
Power Optima l Dual-Vdd Bu ffered Tre e Con sid erin g Bu f fer
Stations and Blockages ∗

King Ho Tam and Lei He
Electrical Engineering Dept.

Univ. of California, Los Angeles, CA 90095, USA

{ktam, lhe}@ee.ucla.edu

ABSTRACT
This paper presents the first in-depth study on applying
dual Vdd buffers to buffer insertion and multi-sink buffered
tree construction for power minimization under delay con-
straint. To tackle the problem of dramatic complexity in-
crement due to simultaneous delay and power consideration
and increased buffer choices, we develop a sampling-based
sub-solutions (i.e. options) propagation method and a bal-
anced search tree-based data structure for option pruning.
We obtain 17x speedup with little loss of optimality com-
pared to the exact option propagation. Moreover, compared
to buffer insertion with single Vdd buffers, dual-Vdd buffers
reduce power by 23% at the minimum delay specification.
In addition, compared to the delay-optimal tree using single
Vdd buffers, our power-optimal buffered tree reduces power
by 7% and 18% at the minimum delay specification when
single Vdd and dual Vdd buffers are used respectively.

Categories and Subject Descriptors: B.7.2[Hardware]:
Integrated circuits – Design aids

General Terms: Algorithms, design

Keywords: Low power, buffer insertion, detail routing

1. INTRODUCTION
Aggressive scaling of VLSI circuits makes interconnects

the performance bottleneck, and buffer insertion is used ex-
tensively to reduce interconnect delay at the expense of more
power dissipation. [1] developed a power-optimal buffer
insertion algorithm to meet the delay specification. The
buffered tree construction problem was studied without buffer
stations (BS) or blockages in [2, 3], and with BS blockage
avoidance in [4, 5, 6, 7]. Power was not considered explic-
itly in [2]-[7]. Recently, Vdd-programmable buffers have been
used to reduce FPGA interconnect power [8]. As buffers are
pre-placed, the dual Vdd buffer routing is simplified to dual
Vdd assignment. However, buffer insertion and buffered tree
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construction, both considering dual Vdd buffers for power
reduction in ASIC designs, are more complicated and have
not been studied.

In this paper, we present the first in-depth study on apply-
ing dual Vdd buffers to buffer insertion (DVB ) and buffered
tree generation (D-Tree ) considering both BS and block-
ages for power minimization under delay constraint. We
first present the dual Vdd buffer model, the DVB and the D-
Tree problem formulations in Section 2. Section 3 and 4 give
the details of the algorithms for solving the DVB and the
D-Tree problems and their respective experimental results.
We conclude the paper in Section 5. More details about
experimental settings and proof of theorems are included in
our technical report [9].

2. PROBLEM FORMULATION

2.1 Delay, Slew Rate and Power Model
We use distributed Elmore delay model as in [6, 4, 7, 5].

The delay due to a piece of wire of length l is given by

d(l) =

„
1

2
· cw · l + cload

«
· rw · l (1)

where cw and rw are the unit length capacitance and resis-
tance of the interconnect and cload is the capacitive loading
at the end of the wire. We also use Elmore delay times ln 9
as the slew rate metric [10]. The delay of a buffer (which
is composed of two-stage cascaded inverters in our study) is
given by

dbuf = db + ro · cload (2)

where db, ro and cload are the intrinsic delay, output re-
sistance and capacitive loading at the output of the buffer
respectively. We obtain ro and db for both high Vdd and low
Vdd buffers, and we observe that both values are higher for
low Vdd buffers.

In the context of buffer insertion with upper bound on
slew rate, we observe that slew rates at the buffer inputs
and the sinks are always within up to only a few tens ps
of the upper bound. Therefore we model buffer delay with
negligible error by approximating input slew rate using the
upper bound. The idea of the reasoning behind is that the
buffer insertion length for delay-optimal buffer insertion is
much longer than that for the sake of satisfying the slew rate
constraint. This can be verified using the formulae in [11].
We leave the detailed explanation to our technical report due
to space limit here. Note that more accurate slew rate and
delay models that support bottom up (i.e. sink-to-source)
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calculation such as [12] can be used instead without the need
to change the algorithms proposed in this work.

Settings Values
Simulators Magma’s QuickCap (interconnect)

BSIM 4 + SPICE [13] (device)
Interconnect rw = 0.186Ω/µm, cw = 0.0519fF/µm

(65nm, global, min space and width)
Buffer cin = 0.47fF , V H

dd = 1.2V , V L
dd = 0.9V

(min size) rH
o = 4.7kΩ, dH

b = 72ps, EH
b = 84fJ

rL
o = 5.4kΩ, dL

b = 98ps, EL
b = 34fJ

Level converter cin = 0.47fF , ELC = 5.7fJ
(min size) dLC = 220ps

Table 1: Settings for the 65nm global interconnect.

We measure interconnect power by energy per switch. The
energy per switch for an interconnect wire of length l is

Ew = 0.5 · cw · l · V 2
dd (3)

We collapse per switch short-circuit and dynamic power con-
sumed by a buffer into a single value Eb, which is a function
of both Vdd and buffer size. We observe that low Vdd buffers
have a much smaller energy EL

b than the same-sized high
Vdd counterpart’s energy EH

b . In our current model we do
not consider leakage power consumption just to avoid the
need to assume operating conditions such as frequency and
switching activity, tuning which can significantly temper the
experimental results. Considering leakage tends to boost the
power saving from dual-Vdd buffer insertion, however, espe-
cially in the deep sub-micron regime. To consider leakage,
we can simply add the leakage component Pleak

f·Sact
to Equation

(3), where Pleak, f and Sact are leakage power consumed by
buffers, frequency and switching activity respectively.

2.2 Dual Vdd Technique
Dual Vdd buffering uses both high Vdd and low Vdd buffers

in interconnect synthesis. Designs using low Vdd buffers
consume less buffer Ebuf and interconnect power (Equa-
tion (3)). Applying this technique to non-critical paths, we
achieve power saving without worsening the delay of the
overall interconnect tree.

We only allow high Vdd buffers followed by low Vdd buffers
but not the reverse. A high Vdd buffer can drive a low Vdd

buffer, but a low Vdd buffer driving a high Vdd one may
cause a large leakage power. Therefore, a Vdd-level con-
verter must be inserted between the low Vdd buffer and its
high Vdd fanout buffers. We assume that the driver at the
source operates at high Vdd and a Vdd-level converter can
only be placed at a sink if it is driven by a low Vdd buffer.
The power and delay overhead from a Vdd-level converters
makes it prohibitive to be used inside the interconnect tree.
To illustrate, consider a simple case in Figure 1. The con-
figuration in (a) must have a larger power than that in (b)
due to the the level converter and the fact that the low Vdd

buffer instead of the high Vdd buffer is driving the load Cl.
To have the delay of case (b) larger than that of (a), we
require

(RL
b −RH

b )·Cl+RH
b ·CL

b −RL
b ·CLC−RLC ·CH

b −dLC ≥ 0 (4)

where dLC is the intrinsic delay of the level converter and
all other parameters are shown in Figure 1. We try all com-
binations of buffer sizes (16x, 32x, 64x in our study) and

properly-sized level converters. The parameters of these
buffers and level converters are not included due to space
limit, but they can be derived using the same methods noted
in Table 1. We find that Cl has to be at least 0.5pF , or
equivalently a 9mm long global interconnect worth of capac-
itance, for Equation (4) to become true, which is extremely
unlikely in any buffered interconnect design. Therefore (b),
which has no level converter, is very likely to be a superior
design than (a). This justifies excluding level converters in
our study, which saves runtime by considering a smaller and
more productive solution space.
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Figure 1: Demonstrating level converter overhead.

2.3 Dual Vdd Buffer Insertion Problem
We assume that the loading capacitance and the required

arrival times (RAT) qs
n are given at all sink terminals ns. We

assume that the driver resistance at the source node nsrc is
given. We also assume that all types of buffers can be placed
only at the buffer candidate nodes nk

b . We use the RAT at
the source nsrc to measure delay performance. Our goal is
to minimize power of the interconnect subject to the RAT
constraint at the source nsrc.

Definition 1. The required arrival time (RAT) qn at node
n is defined as

qn = min
ns∀s

(qs
n − d(ns, n))

where d(ns, n) is the delay from the sink node ns to n.

Dual Vdd Buffer Insertion (DVB ) – Given an inter-
connect fanout tree which consists of a source node nsrc,
sink nodes ns, Steiner nodes np, candidate buffer nodes nb

and the connection topology among them, the DVB Prob-
lem is to find a buffer placement, a buffer size assignment
and a Vdd level assignment solution such that the RAT qsrc

n

at the source nsrc is met and the power consumed by the in-
terconnect tree is minimized, while slew rate at every input
of the buffers and the sinks ns are upper bounded by ŝ.

2.4 Dual Vdd Buffered Tree Construction
We measure the delay and power performance using the

same metric as in the DVB formulation. Assuming that a
floorplan of the layout is available, we can identify locations
and shapes of rectangular blockages, which allow wiring on
top but forbid buffer insertion, and locations of buffer sta-
tions (BS) which are the allocated space for buffer insertion.
Therefore we have the following problem formulation.

Dual Vdd Buffered Tree Construction (D-Tree ) –
Given locations of a source node nsrc, sink nodes ns, block-
ages and BS, the D-Tree problem is to find the minimum
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power embedded rectilinear spanning tree with a buffer place-
ment, buffer sizes and a Vdd assignment on the floorplan that
satisfy the RAT qsrc

n constraint at the source nsrc and the
slew rate bound ŝ at every input of the buffers and the sinks
ns.

In the D-Tree problem, we have alternative tree topologies
as an extra dimension over the DVB problem for optimiza-
tion. Two D-Tree solutions are shown in Figure 2. The
large rectangle and the black dots are the blockage and the
BS respectively. Both cases achieve the same RAT at the
source nsrc. However, (a) has to go across a wide blockage
and therefore has to rely on running a long high Vdd net. An
alternative route is shown in Figure 2(b) in which it chooses
to go around the blockage so that it can insert more buffers
to achieve the same delay while keeping the long route at
low Vdd, which turns out to save power compared to (a).
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Figure 2: Routing as a design freedom for power.

3. BUFFER INSERTION
Power-optimal solutions are constructed from partial so-

lutions from the subtrees. We call them as options, which
are defined below.

Definition 2. An option Φn at the node n refers to the
buffer placement, size and Vdd assignment for the subtree Tn

rooted at n. To perform delay and power optimization, the
option is represented as a 4-tuple (cn, pn, qn, θn), where cn

is the down-stream capacitance at n, pn is the total power
of Tn, qn is the RAT at n and θn signifies whether there
exists any high Vdd buffer at the down-stream. The option
with the smallest power psrc

n at the source node nsrc is the
power-optimal solution.

Our algorithm is based on [1] with a few improvements.
We add support for dual Vdd buffer insertion without level
converters. We also improve the runtime by introducing uni-
form sampling of the options under each capacitance value
to reduce the number of options generated with negligible
loss of optimality. To facilitate explanation, we define the
concept of option dominance here.

Definition 3. An option Φ1 = (c1, p1, q1, θ1) dominates
another option Φ2 = (c2, p2, q2, θ2) if c1 ≤ c2, p1 ≤ p2 and
q1 ≥ q2.

3.1 Baseline Algorithm
We enhance the dynamic programming framework in [1]

to accomodate the introduction of dual Vdd buffers, which
is summarized in Table 2. We use the same notation as
in Definition 2 to denote options Φ and their components.

Moreover, we use ck
b , Ek

b , V k
b and dk

b (cload) to denote the
input capacitance, the power, the Vdd level and the delay
with output load cload of the buffer bk. dn,v and En,v(V ) are
the delay and the power of the interconnect between nodes
n and v operating at voltage V . The set of available buffers
Set(B) contains both low Vdd and high Vdd buffers. We first
call DP at the source node nsrc, which recursively visits
the children nodes and enumerates all possible options in a
bottom up manner until the entire interconnect tree T src

n is
traversed.

Algorithm: DP (Tn, Set(B))
0. Set(Φn) = (cs

n, 0, qs
n, false) if n is a sink

else (0, 0,∞, false)
1. for each child v of n
2. Set(Φv) = sampled DP (Tv)
3. Set(Φtemp) = Set(Φn)
4. Set(Φn) = ∅
5. for each Φi ∈ Set(Φv)
6. for each Φt ∈ Set(Φtemp)
7. for each buffer bk ∈ Set(B)

/* also contains the no buffer option φ */
8. if bk = φ
9. Vn = VH if θi or θt is true, else VL

10. Φnew = (ci + ct, pi + pt + En,v(Vn),
min(qt, qi − dn,v), θi or θt)

11. else if i. V k
b is high; or

ii. V k
b is low and θi is false

12. Φnew = (cb, pi + pt + En,v(V k
b ) + Ek

b ,

min(qt, qi − dn,v − dk
b (ci + cn,v),

θt or (if V k
b = VH ))

13. else goto line 7
14. if i. slew rate violation at down-stream buffers; or

ii. Φnew dominated by any Φz ∈ Set(Φn)
15. drop Φnew

16. else
17. remove all Φz ∈ Set(Φn) dominated by Φnew

18. Set(Φn) = Set(Φn) ∪ {Φnew}
19. return Set(Φn)

Table 2: Dynamic programming for buffer insertion.

There are several new features in our algorithm in order to
support the insertion of dual Vdd buffers. Our implementa-
tion do not explicitly consider the level converter timing and
power overhead at the sinks due to their relative insignifi-
cance to the delay and power of the whole tree. However,
additional operations can be added to line 0 to also support
dual-Vdd sinks and level converter’s overhead consideration.
Line 10 and 12 of Table 2 produce the new options Φnew

for the cases of no buffer insertion and inserting buffer bk

respectively between node n and v. In the case of no buffer
insertion, we set V to either VH for high Vdd or VL for low Vdd

at line 9 according to the down-stream high Vdd buffer indi-
cators θi, θj , and line 10 makes use of V to update the power
consumed by the interconnect. Note that when θ = false
(ie. there is no high Vdd buffers in the down-stream), only
the low Vdd option has to be created since the high Vdd coun-
terpart is always inferior. In the case of buffer insertion, we
simply add En,v(V k

b ) according to the operational voltage of
buffer bk to pnew and update θ accordingly. Also note that
we use line 11 to guard against low Vdd buffers driving high
Vdd buffers to avoid the need of level converters, as explained
in Section 2.1.

3.2 Power-Delay Sampling
We apply the technique of sampling to reduce the growth

of options, which can go to the order of billions for large nets
if uncontrolled. The idea is to pick only a certain number of
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options among all options for up-stream propagation (line
2 of Table 2) in the algorithm DP . Figure 3 shows (a) the
pre-sample and (b) the after-sample option sets under the
same capacitance. Each black dot corresponds to an option.
We divide each side of the bounding box of all options into
equal segments such that the entire power-delay domain are
superposed by a grid. For each grid square in Figure 3(a),
we retain only one option if there is any. By also including
the smallest power option and the largest RAT option, we
obtain the sampled non-dominated option set in Figure 3(b).

Power

RAT

Power

RAT

(a) (b)

Figure 3: Sampling the non-dominated options.

Note that we do not sample on capacitance values. The
capacitance value in an option is for the purpose of accu-
rate calculation of power and delay in the up-stream of the
tree. Moreover, the number of capacitance values is rela-
tively small due to the upper bound slew rate constraint,
which means that sampling on capacitance value has little
effect anyway.

3.3 Experiment
We test our algorithm on 9 testcases s1 ∼ s9 generated by

randomly placing source and sink pins in a 1cm x 1cm box.
We use a rectilinear Steiner tree generation package [14] to
generate the connection between the source and the sink
pins. We also break interconnect between nodes longer than
500µm by inserting degree-2 nodes. In this experiment we
assume that every non-terminal nodes are candidate buffer
nodes. We set the RAT at all sinks to 0 so that the objective
becomes minimizing the maximum delay from the source to
any sink. Table 1 lists all the technology related settings.
The slew rate bound ŝ is set to 100ps. We have made buffers
using an inverter cascaded with another inverter which is
four times larger. Buffer sizes used in the experiment are
16x, 32x and 64x. We compare three algorithms, which are
i. power-optimal buffer insertion (PB) algorithm [1] consid-
ering only single (high) Vdd buffers; ii. SVB for our DVB
algorithm considering only high Vdd buffers; and iii. DVB
for our DVB algorithm considering dual Vdd buffers. In both
SVB and DVB we set the sampling grid to 20 x 20, which
we have found to give good accuracy-runtime trade-off.

Figure 4 shows all non-dominated options at the source
node nsrc (i.e. valid solutions) of the testcase s4. We observe
that the sampling approximation introduced by our DVB
algorithm has almost no impact on the power-delay opti-
mality, as the options from SVB follow those from PB very
closely. We also see that introduction of dual Vdd buffers in
DVB significantly improves the power optimality by pushing
all option to the left of the graph.

Table 3 shows the experimental results for the three algo-
rithms that we consider. Since the power values of SVB are
only 1.7% on average larger than those of PB while delay val-
ues are identical, we omit those for PB to save space. RAT*
is the maximum achievable RAT at the source. The per-
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Figure 4: Non-dominated solutions of s4.

centages in the brackets show the relative change of power
from SVB to those in DVB. Runtime is measured on an Intel
Xeon 1.9Ghz Linux workstation with 2Gb of memory. We
see that on average using dual Vdd buffers reduces power by
23% compared to the case when only high Vdd buffers are
considered at RAT*. When we relax the RAT at the source
to 105% of RAT*, the dual Vdd buffer solution saves 26% of
power compared to the high Vdd buffer-only solutions. Also
notice that SVB is 17x faster than PB on average.

4. BUFFERED TREE CONSTRUCTION
Using the sampling technique in Section 3.2, we attempt

to extend the algorithms in [6, 7] to handle dual Vdd buffered
tree construction with power minimization as the objective.
The D-Tree problem is an NP-Hard problem. In fact, in
the case of no BS and blockages, the D-Tree problem is es-
sentially the optimal rectilinear Steiner tree problem and is
known to be NP-Complete. The artifact of the NP-hardness
is the exponential growth of the number of options, which is
complicated by considering power in addition to delay. We
find that if we sample options using a very sparse grid (eg. 2
x 2 grid), we end up losing power optimality by dropping too
many options. However, a denser grid causes catastrophic
increase in runtime if we perform a linear scan for pruning
each time the algorithm creates a new option. Therefore,
solving the D-Tree problem requires a very efficient way of
managing options, which has not been considered in [6, 7].

The data structure in [1] which uses an augmented or-
thogonal search tree for option pruning is a good starting
point. The authors use a hash table labeled by power values
as a container for search trees of capacitance and delay. In
their algorithm they always add the options into the tree in
the order of increasing capacitance. When combined with
their dominance detection scheme, the algorithm adds only
non-dominated options into the tree.

However, we cannot directly apply the data structure and
operations described in [1] to solving the D-Tree problem. In
this problem the order of node traversal is not known a priori
due to the combinatorial nature of path searching. There-
fore we can no longer guarantee the order by which options
are added to the search tree. This may cause dominated op-
tions residing in the search tree, which leads to O((log m)2)
time (where m is the number of options in the tree) per
option addition if balanced trees are used. Moreover, keep-
ing redundant options also worsens the space requirement.
Therefore, we need a way to efficiently prune options from
the tree in order to retain option non-redundancy.
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Testcase runtime (s) SVB DVB
net # # PB SVB DVB power @ power @ power @ power @

nodes sinks RAT* 105% RAT* [x] 105% RAT*
(s) (s) [x] (fJ) RAT* (fJ) (fJ) [%] (fJ) [%]

s1 86 19 3 2 [1.5] 6 4669 4127 3980 [-15%] 3277 [-21%]
s2 102 29 4 3 [1.3] 9 5476 4844 4785 [-13%] 3750 [-23%]
s3 142 49 17 7 [2.5] 20 8123 6316 6930 [-15%] 4804 [-24%]
s4 226 99 224 33 [6.8] 64 13232 9440 11322 [-14%] 7876 [-17%]
s5 375 199 719 86 [8.4] 212 18699 15275 13808 [-26%] 11376 [-26%]
s6 515 299 2121 139 [15] 371 23443 20117 17239 [-26%] 14703 [-27%]
s7 784 499 33419 393 [85] 635 33552 28336 23804 [-29%] 20221 [-29%]
s8 1054 699 - 598 1072 38351 33686 25799 [-33%] 22985 [-32%]
s9 1188 799 - 853 1859 40228 36358 26646 [-34%] 23045 [-37%]

[17] [-23%] [-26%]

Table 3: Experimental result of single and dual Vdd buffer insertion.

4.1 Dynamic Pruning
We propose an improved data structure, as shown in Fig-

ure 5, similar to the one in [1] but also support solution
pruning from the search trees. We label the hash table us-
ing capacitance instead of power and keep the power and
RAT portion of options in the tree instead. The slew rate
upper bound tends to tightly clamp maximum value of ca-
pacitance and therefore the hash table tends to be smaller,
which results in less search trees.

c = 28

c = 25

c = 10 p = 100, q = 500

p = 150, q = 550

p = 120, q = 520

p = 180, q = 570

p = 200, q =600

p = 80, q = 400

p = 50, q = 210 p = 75, q = 390

p = 70, q = 380 p = 90, q = 450

...

Figure 5: Data structure for option pruning.

The search trees are ordered so that at each node the
power value is larger (smaller) than those in the nodes of
the left (right) subtree respectively. We always maintain
the tree so that no option dominates any other. Following
from this, we immediately see that all RAT q are in the
same order as power p, i.e. the q values in the left (right)
subtree of the node n are smaller (larger) than the RAT q
of n. Therefore, we do not require explicit maintanance of
the largest RAT in the left subtree as in [1].

Our algorithm to prune dominated options from the tree is
summarized in Table 4. Set(Φn), which contains the options
at node n, are organized in the data structure mentioned
above. In the pseudo-code we treat any option Φcur as a
node in the search tree, and therefore Φcur → left refers to
the left child of the node storing the option Φcur. We use
TΦ to denote the subtree rooted at Φ. For each capacitance
value that is larger than that in the new option Φnew, line
2∼7 look for the first option Φcur in the tree that Φnew

domiantes. If one is found, line 8∼13 prune the left subtree
of Φnew with a single downward pass of the tree, which takes
only O(log m) time for m options in the tree, by making use
of the special tree ordering. The right subtree of Φcur is
also pruned in a similar fashion. Note that after this step,
options in the Set(Φjunk) can be removed and Φnew can
be inserted as usual in a balanced tree in O(log m) time.
Rotation, which helps balancing the tree, requires no label
updating as long as no option in the tree is dominated.

Algorithm CleanDominate(Φnew, Set(Φn))
0. Set(Φjunk) = ∅
1. for each distinct capacitance c > cnew in Set(Φn)
2. Φcur = option at the root of the search tree under c
3. while Φcur �= φ
4. case 1: pnew < pcur , qnew < pcur,

Φcur = Φcur → left
5. case 2: pnew < pcur , qnew > qcur, goto line 2
6. case 3: pnew > pcur , qnew < qcur, goto line 9
7. case 4: pnew > pcur , qnew > qcur,

Φcur = Φcur → right
8. Set(Φjunk) = Set(Φjunk) ∪ {Φcur}
9. Φdom = Φcur → left
10. while Φdom �= φ
11. case 1: pnew < pdom,

Set(Φjunk) = Set(Φjunk) ∪ {Φdom, TΦdom→right}
Φdom = Φdom → left

12. case 2: pnew > pdom,
Φdom = Φdom → right

13. repeat line 9∼12 with modifications:
i. exchange ‘left’ and ‘right’;
ii. replace pnew and pdom with qnew and qdom; and
iii. exchange ‘<’ and ‘>’

Table 4: Dynamic tree update.

4.2 The D-Tree Algorithm
Table 5 summarizes the D-Tree algorithm. Each option

now stores the “sink set” S and “reachability set” R to keep
track of the sinks and the other nodes that the current op-
tion covers. The algorithm starts by building a grid using
the “escape node algorithm” in [7]. Line 1∼4 create the
candidate buffer insertion nodes nk

b by looking for intersec-
tion points between BS and the grid lines (ni, nj). The core
process of creating new options Φnew considering dual Vdd

buffers is the same as that in the DVB algorithm (refer to
line 8-18 of Table 2) with additional book-keeping to track
the routability. The new pruning data structure in Section
4.1 is applied at line 17 for pruning options from Set(Φj).

4.3 Experiment
We create 5 testcases g1∼g5 by randomly generating source

and sink pins in a 1cm x 1cm box. We also randomly gen-
erate blockages so that it consumes approximately 30% of
the total area of the box. Horizontal and vertical BS are
randomly scattered in the box so that the average distance
between two consecutive BS is about 1000µm. The scales
of these testcases as a result are similar to those in [6]. We
use 32x and 64x buffers. We set the RAT of all sinks to 0 so
that maximizing RAT at the source corresponds to minimiz-
ing the maximum delay from the source to any sink. The
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Algorithm DTREE(nsrc, Set(ns), Set(BS), Set(Blockage))
0. {Set(np), ℵ(Set(n))} = Grid(Set(n), Set(Blockage))
1. for each node ni ∈ Set(n)
2. for each neighbour node nj ∈ ℵ(ni)
3. Set(n) = Set(n)∪{np created by edge (ni, nj)∩Set(BS)}
4. ℵ(np) = {ni, nj}; update ℵ(ni),ℵ(nj)
5. Q(Φcur

n ) =
S

ns∈Set(ns) Set(Φs
n)

6. while Q(Φcur
n ) �= ∅

7. Φcur
n = pop Q(Φcur

n )
8. for each neighbour nj ∈ ℵ(ncur)
9. for each option Φj

n ∈ sampled Set(Φj
n)

10. if (Φj
n.R) ∩ (Φcur

n .R) = ∅
11. (form Φnew similar to line 7∼14 in Table 2)

12. Φnew.R = (Φj
n.R) ∪ (Φnew.R)

13. Φnew.S = (Φj
n.S) ∪ (Φnew.S)

14. if i. slew rate violation at downstream buffers; or
ii. Φnew dominated by any

{Φj
n : (Φnew.S) ⊆ (Φj

n.S), Φj
n ∈ Set(Φj

n)}
15. drop Φnew

16. else

17. remove {Φj
n : (Φnew.S) ⊇ (Φj

n.S), Φj
n ∈ Set(Φj

n)}
dominated by Φnew

18. Set(Φj
n) = Set(Φj

n) ∪ {Φnew}
19. push Φnew into Q(Φcur) if nj �= nsrc

Table 5: Dual Vdd buffered tree generation.

slew rate bound ŝ is set to 100ps. We again refer to Table
1 for technology related settings. We compare three cases,
which are i. RMP in [6] for timing-aware buffered tree gen-
eration; ii. S-TREE for our D-Tree algorithm considering
single (high) Vdd buffers; and iii. D-TREE for D-Tree algo-
rithm considering dual Vdd buffers. Note that in the original
implementation of [6] only options with the smallest capac-
itance under each reachable set are kept, which the authors
claim to have minimal impact on RAT optimality through
experimentation. However, we have found that the validity
of this claim has strong correlation with the positions and
density of the buffer candidate nodes. Therefore we choose
to exclude this speed-up heuristic to avoid losing the optimal
RAT.

Testcase RMP S-TREE D-TREE
# # power power power run-

node sink @ RAT* @ RAT* @ RAT* time
(pJ) (pJ) [%] (pJ) [%] (s)

97 2 1.6 1.6 [0%] 1.5 [-7%] 1
165 3 3.4 3.4 [0%] 3.2 [-4%] 35
137 4 3.9 3.5 [-10%] 2.9 [-23%] 66
261 5 4.9 4.4 [-13%] 3.1 [-37%] 937
235 6 4.2 3.8 [-10%] 3.4 [-18%] 1391

[-7%] [-18%]

Table 6: Experimental result of timing-aware and
dual Vdd low power buffered tree generation.

Table 6 shows the experimental results for the five test
cases. We compare the power consumption at the maximum
achievable RAT of each net. The percentages in the brackets
show the reductions of power from the RMP to the D-Tree
formulation with high and dual Vdd buffers respectively. We
observe a 7% reduction through power-minimization using
high Vdd buffers. Using dual Vdd buffers gives 18% of power
reduction over RMP. Note that power-optimal solution con-
sidering high Vdd alone may not yield a better power as
shown in the first two testcases, but the extra optimization
dimension provided by using dual-Vdd always helps achieve

power savings. D-Tree has 11x longer runtime on average
compared to S-TREE.

5. CONCLUSION AND FUTURE WORK
This paper presents the first in-depth study on applying

dual Vdd buffers to buffer insertion and multi-sink buffered
tree construction for power minimization under delay con-
straint. We develop a sampling-based sub-solutions (i.e. op-
tions) propagation method and a balanced search tree-based
data structure for option pruning to cope with the increased
complexity due to simultaneous delay and power consider-
ation and increased buffer choices. We obtain 17x speedup
with little loss of optimality compared to the exact option
propagation [1]. Extensive experimental results show that
when dual Vdd buffers are considered, our algorithm reduces
power by 23% at the minimum delay specification compared
to [1]. Moreover, compared to the delay-optimal tree using
single Vdd buffers [6, 7], our power-optimal buffered tree re-
duces power by 7% and 18% when single Vdd and dual Vdd

buffers are used respectively.
The power reduction by D-tree depends on slacks available

at sinks. The chip-level slack allocation to maximize power
reduction in dual-vdd FPGA interconnects has been studied
[15]. The slack allocation problem is more complicated for
ASIC and will be studied in the future.
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