30.1

Power Optimal Dual-Vqq Buffered Tree Considering Buffer
Stations and Blockages -

King Ho Tam and Lei He
Electrical Engineering Dept.
Univ. of California, Los Angeles, CA 90095, USA

{ktam, lhe} @ee.ucla.edu

ABSTRACT

This paper presents the first in-depth study on applying
dual Vg4 buffers to buffer insertion and multi-sink buffered
tree construction for power minimization under delay con-
straint. To tackle the problem of dramatic complexity in-
crement due to simultaneous delay and power consideration
and increased buffer choices, we develop a sampling-based
sub-solutions (i.e. options) propagation method and a bal-
anced search tree-based data structure for option pruning.
We obtain 17x speedup with little loss of optimality com-
pared to the exact option propagation. Moreover, compared
to buffer insertion with single V44 buffers, dual-V4 buffers
reduce power by 23% at the minimum delay specification.
In addition, compared to the delay-optimal tree using single
Vaa buffers, our power-optimal buffered tree reduces power
by 7% and 18% at the minimum delay specification when
single V44 and dual V4 buffers are used respectively.

Categories and Subject Descriptors: B.7.2[Hardware]:
Integrated circuits — Design aids

General Terms: Algorithms, design

Keywords: Low power, buffer insertion, detail routing

1. INTRODUCTION

Aggressive scaling of VLSI circuits makes interconnects
the performance bottleneck, and buffer insertion is used ex-
tensively to reduce interconnect delay at the expense of more
power dissipation. [1] developed a power-optimal buffer
insertion algorithm to meet the delay specification. The
buffered tree construction problem was studied without buffer
stations (BS) or blockages in [2, 3|, and with BS blockage
avoidance in [4, 5, 6, 7]. Power was not considered explic-
itly in [2]-[7]. Recently, Vaq-programmable buffers have been
used to reduce FPGA interconnect power [8]. As buffers are
pre-placed, the dual Vg4 buffer routing is simplified to dual
Vaa assignment. However, buffer insertion and buffered tree

*This paper is partially supported by NSF CAREER award CCR-
0306682/0401682, SRC grant 1100, a UC MICRO grant sponsored by
Fujitsu Laboratories of America, Intel and Mindspeed, and a Faculty
Partner Award by IBM. Address comments to lhe@ee.ucla.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2005, June 13—-17, 2005, Anaheim, California, USA

Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

497

construction, both considering dual Vg buffers for power
reduction in ASIC designs, are more complicated and have
not been studied.

In this paper, we present the first in-depth study on apply-
ing dual Vg4 buffers to buffer insertion (DVB) and buffered
tree generation (D-Tree) considering both BS and block-
ages for power minimization under delay constraint. We
first present the dual V4q buffer model, the DVB and the D-
Tree problem formulations in Section 2. Section 3 and 4 give
the details of the algorithms for solving the DVB and the
D-Tree problems and their respective experimental results.
We conclude the paper in Section 5. More details about
experimental settings and proof of theorems are included in
our technical report [9].

2. PROBLEM FORMULATION

2.1 Delay, Slew Rate and Power Model

We use distributed Elmore delay model as in [6, 4, 7, 5].
The delay due to a piece of wire of length [is given by

(%'cw'l+cload)'rw'l

where ¢,, and r,, are the unit length capacitance and resis-
tance of the interconnect and c;oqq is the capacitive loading
at the end of the wire. We also use Elmore delay times In9
as the slew rate metric [10]. The delay of a buffer (which
is composed of two-stage cascaded inverters in our study) is
given by

d(l) (1)

2)
where dp, 7o and cjoqq are the intrinsic delay, output re-
sistance and capacitive loading at the output of the buffer
respectively. We obtain 7, and dp for both high V4 and low
Vaa buffers, and we observe that both values are higher for
low V44 buffers.

In the context of buffer insertion with upper bound on
slew rate, we observe that slew rates at the buffer inputs
and the sinks are always within up to only a few tens ps
of the upper bound. Therefore we model buffer delay with
negligible error by approximating input slew rate using the
upper bound. The idea of the reasoning behind is that the
buffer insertion length for delay-optimal buffer insertion is
much longer than that for the sake of satisfying the slew rate
constraint. This can be verified using the formulae in [11].
We leave the detailed explanation to our technical report due
to space limit here. Note that more accurate slew rate and
delay models that support bottom up (i.e. sink-to-source)

dous = db + 7o * Cload

calculation such as [12] can be used instead without the need
to change the algorithms proposed in this work.

Settings Values
Simulators Magma’s QuickCap (interconnect)
BSIM 4 + SPICE [13] (device)
Interconnect rov = 0.186Q2/um, ¢, = 0.0519fF/um
(65nm, global, min space and width)
Buffer cin =047fF, VE =12V, VE =09V
(min size) rH = 4.7kQ, dff = 72ps, EF =84fJ
rl =5.4kQ, db = 98ps, EL = 34fJ
Level converter cin =047fF, Er.c =5.7fJ
(min size) drc = 220ps

Table 1: Settings for the 65nm global interconnect.

We measure interconnect power by energy per switch. The
energy per switch for an interconnect wire of length [is

Ew=05 cy-1-Viy (3)

We collapse per switch short-circuit and dynamic power con-
sumed by a buffer into a single value Ej, which is a function
of both V4 and buffer size. We observe that low Vg4 buffers
have a much smaller energy Ef than the same-sized high
Vaa counterpart’s energy Ef7. In our current model we do
not consider leakage power consumption just to avoid the
need to assume operating conditions such as frequency and
switching activity, tuning which can significantly temper the
experimental results. Considering leakage tends to boost the
power saving from dual-Vy4 buffer insertion, however, espe-
cially in the deep sub-micron regime. To consider leakage,

we can simply add the leakage component Jf)lse;‘ff to Equation

(3), where Pieqk, f and S, are leakage power consumed by
buffers, frequency and switching activity respectively.

2.2 Dual v44 Technique

Dual V34 buffering uses both high Vg4 and low Vg4 buffers
in interconnect synthesis. Designs using low Vy4 buffers
consume less buffer Ej,,; and interconnect power (Equa-
tion (3)). Applying this technique to non-critical paths, we
achieve power saving without worsening the delay of the
overall interconnect tree.

We only allow high V4 buffers followed by low Vg4 buffers
but not the reverse. A high V44 buffer can drive a low Vg4
buffer, but a low Vyq buffer driving a high Vi4 one may
cause a large leakage power. Therefore, a Vgq-level con-
verter must be inserted between the low Vyiq buffer and its
high Vg4 fanout buffers. We assume that the driver at the
source operates at high V44 and a Vyg-level converter can
only be placed at a sink if it is driven by a low Vy4 buffer.
The power and delay overhead from a Vgig4-level converters
makes it prohibitive to be used inside the interconnect tree.
To illustrate, consider a simple case in Figure 1. The con-
figuration in (a) must have a larger power than that in (b)
due to the the level converter and the fact that the low Vg
buffer instead of the high V34 buffer is driving the load Cj.
To have the delay of case (b) larger than that of (a), we
require

(RE —R)-Ci+R}-CE—RE -Cro—Rrc-CHf —dre > 0 (4)

where dp¢ is the intrinsic delay of the level converter and
all other parameters are shown in Figure 1. We try all com-
binations of buffer sizes (16x, 32x, 64x in our study) and

498

properly-sized level converters. The parameters of these
buffers and level converters are not included due to space
limit, but they can be derived using the same methods noted
in Table 1. We find that C; has to be at least 0.5pF, or
equivalently a 9mm long global interconnect worth of capac-
itance, for Equation (4) to become true, which is extremely
unlikely in any buffered interconnect design. Therefore (b),
which has no level converter, is very likely to be a superior
design than (a). This justifies excluding level converters in
our study, which saves runtime by considering a smaller and
more productive solution space.

1 R 1
oo | .
(a) L 1 cHl-
Gy | T Cof T b|T ¢ T
Low \{:ld buffer Level Converter High vdd buffer -
b I
(b <> <>
)) = .
H L 1
CyT Cy T G T
High V, buffer Low Vj; buffer -

Figure 1: Demonstrating level converter overhead.

2.3 Dual va4 Buffer Insertion Problem

We assume that the loading capacitance and the required
arrival times (RAT) g;, are given at all sink terminals n,. We
assume that the driver resistance at the source node ng. is
given. We also assume that all types of buffers can be placed
only at the buffer candidate nodes nf. We use the RAT at
the source nsr. to measure delay performance. Our goal is
to minimize power of the interconnect subject to the RAT
constraint at the source ng,c.

Definition 1. The required arrival time (RAT) g» at node
n is defined as

n = mivn (gn — d(ns,n))
where d(ns, n) is the delay from the sink node ns to n.

Dual Vy4 Buffer Insertion (DVB) — Given an inter-
connect fanout tree which consists of a source node ngc,
sink nodes ns, Steiner nodes n,, candidate buffer nodes ny
and the connection topology among them, the DVB Prob-
lem is to find a buffer placement, a buffer size assignment
and a Vg4 level assignment solution such that the RAT ¢,
at the source ng,. is met and the power consumed by the in-
terconnect tree is minimized, while slew rate at every input

of the buffers and the sinks ns are upper bounded by 3.

2.4 Dual V44 Buffered Tree Construction

We measure the delay and power performance using the
same metric as in the DVB formulation. Assuming that a
floorplan of the layout is available, we can identify locations
and shapes of rectangular blockages, which allow wiring on
top but forbid buffer insertion, and locations of buffer sta-
tions (BS) which are the allocated space for buffer insertion.
Therefore we have the following problem formulation.

Dual V;q Buffered Tree Construction (D-Tree) —
Given locations of a source node ng,., sink nodes ns, block-
ages and BS, the D-Tree problem is to find the minimum

power embedded rectilinear spanning tree with a buffer place-
ment, buffer sizes and a V44 assignment on the floorplan that
satisfy the RAT ¢;"¢ constraint at the source nsr. and the
slew rate bound § at every input of the buffers and the sinks
Ns.

In the D-Tree problem, we have alternative tree topologies
as an extra dimension over the DVB problem for optimiza-
tion. Two D-Tree solutions are shown in Figure 2. The
large rectangle and the black dots are the blockage and the
BS respectively. Both cases achieve the same RAT at the
source nsr.. However, (a) has to go across a wide blockage
and therefore has to rely on running a long high V44 net. An
alternative route is shown in Figure 2(b) in which it chooses
to go around the blockage so that it can insert more buffers
to achieve the same delay while keeping the long route at
low Vg, which turns out to save power compared to (a).

E_ = 150fF E_ = 110fF
sw w
ny n
RAT = 800ps RAT = 800ps
RAT = 200ps H RAT=200ps L
Ne- .
e 0D . se G
u H
L
W N
L—o
" "
RAT = 1000ps RAT = 1000ps

(a) (b)

Figure 2: Routing as a design freedom for power.

3. BUFFER INSERTION

Power-optimal solutions are constructed from partial so-
lutions from the subtrees. We call them as options, which
are defined below.

Definition 2. An option ®,, at the node n refers to the
buffer placement, size and Vg4 assignment for the subtree T,
rooted at n. To perform delay and power optimization, the
option is represented as a 4-tuple (cn,Pn, qn,0n), where c,
is the down-stream capacitance at n, p, is the total power
of Ty, gn is the RAT at n and 6, signifies whether there
exists any high V4 buffer at the down-stream. The option
with the smallest power p; ¢ at the source node ng,. is the

power-optimal solution.

Our algorithm is based on [1] with a few improvements.
We add support for dual V4 buffer insertion without level
converters. We also improve the runtime by introducing uni-
form sampling of the options under each capacitance value
to reduce the number of options generated with negligible
loss of optimality. To facilitate explanation, we define the
concept of option dominance here.

Definition 8. An option ®1 = (¢1,p1,¢1,01) dominates
another option ®2 = (c2,p2,q2,02) if 1 < ¢2, p1 < p2 and
Q1 2 q2-

3.1 Baseline Algorithm

We enhance the dynamic programming framework in [1]
to accomodate the introduction of dual V44 buffers, which
is summarized in Table 2. We use the same notation as
in Definition 2 to denote options ® and their components.

499

Moreover, we use cf, EF, Vi¥ and df(cioad) to denote the
input capacitance, the power, the Vi level and the delay
with output load ¢joqq of the buffer by. dn,, and E, (V) are
the delay and the power of the interconnect between nodes
n and v operating at voltage V. The set of available buffers
Set(B) contains both low Vg4 and high Vyq buffers. We first
call DP at the source node ng,., which recursively visits
the children nodes and enumerates all possible options in a
bottom up manner until the entire interconnect tree T,;" © is
traversed.

Algorithm: DP(T,, Set(B))

0. Set(®n) = (c},0,q,, false) if n is a sink
else (0,0, 00, false)
1. for each child v of n
2 Set(®,) = sampled DP(T,)
3. Set(Ptemp) = Set(Prn)
4. Set(®n) =0
5 for each ®; € Set(P,)
6 for each ®; € Set(Premp)
7 for each buffer by € Set(B)
/* also contains the no buffer option ¢ */

8. if by =¢
9. V, = Vg if 0; or 0; is true, else Vg
10. Drew = (¢i + ¢, i + Pt + Eno(Va),

min(g¢, ¢ — dn,v), 0; or 01)

11. else if i. V;* is high; or
ii. V¥ is low and §; is false
12. Prew = (¢b, i + Pt + En,o(V)") + B,
min(ge, ¢ — dn,o — di (Ci + cnw),
0, or (if V¥ = Vi)
13. else goto line 7
14. if i. slew rate violation at down-stream buffers; or
ii. ®pew dominated by any P, € Set(Py,)
15. drop Ppnew
16. else
17. remove all &, € Set(P,,) dominated by Py
18. Set(®,,) = Set(®,) U{Ppew}
19. return Set(P,)

Table 2: Dynamic programming for buffer insertion.

There are several new features in our algorithm in order to
support the insertion of dual V4 buffers. Our implementa-
tion do not explicitly consider the level converter timing and
power overhead at the sinks due to their relative insignifi-
cance to the delay and power of the whole tree. However,
additional operations can be added to line 0 to also support
dual-Vyq sinks and level converter’s overhead consideration.
Line 10 and 12 of Table 2 produce the new options ®,cq
for the cases of no buffer insertion and inserting buffer by
respectively between node n and v. In the case of no buffer
insertion, we set V' to either Vi for high V4 or Vi, for low Vg
at line 9 according to the down-stream high Vg buffer indi-
cators 60;, 6;, and line 10 makes use of V' to update the power
consumed by the interconnect. Note that when 0 = false
(ie. there is no high V44 buffers in the down-stream), only
the low V34 option has to be created since the high V44 coun-
terpart is always inferior. In the case of buffer insertion, we
simply add Ey (ka) according to the operational voltage of
buffer by to pnew and update 6 accordingly. Also note that
we use line 11 to guard against low V34 buffers driving high
Vaa buffers to avoid the need of level converters, as explained
in Section 2.1.

3.2 Power-Delay Sampling

We apply the technique of sampling to reduce the growth
of options, which can go to the order of billions for large nets
if uncontrolled. The idea is to pick only a certain number of

options among all options for up-stream propagation (line
2 of Table 2) in the algorithm DP. Figure 3 shows (a) the
pre-sample and (b) the after-sample option sets under the
same capacitance. Each black dot corresponds to an option.
We divide each side of the bounding box of all options into
equal segments such that the entire power-delay domain are
superposed by a grid. For each grid square in Figure 3(a),
we retain only one option if there is any. By also including
the smallest power option and the largest RAT option, we
obtain the sampled non-dominated option set in Figure 3(b).

RAT RAT

;F

\ Fower

(a)

Power

)
Figure 3: Sampling the non-dominated options.

Note that we do not sample on capacitance values. The
capacitance value in an option is for the purpose of accu-
rate calculation of power and delay in the up-stream of the
tree. Moreover, the number of capacitance values is rela-
tively small due to the upper bound slew rate constraint,
which means that sampling on capacitance value has little
effect anyway.

3.3 Experiment

We test our algorithm on 9 testcases s1 ~ s9 generated by
randomly placing source and sink pins in a lem x 1em box.
We use a rectilinear Steiner tree generation package [14] to
generate the connection between the source and the sink
pins. We also break interconnect between nodes longer than
500um by inserting degree-2 nodes. In this experiment we
assume that every non-terminal nodes are candidate buffer
nodes. We set the RAT at all sinks to 0 so that the objective
becomes minimizing the maximum delay from the source to
any sink. Table 1 lists all the technology related settings.
The slew rate bound § is set to 100ps. We have made buffers
using an inverter cascaded with another inverter which is
four times larger. Buffer sizes used in the experiment are
16x, 32x and 64x. We compare three algorithms, which are
i. power-optimal buffer insertion (PB) algorithm [1] consid-
ering only single (high) Vg4 buffers; ii. SVB for our DVB
algorithm considering only high Vy4 buffers; and iii. DVB
for our DVB algorithm considering dual V4 buffers. In both
SVB and DVB we set the sampling grid to 20 x 20, which
we have found to give good accuracy-runtime trade-off.

Figure 4 shows all non-dominated options at the source
node ngre (i.e. valid solutions) of the testcase s4. We observe
that the sampling approximation introduced by our DVB
algorithm has almost no impact on the power-delay opti-
mality, as the options from SVB follow those from PB very
closely. We also see that introduction of dual V4 buffers in
DVBsignificantly improves the power optimality by pushing
all option to the left of the graph.

Table 3 shows the experimental results for the three algo-
rithms that we consider. Since the power values of SVB are
only 1.7% on average larger than those of PB while delay val-
ues are identical, we omit those for PB to save space. RAT*
is the maximum achievable RAT at the source. The per-

500

-800 T T T

Eena0CORRSANNE060 GRS

& i
/o’ \+SVB
-PB

—-1000
-1200

—1400 —

RAT (ps)

-1600 - T

—1800 = -

000 ! ! ! ! ! ! ! ! !
4000 5000 6000 7000 8000 9000 10000 11000 12000 13000
Energy per switch (fJ)

-2

14000

Figure 4: Non-dominated solutions of s4.

centages in the brackets show the relative change of power
from SVB to those in DVB. Runtime is measured on an Intel
Xeon 1.9Ghz Linux workstation with 2Gb of memory. We
see that on average using dual Vg4 buffers reduces power by
23% compared to the case when only high V4 buffers are
considered at RAT*. When we relax the RAT at the source
to 105% of RAT*, the dual V4 buffer solution saves 26% of
power compared to the high V4 buffer-only solutions. Also
notice that SVB is 17x faster than PB on average.

4. BUFFERED TREE CONSTRUCTION

Using the sampling technique in Section 3.2, we attempt
to extend the algorithms in [6, 7] to handle dual Vg4 buffered
tree construction with power minimization as the objective.
The D-Tree problem is an NP-Hard problem. In fact, in
the case of no BS and blockages, the D-Tree problem is es-
sentially the optimal rectilinear Steiner tree problem and is
known to be NP-Complete. The artifact of the NP-hardness
is the exponential growth of the number of options, which is
complicated by considering power in addition to delay. We
find that if we sample options using a very sparse grid (eg. 2
x 2 grid), we end up losing power optimality by dropping too
many options. However, a denser grid causes catastrophic
increase in runtime if we perform a linear scan for pruning
each time the algorithm creates a new option. Therefore,
solving the D-Tree problem requires a very efficient way of
managing options, which has not been considered in [6, 7].

The data structure in [1] which uses an augmented or-
thogonal search tree for option pruning is a good starting
point. The authors use a hash table labeled by power values
as a container for search trees of capacitance and delay. In
their algorithm they always add the options into the tree in
the order of increasing capacitance. When combined with
their dominance detection scheme, the algorithm adds only
non-dominated options into the tree.

However, we cannot directly apply the data structure and
operations described in [1] to solving the D-Tree problem. In
this problem the order of node traversal is not known a priori
due to the combinatorial nature of path searching. There-
fore we can no longer guarantee the order by which options
are added to the search tree. This may cause dominated op-
tions residing in the search tree, which leads to O((logm)?)
time (where m is the number of options in the tree) per
option addition if balanced trees are used. Moreover, keep-
ing redundant options also worsens the space requirement.
Therefore, we need a way to efficiently prune options from
the tree in order to retain option non-redundancy.

Testcase runtime (s) SVB DVB

net # # PB SVB DVB | power @ | power @ power @Q power @Q
nodes | sinks RAT* 105% RAT* [x] 105% RAT*

() | () [x (tJ)) | RAT* (f]) (tJ) %] (£J) [7]

sl 86 19 3 2[1.5 6 4669 4127 3980 [-15% 3277 [-21%
s2 102 29 4 3[1.3 9 5476 4844 4785 [-13% 3750 [-23%
s3 142 49 17 7125 20 8123 6316 6930 [-15% 4804 [-24%
s4 226 99 224 33 6.8 64 13232 9440 11322 -14% 7876 [-17%
sH 375 199 719 | 86 [8.4 212 18699 15275 13808 [-26%] | 11376 [-26%
s6 515 299 | 2121 | 139 [15] | 371 23443 20117 17239 [-26%] | 14703 [-27%
s7 784 499 | 33419 | 393 [85] | 635 33552 28336 23804 [-29%)] | 20221 [-29%
s§ | 1054 | 699 - 598 1072 38351 33686 25799 [-33%] | 22985 [-32%
s9 | 1188 | 799 - 853 1859 40228 36358 26646 [-34%] | 23045 [-37%

[17] [-23%] [-26%]

Table 3: Experimental result of single

4.1 Dynamic Pruning

We propose an improved data structure, as shown in Fig-
ure 5, similar to the one in [1] but also support solution
pruning from the search trees. We label the hash table us-
ing capacitance instead of power and keep the power and
RAT portion of options in the tree instead. The slew rate
upper bound tends to tightly clamp maximum value of ca-
pacitance and therefore the hash table tends to be smaller,
which results in less search trees.

p=150.q=550

p=80.q=400

[p=7u,q=3su] [p:‘)O,([:4SU] [p:]z().q:SZU] [p:zoo.q=600]

p=50,q=210) [p=754=390 p=180.q=570

Figure 5: Data structure for option pruning.

The search trees are ordered so that at each node the
power value is larger (smaller) than those in the nodes of
the left (right) subtree respectively. We always maintain
the tree so that no option dominates any other. Following
from this, we immediately see that all RAT ¢ are in the
same order as power p, i.e. the ¢ values in the left (right)
subtree of the node n are smaller (larger) than the RAT ¢
of n. Therefore, we do not require explicit maintanance of
the largest RAT in the left subtree as in [1].

Our algorithm to prune dominated options from the tree is
summarized in Table 4. Set(®,), which contains the options
at node n, are organized in the data structure mentioned
above. In the pseudo-code we treat any option ®.,, as a
node in the search tree, and therefore ®.,, — left refers to
the left child of the node storing the option ®¢,.. We use
Ts to denote the subtree rooted at ®. For each capacitance
value that is larger than that in the new option ®,¢., line
2~7 look for the first option Py, in the tree that Preq
domiantes. If one is found, line 8~13 prune the left subtree
of ®@,,¢,, With a single downward pass of the tree, which takes
only O(log m) time for m options in the tree, by making use
of the special tree ordering. The right subtree of ®.y, is
also pruned in a similar fashion. Note that after this step,
options in the Set(®;uni) can be removed and Ppe can
be inserted as usual in a balanced tree in O(logm) time.
Rotation, which helps balancing the tree, requires no label
updating as long as no option in the tree is dominated.

501

and dual V;,; buffer insertion.

Algorithm CleanDominate(®rew, Set(®y))

0. Set(®junk) =0
1. for each distinct capacitance ¢ > Cpeq in Set(®Py,)
2. ®.yr = option at the root of the search tree under c
3 while ®ryr # @
4 case 1: Ppew < Peur;, qnew < Pcur
Peur = Peur — left
5. case 2: Pnew < Pcur; Gnew > deur, g0to line 2
6. case 3: Pnew > Pcur; Gnew < eur, 80to line 9
7. case 4: Pnew > Peur; dnew > Geurs

Deur = Peur — right
8. Set(Pjunk) = Set(®junk) U {Peur}
9. Paom = Peyr — lefi

10. while ®4om # ¢

11. case 1: pnew < Pdom
Set(Pjunk) = Set(Pjunk) U {Pdom, Ta,,,, —»right }
Piom = Paom — left

12. case 2: Pnew > Pdom s
Piom = Paom — Tight

13. repeat line 9~12 with modifications:

i. exchange ‘left’ and ‘right’;
ii. replace ppew and pdom With gnew and gdom; and
iii. exchange ‘<’ and ‘>’

Table 4: Dynamic tree update.

4.2 The D-Tree Algorithm

Table 5 summarizes the D-Tree algorithm. Each option
now stores the “sink set” S and “reachability set” R to keep
track of the sinks and the other nodes that the current op-
tion covers. The algorithm starts by building a grid using
the “escape node algorithm” in [7]. Line 1~4 create the
candidate buffer insertion nodes n¥ by looking for intersec-
tion points between BS and the grid lines (n;,n;). The core
process of creating new options ®pe., considering dual Vg
buffers is the same as that in the DVB algorithm (refer to
line 8-18 of Table 2) with additional book-keeping to track
the routability. The new pruning data structure in Section
4.1 is applied at line 17 for pruning options from Set(®;).

4.3 Experiment

We create 5 testcases gl~gb by randomly generating source
and sink pins in a lem x lem box. We also randomly gen-
erate blockages so that it consumes approximately 30% of
the total area of the box. Horizontal and vertical BS are
randomly scattered in the box so that the average distance
between two consecutive BS is about 1000um. The scales
of these testcases as a result are similar to those in [6]. We
use 32x and 64x buffers. We set the RAT of all sinks to 0 so
that maximizing RAT at the source corresponds to minimiz-
ing the maximum delay from the source to any sink. The

Agorithm DTREFE(ng,., Set(ns), Set(BS), Set(Blockage))

0. {Set(nyp), X(Set(n))} = Grid(Set(n), Set(Blockage))
1. for each node n; € Set(n)
2. for each neighbour node n; € R(n;)
3. Set(n) = Set(n)U{n, created by edge (n;,n;)NSet(BS)}
4. R(ny,) = {ni,n;}; update R(n;),R(n;)
5. Q(2L") = U eser(ng) Set(®7)
6. while Q(®S“") #£ 0
7. @5 = pop Q)
8. for each neighbour n; € R(ncur)
9. for each option ®J € sampled Set(®7)
10. if (@ R)N (P R) =0
11. (form ¥, similar to line 7~14 in Table 2)
12. Prew- R = (P, R)U (Prew-R)
13. Bpew.S = (82.8) U (Ppew.S)
14. if i. slew rate violation at downstream buffers; or
ii. ®pew dominated by any
{2, (Prew.S) C (97,.5), 2], € Set(P],)}
15. drop Prnew
16. else
17. remove {® : (®pew.S) D (1.8), ®J, € Set(®)}
dominated by Pjecw
18. Set(®)) = Set(®) U{Pnew}
19. push Prnew into Q(Peur) if Ny # nsre

Table 5: Dual V;,; buffered tree generation.

slew rate bound § is set to 100ps. We again refer to Table
1 for technology related settings. We compare three cases,
which are i. RMP in [6] for timing-aware buffered tree gen-
eration; ii. S-TREF for our D-Tree algorithm considering
single (high) Vg buffers; and iii. D-TREE for D-Tree algo-
rithm considering dual V4 buffers. Note that in the original
implementation of [6] only options with the smallest capac-
itance under each reachable set are kept, which the authors
claim to have minimal impact on RAT optimality through
experimentation. However, we have found that the validity
of this claim has strong correlation with the positions and
density of the buffer candidate nodes. Therefore we choose
to exclude this speed-up heuristic to avoid losing the optimal
RAT.

Testcase RMP S-TREFE D-TREFE
power power power run-
node | sink | @ RAT* | @ RAT* @ RAT* | time

(pJ) (pd) [% (®d) [%]_| (s)
97 2 1.6 1.6 [0% 1.5 [-7% 1
165 3 3.4 3.4 0% 3.2 -4% 35
137 4 3.9 3.5 [[10%] | 2.9 [-23% 66
261 5 4.9 4.4 13%] | 3.1 [-37% 937
235 6 4.2 3.8 [-10%] | 3.4 [-18%] | 1391

[-7%] [-18%)]

Table 6: Experimental result of timing-aware and
dual Vg4 low power buffered tree generation.

Table 6 shows the experimental results for the five test
cases. We compare the power consumption at the maximum
achievable RAT of each net. The percentages in the brackets
show the reductions of power from the RMP to the D-Tree
formulation with high and dual V44 buffers respectively. We
observe a 7% reduction through power-minimization using
high V44 buffers. Using dual Vg buffers gives 18% of power
reduction over RMP. Note that power-optimal solution con-
sidering high Vz4 alone may not yield a better power as
shown in the first two testcases, but the extra optimization
dimension provided by using dual-Vy4 always helps achieve

502

power savings. D-Tree has 11x longer runtime on average
compared to S-TREE.

5. CONCLUSION AND FUTURE WORK

This paper presents the first in-depth study on applying
dual Vygq buffers to buffer insertion and multi-sink buffered
tree construction for power minimization under delay con-
straint. We develop a sampling-based sub-solutions (i.e. op-
tions) propagation method and a balanced search tree-based
data structure for option pruning to cope with the increased
complexity due to simultaneous delay and power consider-
ation and increased buffer choices. We obtain 17x speedup
with little loss of optimality compared to the exact option
propagation [1]. Extensive experimental results show that
when dual V4 buffers are considered, our algorithm reduces
power by 23% at the minimum delay specification compared
to [1]. Moreover, compared to the delay-optimal tree using
single Vgq buffers [6, 7], our power-optimal buffered tree re-
duces power by 7% and 18% when single V4 and dual Vg
buffers are used respectively.

The power reduction by D-tree depends on slacks available
at sinks. The chip-level slack allocation to maximize power
reduction in dual-vdd FPGA interconnects has been studied
[15]. The slack allocation problem is more complicated for
ASIC and will be studied in the future.

6. REFERENCES

[1] J. Lillis, C. Cheng, and T. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay model,” in
ICCAD, Nov. 1995.

T. Okamoto and J. Cong, “Buffered Steiner tree construction
with wire sizing for interconnect layout optimization,” in
ICCAD, Nov. 1996.

J. Lillis, C. Cheng, and T. Lin, “Simultaneous routing and
buffer insertion for high performance interconnect,” in GLVLSI
Symp., 1996.

C. Alpert, G. Gandham, J. Hu, J. Neves, S. Quay, and

S. Sapatnekar, “Steiner tree optimization for buffers, blockages
and bays,” in ISCAS, May 2001.

J. Hu, C. Alpert, S. Quay, and G. Gandham, “Buffer insertion
with adaptive blockage avoidance,” TCAD, vol. 22, no. 4,

pp. 492-498, 2003.

J. Cong and X. Yuan, “Routing tree construction under fixed
buffer locations,” in DAC, Jun 2000.

W. Chen, M. Pedram, and P. Buch, “Buffered routing tree
construction under buffer placement blockages,” in ASP-DAC,
Jan 2002.

F. Li, Y. Lin, and L. He, “Vdd programmability to reduce fpga
interconnect power,” in ICCAD, Nov 2004.

K. H. Tam and L. He, “Power optimal dual-vdd buffered tree
considering buffer stations and blockages,” in University of
California, Los Angeles, Technical Report, UCLA Engr
05-259, 2005.

H. Bakoglu, Circuits, Interconnects and Packaging for VLSI.
Addison-Wesley, 1990.

K. Banerjee and A. Mehrotra, “A power-optimal repeater
insertion methodology for global interconnects in nanometer
designs,” TCAD, vol. 49, no. 11, pp. 2001-2007, 2002.

C. Alpert, D. Devgan, and C. Kashyap, “RC delay metrics for
performance optimization,” TCAD, vol. 20, no. 5, pp. 571-582,
2001.

“Berkeley predictive technology model,” in
http://www-device. eecs.berkeley.edu/ ptm.

D. Warme, P. Winter, and M. Zachariasen, “Geosteiner,” in
http://www.diku.dk/geosteiner, 2003.

Y. Lin and L. He, “Leakage efficient chip-level dual-vdd
assignment with time slack allocation for fpga power
reduction,” in DAC, Jun 2005.

(2]

(3]

(4]

5]

(6]
(7]

8]

(9]

(10]

(11]

(12]

(13]
(14]

(15]

