being handled
models a general buffering scenario. The general case corresponds to
both complemented and unto lemented signals being required at the
destinations which can have drf erent capacitive loads. 7

2.1 Definitions
A combinational circuit can be represented as a DAG (directed acyclic

ph). f-r Each vertex in the graph-corresponds to a gate in the circuit.
e Rates in the circuit are assumed to be single outnut Rates. There is

a dir&ted arc from g to h if gate h depends &rectl~on gate. g (them is
a connection from the output of gate g to an input of gate h). The set of
gates(vertices) that have a connection (directed arc) from themselves to
h is the fanin set of h and is denoted by Flh. Similarly the fanout set
of h. FOh, is the set of gates that is driven by gate h.

A parameterized linear delay model is used to compute the delay be-
tween an input pin and the output pin of a gate. For a ga’et with n
inputs, the model consists of a set of n triplets. The triplet (ck, if:, eg),
h 1 n characterizes the delay between the k-th input and Le
gaLou’$uC The elements of the triplet are the capacitance of the input
pin, the intrinsic delay and the extrinsic delay (delay per unit load). We
use the notation I,h to denote the index of the input pin of gate h that is
driven by gate g. To account for the routing capacitance we associate
an additional capacitance C, with each fanout. The delay between the
output and the &th input of gate g is computed as

hEFOg

The notation r& denotes the required time (ah cakd the expected
arrival time) of a signal along the connection from gate g to gate h. We
use rp to denote the time a signal is required to arrive at the output of
gateg. Thearrivaltime atgateg isdenotedbyo andis the time that the
signal actually arrives at the output of the gate herequired time at the
primary outputs and arrival times at primary ‘inputs are known (either
specified by the user or determined automatically by a timing analysis).

27th ACM/IEEE Design Automation Conference@
Paper 21.5

@ 1990 IEEE 0738-100X/90/0006/0357 $1 .OO 357

A delay trace consists of determining the arrival and required times at
all nodes in the circuit after evaluating the delay through all the gates in
the circuit. The atrival time at the output of gate g is computed after the
arrival time of its inputs has been computed. The recursive formula is

aa = h~;f (ah + d$)
P *

The formulae for recursively computing the required time at ga,tf2 9 are

The slack at a gate, g. is the difference between the required and arrival
times at the gate output (rB - ug). If the slack at agate is non-positive
(the signal at the node output arrives no earlier than it is required) the
node is said to lie on a critical path. The minimum value of slack is
denoted by Sh and it corresponds to the most critical path. A path from
the input to output on which all nodes have a slack less than (Sti + c)
is called an c - critical path. The set of cz - critical paths forms a
sub-circuit called the c-network. Loosely speaking, this sub-circuit is
the section that violates the timing constraints by the most.

2.2 Outline of the buffering process
The algorithm buf’feraelwork used to reduce circuit delay is presented
in this section. Input to the algorithm is a combinational circuit q con-
sisting of gates implemented in a target technology. The primary inputs
are assumed to be valid at the user-specilied arrival times and the cir-
cuit is deemed to meet timing constraints if the primary outputs arrive
before the specified required times. If the circuit does not meet these
timing constraints the algorithm iteratively reduces the violation in the
constraints by applying fanout correction at multiple fanout gates.

As with any procedure that aims at reducing circuit &lay through a
series of local transformations, we recognize the fact that buffering a
single node may not reduce the delay through the circuit. There can
be other paths that are still critical and not affected by thii local trans-
formation. One method to overcome this problem is to apply the local
proccdute on a set of gates that forms anode-cutset (separator set) of the
critical paths. If the local procedure results in an improvement in delay
on each gate in the cutsef an improvement in the delay of the entire cir-
cuit is achieved. This paradigm of applying a local procedure along a
cutset to improve circutt speed was suggested by DeMicheli [2] and has
since been used in other delay-reducing techniques [7].

For the purposes of applying fanout correction on the circuit, gates
with a large number of fanouts on the critical path are good candidates.
We weight the gates on the c-critical paths and find a cutset of nodes.
The choiceof c and the function used to weight the nodes is crucial in re-
ducing the number of iterations required to meet the timing constraints.
A weighting scheme that favors (gives small weights) nodes with alarge
fanout allows us to use a minimum-weighted cutset algorithm [5J to find
the set of good nodes to buffer. For each gate on the cutset we apply the
algorithm buffer-node described in Section 2.3 to generate the appro-
priate fanout tree. Improving the slack along a selected path eventually
causesother paths to become more critical than the one under correction.
Further improvement along the selected path does not impvove circuit
performance. This imposes an upper limtt on the amount by which the
required time of a gate input may improved and be reflected in the per-
formance enhancement of the circuit The algorithm accepts a parame-
ter TR (the minimum value of required time at the gate input that will
improve circuit performance) and terminates when the desired required
time is achieved. Figure 2 explains how TR is computed for anodeg on
the critical path. The basic outline of the buffering algorithm is shown
in Figure 1. The process of delay trace, cutset evaluation and buffering
nodes along the critical cutset is repeated until the timing constraints
are met or there is no improvement in the circuit delay. At this stage the
buffering process terminates and the user may use other techniques -
critical-path resynthesis, decomposition or gate selection - to reduce
circuit delay.

2.3 Buffering a single node
In this section we introduce the algorithm buffermode used to build
fanout trees. We wish to build a fanout tree at the output of gate g in
the combinational circuit. Assume that the signal g is distributed in the
positive and negative phases to various destinations. The fanout set of
gate g is FO and it consists of two parts - PO+ and FO-- . PO+ con-
sists of gates to which the signal g is distributed. The elements in FO’

buf!f;;network(network, c)

deIayJrace();
generateanc-network; I+ tz is user de.Eined *I
assign-node-weights to nodes in t-network;;
cutset = minimum-weight-oode-cutset of c-network;
foreach n E cutset

TR = Target value of required time at m;
(FO+ , nr, FO’) = Panout data for node n;
buffernode(n, nr, FO+, FO-, TR);

while (timing constraints not met &A% delay decreases)

Figure 1: Outline of the Buffering Algorithm

Figure 2: Computing the target performance

receive the corn lemented signal 3. The inverted. signal is generated by
an inverting bu P fer denoted by gr.

For each gate h in the fanout set FO we know
1) capacitance eh ai%odakd with the input pin of h.
2) required time rh for the signal at the input pin of h.
Let the cardinal&y of the fanout sets be IFO-(= m and]FO+(=
n. For convenience we use the superscripts + and - to denote values
associated with the sets Pb+ and PO- respectively. The fanouts in
both partitions are sorted by their required times i.e. rt < rt 5 + 1. <
7: andri < ri < .*- 5 rz. Assume that there are M inverting
buffers in the target technology to be used for buffering. Non-inverting
buffers can be made up as cascades of inverting buffers.

The algorithm buffernode builds a fanout tree by selecting a delay
reducing transformation at the current gate depending on the distribu-
tion of the loads and required times. The transformations aim to reduce
the required time at the input of the selected gate. The three transforma-
tions that are used (named rpower, transl and 1rons2) are illustrated in
Figure 3. RO? Rl and R2 denote the required time at the input of gate
g on the application of these transformations.

The algorithm buffernode is described in Figure 4. Please refer to
Figure 3 while reading Figure 4. We first evaluate the required time RO
resulting from choosing the best available version of the gates g and gr
(the repaver transformation). Having done the obvious powering-up of
gate g. the distribution of fanout signals into two sets of early and late
required signals is attempted according to transl . The toot gate is used
to drive the early required signals and a smaller load. Rl is the maxi-
mum required time that is achieved using this transformation. If there is
no saving (R 1 < RO) as a result of transl we conclude that the required
times have a small spread. In that case the balanced decomposition ac-
cording to trans2 is evaluated. The best configuration of buffers added
is found and the required time R2 is corn
if R2 > RO. Having selected either tram 4

uted. We accept trans2 only
or tram2, the algorithm will

recur on the new nodes created and then again on the root node. The tou-
tinereczrrsionulillAelp() isusedtoprunerecursive calls that will not
help improve the required tune at gate g.

The gate g is part of a network and consequently the point where
the delav Value is ComDuted mUSt be ClearIv defined. When we aDDlv
buffer& transformati&s on gate g we n&d to consider not onlyihk
delay reduction of g but also the possible increase in the delay of the
previous gate since g may now have a larger input capacitance. In our
algorithm we take into account the drive (e’) of the gate that feeds gate

Paper 21.5

358

Figure 3: The basic buffering transformations

buffermode(g. gz FO+. PO-, TR)
RO = evaluate-repower(g, gr, FO+ , FO-);
if (RO > TR) return;
(Rl, E+, E-) = evaluatefransl(g, gz, PO+, FO-);
if(Rl> RO)then

create-configuration-transl(g, gr, E+, E-);
if (Rl < TR && recursion-will~elp())

buffernode(B, b, L-, Lt. TR);
buffermode(g, gz, E+ U {B}, E-, TR);

endif
else

(R2, Is, 2) = evaluate~a&(g, gr, PO+, PO-);
if (R2 > RO) then

createconfi
fl

uration-tmnrQ(g, gr, k, 1);
if(R2>T)

endif
buKernode(g,B,U,gI.U,b,TR);

endif

Figure 4: Buffering of a single node

g, say f, when computing the savings as a result of the transformations.
This captures the relevant environment for gate g and accurate evalu-
ation of the savings can be made. Different values for ej may lead to
different fanout trees. We will now explain how the various transfor-
mations described in Figure 3 are evaluated and what is the criterion for
accepting a transformation. We will also briefly discuss the complexity
of applymg the transformations.

We first evaluate the saving resulting from choosin the best avail-
able version of the gates (the repaver transformation). f-h. 1s is the obvi-
ous way to get a faster circuit when different versions of the gate being
buffered are availablein the target technology. This transformation does
not change the structure of the fanout tree (all signals in FO+ are still
driven by gate g and those in FO- by gr). The attempt here is to re-
duce the delay by choosing replacement gates for g and g J that have the
capability of driving large loads. The repower transformation results in
a required time RO being achieved at the input of gate g.

The cumulative capacitance of any subsetof the fanout set, A c FO
i.S CA = I,,,. ktr,,

the input of the invkter gr .
denote the required time of the signal at

f-9x = ri - (id* + egr.CFO-)
The required time at the input of gate g after repaver is

The value RO is what a simple algorithm for fanout correction, such as
the one in [4], would achieve. Our objective here is to do better and so
we try to restructure the fanout tree based on the distribution of required
times.

Applying tra& involves partitioning the sorted set of fanouts into
two sets E and L of early required signals and late required (less critical)
signals respectively. Denote. by E+ and E-’ the subsets of FOt and
FO- that comprise the early required signals. These are driven by the
gates g and gz respectively as shown in Figure 3. The late required
subsetsamthereforeL+ = FO+\E+ a&L- = PO-\E- whichare
driven by inverting buffers b and E respectively. For each partition we
have different choices for the buffers o I. b and B . The reauired time at

“-,

theinputofgategisthereforedenotedasRl(Et,E’,~,B,.gr). We
denote by tg, , rb and rB the required times at the inputs of mverting
buffers gr, b and B respectively.

The choice of the added buffers b and B, the gate gI and the sets
L+ and I,- is made so as to maximize the required time at the input of
gate g. The best required time that can be achieved by an application
of transl is denoted by Rt. If an application of trunrl enables us to
meet the targetrequired time TR, weimplement the transformation and
exit the recursion. If the tareet reouired time is not met and Rl > RO
(there is a saving compared-to IhGrepmver transformation) we accept
the transformation and recur on the problems of buffering gate B and
then gate g. Recursive calls that cannot improve circuit performance
are eliminated by the routine recursiotuviKhe&() as described in Fig-
ure 4. An example of pruning recursive branches occurs in transforma-
tion truedI. Whenever the required time at the input of buffer B (Fig-
ure 3), namely rB exceeds mu$r;‘, r gl] we cau terminate the recursion.
Buffering node B in an effort to increase so beyond its current value
cannot increase the required time at the input of gate g. In addition,
at each stage of the recursion we know the maximum amount that we
need to save (derived from the target required time TR) and recursion
terminates when this saving is achieved. These pruning strategies result
in a significant improvement in the run times for the fanout correction
process.

By appropriate precomputation of the cumulative capacitance values
we can compute the required time at the input of gate g in constant time
for a given configuration. Thus O(M’mn) computations are needed
to find the maximum value of Rl. Let the time to recursively apply
the balanced decomposition for a problem with m signals in negative
phase and R signals in the positive phase be denoted by Tl(m, r~). If

kZ2n~ystiS!2L!ng eqLation
= t the recursive application of trand can be

-

Tl(m, n) = O(M%nn) + Tl(n - s, m - t) + Tl(t, s)

The solution to this equation that results in the largest run-time is
Tl(m, n) = O(M3mZn2). RO = min[rt, for] - (P + eg.(cdr + c,,+)) - et.&’

Paper 21.5

359

When there is no saving by using the transformation rrun&, one
can easily infer that the required times in the sets FO+ and FO- are
ch~stered together. At this stage a balanced tree as per transformation
rruns2 is attempted to improve the required time at the input af g. The
transformation evaluates a multi-way split of the positive and negative
fanouts so as to result in clusters of similar cumulative capacitances.
For a k-way balanced decomposition of PO + and a I-way partition-
ing of the negative fanout set FO’ we can compute the required time
R2 at the input of gate g. For a given (k, I)-way decomposition of
the fanout set PO (shown in Figure 3) we evaluate the rquired time
R2(1, g, gr, b, B) at the input of gateg for thepossiblechoices of invert-
ing buffers b, B and go. We are interested in findding the conhguration
that yields the maximum value of R2.

With appropriate precomputations, O(M”mn) computat;ions are
needed to find the maximum value of R2. LA the time to recursively
apply the transformation trctns2 for a problem with m signals in nega-
tive phase and n signals in the positive phase be denoted by 2?2(m, n).
T’2(m, n) can be computed by solving the equation -

TZ(wz, n) = O(M’mn) + i?(k, I)

where2515 Fand25k< i. The solution to this equation is
T2(m,n) = O(M’mnlog(mn)).

The algorithm buffernode is polynomial in the number of fanouts
and, due to the pruning strategies that avoid needless recursions, it is
fast At each stage in the recursion it preserves a valid buffer tree which
is better than the one at the previous stage. This allows the buffering to
be done on a need-to basis. The amount of improvement desired can be
used to stop the recursion when the desired saving has been obtained.
This leads to improved run times and prevents the unwarranted area
increase that could result from building the best fanout tree. However,
if the best fanout tree is desired, the target required time TR can be set
to be a large number.

3 Results
Fm;I orithm described in Section 2 has been implemented as a part

JI - the logtc synthesis system at Berkeley. The mput to the
algorithm is a network of mapped gates along with the library of gates
that are available to implement the network. The mapping is carried
out for a minimum area circuit so that none of the high Power gates
ace chosen at this stage. The routine buffer-network is used to power
up gates and to build fanout trees where required. Table 1 shows the
results on some examples from the MCNC and ISCAS benchmark set.
The standard cell library provided alongwith the MCNC’89 benchmark
set was the target technology. Required times at the primary outputs
are set to be the arrival time of the latest output and so any reduction in
required times also results in reducing circuit delay. The wire load (C,)
associated with every fanout was set to be three times the input load on
the smallest inverter. The drive at the primary input and load at the
primary output was that of a small inverter. A small value of E (e = 0.5)
was chosenduring this experiment to restrict attention to nodes close to
the critical paths.

Table 1 shows the largest number of fanouts on any gate on the criti-
cal path. The initial area and delay of the circuit is shown. We compare
these to the area and delay that results from application of the repower
transformation. Since the target technology does not have different ver-
sions of many cells, this transformation sometimes does not lead to large
saving. The comparison of the area and delay of the circuit after it has
been exposed to the iterative application of the buffernehvork() algo-
rithm is also shown. From the experiment we see that buffering leads
to sign&ant reduction in delays with small area increase. We also see
that simple repoweriag of gates very sub-optimal in almost all cases. As
expected, the greatest saving occurs in circuits with large fanouts 00 the
critical path.

4 Conclusions and future work
We have presented a heuristic solution to the problem of reducing delay
in a circuit by reducing the load at gate outputs. The algorithm makes
a selection of the fanout distribution network based on the loads and
required times of the destinations, and by making use of the full range
of buffers available in the given technology. Results from the use of the
algorithm on a number of industrial designs give a significant reduction
in circuit delay.

--

NunS

--
9rym
Psymml
Cl355
C432
C6288
cl552
C880
alu4
spa*
-2
4=3
spa4
43-3
4-7
clip
de4
duke.2
c64
misex2
rd73

=I
z4ml

Mu

16
10

7
21
24

116
8

1::
2s

113
137
23

7
7

190

399
5
5

93
4

lr - Before
BU

Kc
-332

257
6%
408

4632
3207
588
501

'2923
908

2823
3762
1108
362
170

5129
553

2924
145
99

2569
10

run-n

gJ@
80.0
88.2

218.1
488.4
389.8
113.5
150.6
429.0
103.0
512.6

1375.6
98.6
73.0
54.3

426.1
77.8

105.1
39.4
59.4

377.0
47.0

-

II- Simple

ia?
iE
1.00
1 .ot
1.00
1.00
1.00
1.00
1 .Ol
1.00
1 .Ol
1 .Ol
1 .Ol
1.00
1 .Ol
1.00
1.00
1.01
1.02
1.02
1 .Ol
1 .Ol
1 .Ol

7

I.00
1.00
0.97
1.00
0.99
0.71
1.00
0.97
0.74
0.80
0.83
0.85
81.6
0.91
1.00
1.00
0.94
0.81
0.91
0.99
0.77

zr
i3T
1.16
1.15
1.20
1.10
,l.OS
1.07
1.08
1.03
1.03
1.08
1.10
1.12
1.04
1.07
1.1s
1.10
1.04
1.19
1.17
1.07
1.11

r

0.70
0.81
0.90
0.51
0.76
0.57
0.81
0.73
0.61
0.76
0.56
0.54
0.54
0.86
0.86
0.26
0.73
0.80
0.86
0.88
0.65
0.90

fiiiir
II

9
24
16

284
173

16
18

632
33

SO1
946

46
9
5

526
16
78
4
3

270
3

Table 1: Results of Gate Buffering

Further extensions to the buffering algorithm such as gate duplication
and critical-path isolation are being looked into. We would also like to
investigate the interaction between the bufferin,g algorithm and other
techniques to reduce delay, mainly the tree mapping and the critical-
path resynthesis algorithms. This interaction results from the fact that
the critical-path resynthesis depend8 on delay data which may be mod-
ified by the buffering process e.g. a path that is critical due to large
faaout may be selected for resynthesis. IO this case buffering, and not
the restructuring of the critical path, is the preferred method to reduce
circuit delay. Furthermore, given a circuit and timing constraints that
need to be satisfied, we want to be able to determine the squence of op
erations - buffering and resynthesis - that would meet the constraints
with a minimal area increase. We are in the process of investigating
the coupling between technology mapping (using DAG covering) and
fanout wrrectioa in order to develop a method to smoothly explore the
area-delay tradeoff in designs.

References
[l] C. L. Berman, J. L. Carter, and K. F. Day.. The Fanout Problem

FromTheory to Practice. In C. L. Seitz, editor, AdvancedResearch
in VLSI: Proceedings of the 1989 Decennial Caltech Cor$erence,
pages 69-99. MIT Press, March 1989.

[2] G. De Micheli. Performance-Oriented Synthesis of Large-Scale
Domino CMOS Circuits. IEEE Tramactions on CAD, CAD
6(5):751-765, 1987.

[3] H. J. Hoover, M. M. Klawe, and N. J. Pippeager. Bounding Fan-
out in Logical Networks. 1ournal of the Association fw Computing
Machinery, 31(1):13-18, January 1984.

[4] K. Keutzer and M. Vancura. Timing C
Synthesis System In G. Saucier, editor, 1 r

timization in a Logic
roceedings of Interna-

tional Workrhop on Logic and Arch. Synthesis for Silicon C.mapil-
ers, pages l-13, Grenoble, France, May 1988. Inst. Nat. Polytech-
aique.

[S] E. L. Lawler. Combinatorial Optimization: Networkrand Matroids.
Halt, Rinehart and Winston, 1976.

[6] P. G. Pauhn and F. Poirot. Logic Decomposition Algorithms for
the Timing Optimization of Multi-Level Logic. IO Proceedings of
ICCD 89, pages 329-333,1989.

[7] K. J. Singh, A. R. Wang, R. K. Brayton, and A. Sangiovanni-
Vincent&i. Timing Opttmizatioa of Combinational Logic. IO
ICCAD-88, pages 282-285. IEEE, 1988.

Paper 21.5
360

