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ABSTRACT
This paper presents a novel repeater insertion algorithm for the
power minimization of realistic interconnect trees under given tim-
ing budgets. Our algorithm judiciously combines a local optimizer
based on the dynamic programming technique and a global search
engine using the ellipsoid method. As a result, our approach is
capable of producing high-quality solutions at a very fast speed.
Furthermore, our scheme is robust and does not need any manual
tuning of the iteration-control parameters.

We have developed a repeater insertion tool, called FREEZE, us-
ing the proposed algorithm and applied it to various interconnect
trees with different timing targets. Experimental results demon-
strate the high effectiveness of our approach. In comparison with
the state-of-the-art low-power repeater insertion schemes, FREEZE

requires 5.8 times fewer iterations on the average, achieving up to
27 times speedup with even better power savings. When compared
with a dynamic programming based scheme, which guarantees the
optimal solution, our tool delivers up to 50 times speedup with
0.9% power increase on the average.

Categories and Subject Descriptors
J.6 [Computer-aided design (CAD)]: Generic CADD

General Terms
Algorithms

Keywords
Interconnect, Repeater Insertion, Low Power

1. INTRODUCTION
Repeater insertion is a widely used technique to reduce the de-

lay of long interconnects. Future VLSI designs are expected to
consist of millions of repeaters that could affect the system speed
and power significantly [13, 23, 24]. Consequently, repeater inser-
tion methodologies are in urgent need for the implementation of
high-performance and low-power systems. Although fast repeater
insertion algorithms for interconnect delay minimization have been
proposed, efficient and effective algorithms for repeater power min-
imization are still elusive.
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This paper presents a fast repeater insertion algorithm for power
minimization of global interconnects using the ellipsoid method.
Our algorithm, called FREEZE, is based on a mathematical frame-
work of Lagrangian relaxation [15]. Specifically, FREEZE performs
a sequence of search operations in a hyper space defined by a set
of Lagrangian multipliers. For each hyper location traversed, a lo-
cal optimization is performed using a dynamic programming (DP)
based scheme to derive a repeater insertion solution. This solution
is then used to determine the next search location. The iterative
procedure continues until it converges. After the convergence, the
solution computed at the last hyper location is returned as the final
result. The major contribution of our paper is two-fold. First, we
adopted the ellipsoid method to control the parameter update in the
outer loop of the iteration, improving the convergence rate signif-
icantly. Second, we developed a new DP algorithm to derive the
repeater insertion solution within the iteration loops.

Our scheme has several advantages. First, it is highly practi-
cal and applicable to realistic interconnects routed in actual design
scenarios. In particular, our algorithm models interconnects as tree
structures comprising wire segments with fixed lengths and dis-
tinct RC characteristics, as derived from a routing procedure. Fur-
thermore, it can handle forbidden zones, i.e., parts of interconnects
through macrocells in which no repeater can be placed. Second,
our scheme achieves a superior trade-off between the runtime and
solution quality. With the adoption of the ellipsoid method, the iter-
ation in FREEZE converges very fast with little power degradation.
Third, our scheme is highly robust and stable. Its convergence rate
is insensitive to the initial solution and, therefore, the time consum-
ing initialization procedure often needed in other repeater insertion
algorithms is eliminated. Moreover, unlike several previously pro-
posed schemes, our scheme does not require manual tuning of the
iteration-control coefficients.

We have applied FREEZE to a suite of interconnect designs to
demonstrate its effectiveness. Our interconnect trees are routed on
multiple metal-layers, in different topologies, and with various tim-
ing budgets. Experimental results show that FREEZE has achieved
up to 50 times speedup in comparison with the optimum DP-based
approach with only 0.9% power increase on the average. Compared
with the state-of-the-art low-power repeater insertion schemes that
target the balance of runtime and power savings, our scheme runs
9.2 times faster on the average with better solution quality.

The rest of our paper contains 7 sections. Section 2 reviews pre-
vious repeater insertion research. Section 3 describes our circuit
model. The low-power repeater insertion problem is formulated in
Section 4. Section 5 presents a general framework based on La-
grangian relaxation to derive the low-power repeater insertion so-
lution. In Section 6, our algorithm is proposed. Section 7 presents
our experimental procedure. Section 8 summarizes our paper.
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2. PREVIOUS RESEARCH
Repeater insertion has been investigated extensively in the litera-

ture [5, 21]. Several circuit models have been proposed to compute
the delay or power dissipation of repeaters such as the switch-level
RC model [9], the generalized model considering slew rate [14],
and the moment matching model [3]. Various design objectives are
used such as delay minimization [4, 12, 19], power minimization
[6, 10, 13, 16, 18], and cross-coupling noise reduction [1, 7].

Repeater insertion algorithms can be classified as analytical ap-
proaches [8] and DP-based approaches [11]. In analytical approaches,
the optimization objectives are described using functions of re-
peater width and location. The optimal repeater insertion solutions
can be derived by setting the derivatives of these functions to zero
and solving the ensuing equations. When designing interconnect
trees routed in multiple metal layers with forbidden zones, analyti-
cal schemes often generate very complex and intractable non-linear
equations. Moreover, analytical approaches cannot handle the dis-
creteness of repeater counts and widths. Consequently, they are
usually applied to interconnects of simple topologies and with uni-
form RC characteristics. DP-based techniques can handle realistic
interconnects and therefore do not suffer from the limitation of an-
alytical schemes. Specifically, in DP-based schemes, the possible
widths and locations of the repeaters are discrete and finite, and the
algorithms choose the best solution out of all the possibilities. The
drawback of DP based approaches is the long runtimes, especially
when power minimization is the design objective. The joint appli-
cation of the DP-based approach and non-linear analytical solver
has been proposed recently for both fast and high-quality repeater
insertion solutions [15, 17].

3. CIRCUIT MODEL
Figure 1 illustrates our circuit models. Repeaters are represented

using the switch-level RC model, where w is the repeater width,
and Rs, Co and Cp are output resistance, input capacitance, and out-
put capacitance per unit repeater width, respectively. Each uniform
interconnect segment is described using the lumped-RC π model,
where l is the interconnect length, and c and r are the capacitance
and resistance per unit length, respectively.
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Figure 1: Circuit model for (a) repeaters and (b) interconnects.

To calculate the repeater delay, our scheme uses the widely adopted
Elmore delay model as most other repeater insertion solvers so that
a fair runtime comparison can be made. The total power of re-
peaters can be approximated as the sum of the dynamic power and
leakage power. Since all nodes on a single interconnect have the
same signal activity and repeater transistors often have the same
channel length, the dynamic power is a linear function of the total
repeater width. Furthermore, the leakage power is also linear with
respect to repeater width. Consequently, for the rest of this paper,
we replace the power minimization by the minimization of the total
repeater width, as proposed in [10].

4. PROBLEM FORMULATION
Figure 2 shows the structure of a multi-layer interconnect tree.

The driver s is a buffer within the circuit block that sends data onto
the global interconnect. The sinks ti, i = 1,2, . . . ,n, are buffers
within the receiver blocks and can be modeled as capacitors. The
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Figure 2: Non-uniform interconnect tree.

sizes of the driver and sinks are given and cannot be changed, there-
fore maintaining the delays of the circuit paths before the driver and
after the sinks. The interconnect is made of several segments with
distinct RC characteristics connected in a tree topology. The con-
nectivity among the segments is derived by the corresponding rout-
ing procedure. Each segment e is assumed to be routed on a single
layer with a uniform width. The beginning and end points of e are
denoted as ue and ve. The length, resistance and capacitance per
unit length for segment e are denoted as le, re and ce, respectively.
In a realistic routing scenario, an interconnect tree may go through
some macro-blocks, in which no repeater can be placed. The por-
tions of the interconnect within the macro-blocks, called forbidden
zones, are marked by the dotted boxes. Due to the discreteness
of the layout grid, feasible repeater locations are limited to certain
discrete places, which are shown as the gray dots in Figure 2.

The primal problem of low-power repeater insertion for realistic
interconnects is described as follows:

Problem LPRI: Let T = (E,V ) be an interconnect tree struc-
ture with n sinks, where E is the set of interconnect segments and
V is the set of vertices at which two or more segments join. The
source of the tree is denoted as s and sinks of the tree are denoted
as ti, i = 1,2, . . . ,n. The buffer sizes of both the source driver and
sinks are given and fixed. Furthermore, let W be the set of pos-
sible widths defined by a repeater library, and let Be be the set of
candidate repeater locations along interconnect segment e. Given
the required arrival time (RAT) qi for each sink i, find the repeater
width we, j ∈ {W∪ 0}, j = 1, . . . , |Be| for each location be, j in any
Be to

Minimize: ∑
e∈E

We (1)

Subject to: ∀k ∈V,∃ak ≥ 0 ,

aue +de ≤ ave ,

∀ve ∈ {ti|i = 1,2, . . . ,n}, ave = qi ,

where We = ∑ j=1,2,...,|Be| we, j denotes total widths of repeaters on
e and we, j = 0 indicates that no repeater is placed at be, j . The
parameter de represents the signal delay from ue to ve, which is a
function of upstream resistance before ue, downstream capacitance
after ve, and repeater insertion solution we, j on e.

Intuitively, ak represents the RAT at vertex k. The inequality con-
straints ensure the validity of the RATs. The equality constraints
ensure that all timing targets are satisfied.

5. LOW-POWER REPEATER INSERTION
USING LAGRANGIAN RELAXATION

Solving the primal problem in Section 4 is very challenging due
to the existence of a large number of inequality constraints. Fur-
thermore, the segment delay de cannot be described using simple
analytical expressions. Moreover, additional unknowns ak need
to be calculated besides repeater insertion variables we, j. There-
fore, the primal problem is often converted to an equivalent prob-
lem called the dual problem that has less unknowns and constraints
[22]. Specifically, using Lagrangian relaxation, a set of non-negative
values called Lagrangian multipliers λe are introduced for each
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edge e. The Lagrangian relaxation function is then written as:

L(�W ,�a,�λ) = ∑
e∈E

We + ∑
e∈E

λe(aue +de −ave) (2)

where �λ = (λ1,λ2, . . . ,λ|E|) is the Lagrangian multiplier vector,
�W = (W1,W2, . . . ,W|E|) is the set of total repeater widths for all
edges, and �a = (a1,a2, . . . ,a|V |) are the RATs of all vertices.

In the optimal solution, ∀k ∈ {1, . . . , |V |}, ∂L(�W ,�a,�λ)/∂ak =
0. Therefore, for all edges that do not connect to any sink ti, i =
1, . . . ,n,

λe = ∑
e′∈des(e)

λe′ , (3)

where des(e) denotes the set of descendant edges of e.
From Equation (3), λe is an independent variable only for e that

satisfies ve ∈ {ti, i = 1, . . . ,n}. Consequently, the set of Lagrange
multipliers λe is completely determined by those assigned to the
edges connected to the sinks. Furthermore, by combining Equa-
tions (2) and (3), the parameters ak can be eliminated as follows:

L(�W ,�a,�λ) = ∑
e∈E

We + ∑
e∈E

λe(aue +de −ave)

= ∑
e∈E

We + ∑
e∈E

λede + ∑
e∈E

λe(aue −ave )

= ∑
e∈E

We + ∑
e∈E

λede + ∑
e∈E

(λeaue − ∑
e′∈des(e)

λe′ave)

= ∑
e∈E

(We +λede)− ∑
∀ve=ti

λeqi . (4)

From Equation (4), the Lagrange function L(�W ,�a,�λ) does not de-
pend on the RATs. Therefore, given�λ, L(�W ,�a,�λ) is just a function
of We,e ∈ E, and can be denoted as L�λ(�W ).

The equivalent dual of the primal problem of repeater insertion
for low power is described as follows:

Dual problem: Given a design specification, including an in-
terconnect tree T = (E,V ) of n sinks, possible repeater locations
B = {Be|e ∈ E}, a repeater library W, and timing constraints at
all sinks q, for every location be, j in each Be, find a repeater width
we, j ∈ {W∪ 0} to

Maximize: Q�λ

Subject to: λe = ∑
e′∈des(e)

λe′

∀e ∈ E ,λe ≥ 0 , (5)

where Q�λ is defined as the minimal value of L�λ(�W ) for any �W .

LRI(T,B,W,q)
1 initialize�λ =�λ0
2 repeat
3 ∀e ∈ E,∀ j ∈ {1, . . . , |Be|}, compute we, j to minimize L�λ(�W )
4 update�λ
5 if convergence return all we, j

Figure 3: Framework of solving the Lagrange dual problem.
Figure 3 shows the pseudocode of a general framework that can

be used to solve the Lagrange dual problem. Specifically,�λ is ini-
tialized in Line 1. During each iteration in Lines 2–5, L�λ(�W ) is first

minimized using current�λ. Based on the results, a new�λ is derived.
If the solution has not converged under a fixed threshold, the iter-
ation continues. Otherwise, the current solution we, j is returned.
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Figure 4: Convergence rate of subgradient method with differ-
ent c. Each element of�λ0 in (a) is 0.7 times that in (b).

It is worth mentioning that L(�W ,�a,�λ) = ∑e∈E We holds in the op-
timal solution [22]. Consequently, the convergence can be defined
as (L(�W ,�a,�λ)−∑e∈E We)/∑e∈E We) < ε, where ε is a preselected
threshold.

6. HEURISTIC SOLVER
In this section, our contributions are presented that lead to a fast

low-power repeater insertion solver.

6.1 Update of Lagrangian Multipliers
The computation time of solving the Lagrangian dual problem

is the product of runtime per iteration and iteration times. Conse-
quently, the convergence speed of the Lagrangian multiplier update
affects the algorithm efficiency significantly. Since objective func-
tion Q(�λ) is proved to be concave [22], previous repeater insertion
algorithms based on the Lagrangian relaxation framework use the
subgradient method to perform the update of Lagrangian multipli-
ers�λ. Specifically, after the kth iteration during which the repeater
insertion solution we, j is derived that minimizes L�λ(�W ) for�λ =�λk,
the timing slack at each sink ti is calculated by examining the de-
lay de of each interconnect segment e. The Lagrangian multipliers
are then updated as�λk+1 =�λk −ρk�gk, where �gk is the vector com-
prising the timing slacks at all sinks and ρk > 0 is the step size of
iteration k that must satisfy ∑∞

k=1 ρk → ∞ and limk→∞ ρk = 0.
Although the subgradient method guarantees to find the optimal

solution in a concave solution space, its convergence rate is often
slow and can change significantly depending on the choice of the
parameter ρk. Figure 4(a) shows the convergence results of a typ-
ical interconnect design using the subgradient method. The step
size function of kth iteration ρk is set to c/k as in [15], where c is
a tuning constant. As can be seen, when c changes, the number of
iterations before convergence can change by more than 10 times,
from 50 to 600. Furthermore, even the same c can result in sig-
nificantly different convergence speed when the initial�λ0 changes.
Figure 4(b) shows the convergence results using the same c val-
ues but different�λ0 than that in Figure 4(a). The c that results in
faster(slower) convergence rate in Figure 4(a) leads to slower(faster)
rate in Figure 4(b). Consequently, manual tuning of c and�λ0 is usu-
ally required for fast convergence.

We use a completely different mathematical scheme, called the
ellipsoid method [20], to compute�λk+1 at the end of iteration k.
The basic principle of the ellipsoid method is described as follows.
First, an n-dimensional ellipsoid Z(A,�x) = {�z|(�z−�x)T A−1(�z−�x)≤
1} is created that contains the optimal solution where A is a n× n
matrix. The volume and center of the ellipsoid are |DetA| and �x,
respectively. In each iteration, a new ellipsoid is created with a re-
duced volume while still keeping the optimum inside. The volume
reduction factor is constant for the given solution space dimension
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n. The optimal solution will be derived as the ellipsoid center, when
the ellipsoid volume is smaller than a preset threshold.

In our repeater insertion algorithm, the n independent Lagrangian
multipliers form an n-dimensional space. The first ellipsoid is cen-
tered at the initial �λ0 with the matrix A being a diagonal matrix
with the elements aii = λ2

maxi
, i ∈ {1,2, . . . ,n}, where λmaxi is the

maximal possible Lagrangian multiplier of the interconnect seg-
ment connected to the sink ti. The function ELP that computes the
new ellipsoid, defined by a new (�λ, A) pair, during each iteration
is shown in Figure 5. In particular, the timing slacks �S at n sinks
are first computed. Based on the values of �S and A, a vector �g is
derived, which assists the creation of the new ellipsoid in Lines 3–
4. It is worth mentioning that ELP in Figure 5 is only valid for the
case n ≥ 2. When n = 1, the ellipsoid becomes an interval and the
ellipsoid method becomes a simple bisection algorithm [20].

ELP(�λ, A)
1 compute the slacks at all the sinks �S

2 �g = �S/
√

�ST A�S
3�λ =�λ− 1

n+1 A�g

4 A = n2

n2−1 (A− 2
n+1 A�g�gT A)

5 return (�λ, A)

Figure 5: Algorithm ELP.

In our experiment, we observe a faster convergence speed of the
ellipsoid method compared with the subgradient method. Figure 6
illustrates the convergence speeds of the subgradient and ellipsoid
methods for a typical design. As can be seen, the ellipsoid method
converges more than 6 times faster the subgradient method, al-
though it oscillates a little initially.

In contrast to the subgradient method, the ellipsoid method does
not have a moving step function that needs to be carefully selected
and therefore is much more stable and easy to apply. Furthermore,
the convergence rate of the ellipsoid method is hardly affected by
the initial solutions. Figure 7 shows the convergence results of both
the ellipsoid method and the subgradient method under the same
pair of initial�λ0. It clearly shows that change of convergence speed
due to the initial solution is negligible for the ellipsoid method,
whereas the subgradient method is very sensitive to the initial solu-
tion. Consequently, no time-consuming initialization procedure is
needed for the ellipsoid-method-based repeater insertion schemes,
resulting in further runtime reduction.

6.2 Local Optimization
Another key component in solving the Lagrangian dual prob-

lem is the derivation of the repeater insertion solution within each
iteration to minimize L�λ(�W ) for a given�λ. In [15], Liu et al. pro-
posed an iterative heuristic to solve this problem. Specifically, each
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Figure 6: Convergence rate of the subgradient and ellipsoid
methods. (a) Lagrangian function (b) Total repeater width.
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Figure 7: Effect of initial�λ0 on convergence rate (a) ellipsoid
method (b) subgradient method.

branch in the interconnect tree was optimized individually using the
DP algorithm. Since the branches were solved in an inverse topo-
logical sort order, the upstream driving resistance of each branch
was not known. An estimated value had to be used, which could
be inaccurate and lead to suboptimal solutions. To improve the
solution quality, once the repeater insertion results of all branches
were computed, they were used to derive the estimates of the up-
stream driving resistance for each branch and the problem was
solved again. The iteration continued until convergence. In our
paper, we denote this branch-based DP scheme BDP.

Algorithm BDP relies on iterations and therefore cannot guaran-
tee the optimality of the solution. Furthermore, since the local opti-
mization step is already inside the loop of the Lagrangian multiplier
update, the entire repeater insertion algorithm becomes a double-
nested iteration loop, potentially leading to long runtimes. We next
present a DP-based algorithm that guarantees to get the minimal
L�λ(�W ) without any iteration.

Our algorithm computes a set of possible repeater insertion sce-
narios Se,i for each repeater candidate location be,i ∈Be, i = 1,2, . . . , |Be|
along every segment e as well as the starting point u(e) and ending
point v(e). Each scenario Se,i is a tuple (c, l) where c is the down-
stream capacitance at be,i and l represents the total contribution to
the value of L�λ(�W ) from all the downstream candidate locations
including be,i.

The pseudocode of our tree-based DP scheme, called TDP, is
shown in Figure 8. Without loss of generality, the interconnect tree
T = (E,V ) is assumed to be a binary tree, since a fork point of a
fanout n > 2 can be converted into n−1 fork points with a fanout
of 2. As in the problem formulation, a repeater width 0 is added
into the repeater library W, indicating no repeater is inserted. The
interconnect segments are processed in an inverse topological sort
order. For each e, the solution set at its endpoint v(e) is derived
first in Lines 3–11. Specifically, if v(e) = ti, i ∈ {1,2, . . . ,n}, i.e.,
e connects to sink i, Sv(e) = {(cti ,0)}, where cti is the gate capaci-
tance of ti. Otherwise, if e has only one descendant e′, Sv(e) is set
to that of the starting point of e′, Su(e′), since v(e) and u(e′) are the
same vertex. If e has two descendants eL and eR, Sv(e) is derived
by combining any pair of scenarios formed by one from Su(eL) and
one from Su(eR). It is worth mentioning that a scenario (c, l) is in-
ferior to (c∗, l∗) if c > c∗ and l > l∗. Therefore, we prune the set
to delete the inferior ones each time a scenario is inserted. After
the computation of Sv(e), TDP derives the scenario sets for all the
candidate repeater locations along e in Lines 12–20, in an order
opposite to the signal propagation direction. In particular, for each
location, all possible repeater widths including 0 are analyzed and
the corresponding results are stored. Note that v(e) and u(e) are
denoted as the candidate locations |Be|+ 1 and 0, respectively, to
simplify the code. The parameter ∆e,i represents the interconnect
length between candidate locations be,i and be,i+1. The value ce is
the unit-length capacitance of edge e. The symbol de,i,w represents
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the signal delay from be,i to be,i+1 when a repeater with a width w
is inserted at be,i. In Lines 21–24, Su(e) is derived in a similar fash-
ion. After all edges have been processed, the scenario at the root of
the interconnect tree T with the minimum l is selected to derive the
repeater insertion solution at Line 25.

Since it is based on the DP technique, our approach guarantees
to derive the repeater insertion solution that minimizes L�λ(�W ) for

a given�λ. Moreover, it performs no iteration. The weakness of our
approach is that, in the worst case, the sizes of solution sets will
increase exponentially from the sinks to the source and therefore
require a large amount of memory, leading to long CPU time.

TDP(T ,λ,B)
1 initialize all scenarios to empty set φ
2 for each edge e ∈ E in an inverse topological sort order
3 if v(e) ∈ ti, i = 1,2, . . . ,n
4 Sv(e) = {(cti ,0)}
5 else if e has a single descendant e′
6 Sv(e) = Su(e′)
7 else
8 for any (c1, l1) ∈ Su(Le) and (c2, l2) ∈ Su(Re)
9 c = c1 +c2, l = l1 + l2

10 insert (c, l) into Sv(e)
11 prune Sv(e)
12 for i = |Be|,1
13 for each scenario (c, l) ∈ Se,i+1
14 for each w ∈ W
15 if w = 0
16 c′ = c+ce ∗∆e,i, l′ = l +λe ∗de,i,w
17 else
18 c′ = Co ∗w, l′ = l +w+λe ∗de,i,w
19 insert (c′, l′) into Se,i
20 prune Se,i
21 for each scenario (c, l) ∈ Se,1
22 c′ = c+ce ∗∆e,0, l′ = l +λe ∗de,0,w
23 insert (c, l) into Su(e)
24 prune Su(e)
25 derive the repeater insertion solution based on the scenario

at the interconnect root with the minimal l

Figure 8: Algorithm TDP.

6.3 Algorithm Summary
Figure 9 shows the pseudocode of our fast low-power repeater

insertion solver called FREEZE. Given an interconnect tree T with
n sinks, repeater location candidates B, a repeater library W, and
timing constraints q for all the sinks, FREEZE returns the repeater
insertion solution that minimizes total repeater width and satis-
fies the timing targets. Specifically, our scheme first initializes the
Lagrangian multipliers�λ and the ellipsoid diameter A in Line 1.
FREEZE then iteratively maximizes the objective function Q(�λ) in
Lines 3–7. In particular, if the number of sinks is less than 4, algo-
rithm TDP will be used. Otherwise, the algorithm BDP from [15]
will be applied. Such a choice is based on the observation that, TDP

derives solutions for each given�λ very fast for trees with a small
number of sinks, a property shared by most global interconnects,
since the numbers of the candidate solutions do not increase sig-
nificantly. Whereas algorithm BDP still needs many iterations to
reach convergence in this case and, therefore, is slow. However, for
the trees with a large number of sinks and candidate locations, the
size of the solution set may increase significantly from sinks to the
source when TDP is used. In this case, FREEZE chooses algorithm
BDP. After the local optimization derives a repeater insertion so-

FREEZE(T,B,W,q)
1 initialize A and�λ
2 do
3 if n < 4
4 Call TDP to compute all we, j
5 else
6 Call BDP to compute all we, j

7 (A,�λ)=ELP(A,�λ)
8 while (L(�W ,�a,�λ)−∑e∈E We)/∑e∈E We) < ε
9 return all we, j

Figure 9: Algorithm FREEZE.

lution, the diameter A and center�λ of the ellipsoid are updated by
ELP in Line 7. Our algorithm returns the final solution in Line 9
when convergence is reached.

7. EXPERIMENT SETUP AND RESULTS
We applied our scheme to various interconnect trees to demon-

strate its effectiveness. Specifically, our interconnect trees were
generated using TSMC 0.18 µm technology. The total number of
tree branches ranged from 3 to 30. The length of branches ranged
from 1000 to 5000µm. Each tree branches contained 1 to 5 seg-
ments which might be routed on different metal layers. The circuit
parameters of repeaters and interconnects, e.g., unit-length wire
capacitance and unit-width gate capacitance, were extracted from
TSMC technology files and calibrated using SPICE simulations.
We assigned each tree segment with several candidate repeater lo-
cations using the segmenting scheme in [2]. The buffer library
W contained repeaters from 1u to 400u with a granularity of 10u,
where u is the minimal repeater width. The timing targets ranged
from 1.05τmin to 1.65τmin, where τmin is the minimal delay of the
interconnect tree that can be achieved by repeater insertion.

We used our tool FREEZE to optimize the interconnect designs.
Specifically, each element of the initial�λ0 was set to 0. The value
λmaxi was chosen as 10Wub/|si|, where Wub was an upper bound of
the total repeater width calculated using the entire tree length and
si was the worst-case timing slack estimated under the assumption
that no repeater was inserted. The value of ε was chosen to be 1%.

For comparison purposes, we implemented two low-power re-
peater insertion schemes. The first one is from [15] which uses
subgradient method to update the Lagrangian multipliers and algo-
rithm BDP to perform the local optimization. It is worth mentioning
that the original scheme in [15] chooses ρk = c/k for the subgra-
dient moving step size. We chose c/

√
k, however. The reason is

that during our experiment, we found that for 70% of the nets, con-
vergence speed was extremely slow with no convergence reached
after 2000 iterations, if ρk = c/k, unless manual tuning of the pa-
rameter c was performed for each individual interconnect. On the
other hand, when the step size c/

√
k was used, most nets could

reach convergence in less than 600 iterations. In our experiment,
c was set to 10. We also implemented a DP-based algorithm [14]
and used it to evaluate the design quality of FREEZE, since the DP-
based method guarantees to derive the optimal results. We use LRS

and PDP as the names of the schemes in [15] and [14], respectively.
Table 1 shows the experimental results of 25 interconnect trees.

Columns 2–3 show the number of sinks and the total candidate re-
peater locations in the interconnects. Column 4 shows the aver-
age runtimes of our scheme FREEZE under different timing target.
Columns 5–6 give the corresponding runtimes of schemes LRS and
PDP, respectively. Columns 7–8 list the speedup of FREEZE over
LRS and PDP. As can be seen, our scheme runs significantly faster.
The average speedups are 9.2 and 17.5 in comparison with LRS and
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Table 1: Experimental results.

Run time(s) Speedup δP
Net Sink Loc FREEZE LRS PDP SLRS SPDP
1 2 54 0.7 16.0 23.2 27.4 37.2 0.2
2 2 48 0.6 13.2 22.3 26.1 40.4 0.3
3 2 54 0.8 15.5 22.9 23.6 32.9 0
4 2 60 1.0 18.7 38.0 26.5 50.4 0
5 2 48 0.8 13.9 14.2 21.7 21.0 0
6 3 72 2.0 10.0 18.6 5.6 10.1 1.3
7 4 84 3.1 12.7 21.8 6.0 9.8 2.4
8 5 108 4.2 18.3 21.7 6.0 6.0 0.5
9 5 96 3.9 15.6 38.2 5.2 11.9 0.0

10 6 96 4.8 14.8 67.2 4.4 18.3 0.1
11 6 108 5.4 17.0 48.8 4.6 12.0 0.5
12 6 114 4.8 18.2 31.5 5.5 8.8 0.4
13 7 114 6.4 21.3 54.8 5.3 12.2 0.2
14 7 126 6.2 24.5 80.8 5.4 16.7 0.9
15 8 132 8.4 25.7 69.0 4.4 11.1 0.2
16 11 192 12.7 61.5 134.3 9.5 21.5 0.1
17 4 78 2.6 9.3 17.9 4.5 8.4 0.4
18 3 78 2.3 10.2 27.3 5.4 13.9 0.0
19 4 90 3.0 11.6 26.4 4.7 9.5 1.3
20 4 84 2.6 11.5 18.0 5.6 7.9 3.1
21 5 114 5.7 18.4 49.9 4.9 11.8 0.2
22 5 96 3.8 14.5 66.6 5.5 22.4 1.0
23 5 108 4.9 15.7 32.9 4.3 8.5 0.4
24 6 120 6.0 19.8 76.2 4.0 17.2 6.2
25 5 114 5.6 21.9 75.8 4.9 17.1 2.0

Ave - - - - 9.2 17.5 0.9

PDP. The corresponding maximum speedups are 27.4 and 50.4, re-
spectively. The average iteration number of FREEZE is about 60,
whereas average number of iterations for algorithm LRS is 350.
Column 9 compares the power dissipation results from FREEZE and
PDP. The power degradation of our scheme is only 0.9% on the av-
erage across all designs. This degradation can be further reduced by
decreasing the iteration-ending threshold at the cost of longer run-
times. The power results of FREEZE is even about 1% better than
that of LRS on the average. Our experiments were performed on
a Pentium-IV 2.8GHz machine with 1GB memory running Redhat
Linux9.0.

8. CONCLUSION
This paper presents a repeater insertion tool called FREEZE for

the power minimization of realistic interconnect trees under given
timing budgets. The novel contribution is the adoption of the ellip-
soid method to achieve the efficient and effective solution space ex-
ploration. In contrast to most of the previously proposed schemes,
our scheme is robust and does not need any manual tuning of the
iteration-control parameters or the initial solution.

Our approach is capable of producing high-quality results at a
very fast speed. Experimental results demonstrate that, in compari-
son with the state-of-the-art low-power repeater insertion schemes,
FREEZE requires 5.8 times fewer iterations on the average, achiev-
ing up to 27 times speedup with better power savings. When com-
pared with the dynamic programming based scheme, which guar-
antees the optimal solution, our tool delivers 17x speedup with only
a 0.9% power increase on the average.

In our current implementation, we have chosen simple RC mod-
els to compute the interconnect delay and power so that a fair com-
parison can be made between our scheme and previous proposed
techniques. We are currently applying our scheme in conjunction
with more accurate circuit models that consider the signal slew rate.
It is an interesting future research topic to combine our scheme and
global interconnect routing for further power savings. In addition,
the convergence speed of the ellipsoid method becomes slow when

the dimension of the solution space increases significantly. The
derivation of efficient low-power repeater insertion algorithms for
interconnects of hundreds of sinks remains an open research prob-
lem.
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