
Physically-Aware HW-SW Partitioning for Reconfigurable
Architectures with Partial Dynamic Reconfiguration †

Sudarshan Banerjee Elaheh Bozorgzadeh Nikil Dutt
Center for Embedded Computer Systems
University of California, Irvine, CA, USA

{banerjee,eli,dutt}@ics.uci.edu

ABSTRACT
Many reconfigurable architectures offer partial dynamic configura-
bility, but current system-level tools cannot guarantee feasible im-
plementations when exploiting this feature. We present a physically
aware hardware-software (HW-SW) scheme for minimizing appli-
cation execution time under HW resource constraints, where the
HW is a reconfigurable architecture with partial dynamic reconfig-
uration capability. Such architectures impose strict placement con-
straints that lead to implementation infeasibility of even optimal
scheduling formulations that ignore the nature of these constraints.
We propose an exact and a heuristic formulation that simultane-
ously partition, schedule, and do linear placement of tasks on such
architectures. With our exact formulation, we prove the critical
nature of placement constraints. We demonstrate that our heuris-
tic generates high-quality schedules by comparing the results with
the exact formulation for small tests and a popular, but placement-
uanaware scheduling heuristic for larger tests. With a case study,
we demonstrate extension of our approach to handle heterogenous
architectures with specialized resources distributed between gen-
eral purpose programmable logic columns. The execution time of
our heuristic is very reasonable- task graphs with hundreds of nodes
are processed in a couple of minutes.
Categories and Subject Descriptors: B.6.3 [C.1.3]
General Terms: Algorithms
Keywords: HW-SW partitioning, partial dynamic reconfiguration,
linear placement

1. INTRODUCTION
Dynamic reconfiguration, often referred to as RTR (run-time re-

configuration) provides the ability to change hardware configura-
tion during application execution. This enables a larger percentage
of the application to be accelerated in hardware, hence reducing
overall application execution time [12]. Modern-day SRAM-based
FPGAs are examples of such hardware devices. Additionally, some
FPGAs such as the Virtex devices from Xilinx [17] allow modifica-
tion of only a part of the configuration (partial RTR). This is a very
powerful feature specially for single-context FPGAs, by enabling
the possibility of overlapping computation with reconfiguration to
reduce the significant reconfiguration time overhead. Multicontext

†This work was partially supported by NSF Grants CCR-0203813
and CCR-0205712
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

devices such as Morphosys [5] incur a lower overhead by paying a
very significant area penalty to simultaneously store multiple con-
texts. Our work focuses on single-context devices where the dy-
namic reconfiguration overhead is very significant.

In this work, we consider the problem of task level HW-SW par-
titioning for a resource-constrained system, where the HW device
has partial RTR capability. In a traditional codesign flow, HW-SW
partitioning optimizes the design latency– subsequently the physi-
cal design stage places the tasks scheduled to HW on the underlying
device. However, our target system architecture imposes strict lin-
ear placement constraints. Under such constraints, even an optimal
schedule generated without considering the exact physical location
of the task [7], may be physically unrealizable because of place-
ment infeasibility.

This work makes several contributions:
• We demonstrate that existing approaches that do not consider
physical task layout can result in unrealizable (infeasible) designs.
• We outline an exact approach that incorporates physical layout.
• We present a KLFM heuristic incorporating detailed linear place-
ment that generates good results on a large set of benchmarks.
• We show applicability of our work to heterogenous architectures.

A key benefit of considering placement and multiple task imple-
mentations is the ability to extend our approach to consider hetero-
geneity with relatively minor modifications. Heterogeneity is a key
aspect of modern reconfigurable architectures like the Virtex-II that
contain dedicated resource columns of multipliers, block memories
distributed between general purpose programmable logic columns.
Such dedicated resources often lead to more area-efficient imple-
mentations that operate at a higher frequency. In a detailed case
study of mapping a jpeg encoder task graph under resource con-
straints, we explore the benefits and issues with dynamic task im-
plementations using heterogenous resources on such architectures.

2. RELATED WORK
HW-SW partitioning is an extensively studied problem with a

plethora of approaches, including many KLFM-based approaches
(Kernighan-Lin/Fiduccia-Matheyes, [15], [14]) such as [8], [11].
However, existing work often does not consider the special chal-
lenges posed by dynamic reconfiguration– partial RTR imposes
more physical constraints that need to be incorporated explicitly.

Recently there has been work on simultaneous scheduling and
placement for partially reconfigurable devices [1], [4]. However,
they ignore key issues in run-time reconfiguration such as prefetch
to overcome latency, the resource contention due to single recon-
figuration controller, etc. With these simplifications, the problem
becomes closer to rectangle packing [13]. Another approach to re-
ducing the significant reconfiguration overhead is reuse, where the
work often considers all tasks to be of equal area and focuses on
exploiting similarity between a given set of scheduled tasks [2]. In

20.2

335

 SW

memory

FPGA
Shared memory

HW-SW communication

Figure 1: System architecture

v

v

v

v

v v

3

6

5

4

1 2

Figure 2: Dependency task graph

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

����
����
����

H
ei

gh
t CLB

Width

Frameresource
Heterogenous

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3: Heterogenous FPGA with partial RTR

our work, we currently do not exploit such resource-sharing across
tasks. We focus on integrating key architectural constraints and
placement considerations into the scheduling formulation for the
more realistic scenario of varying task sizes.

Our work is most closely related to [6] and [7]. Mei et al. [6]
present a genetic algorithm for partial RTR that considers colum-
nar task placement. However, their approach does not consider
prefetch or the single reconfiguration controller bottleneck. Jeong
et al. [7] present an exact algorithm (ILP) and a KLFM-based
approach. Their ILP considers prefetch and the single reconfigu-
ration controller bottleneck– however, while scheduling, they do
not consider the critical issue of physical task placement. We will
demonstrate that an optimal formulation that does not simultane-
ously consider placement while scheduling can generate schedules
which can not be placed and hence are not physically realizable.
Another distinctive feature of our work compared to existing work
is our consideration of heterogeneity in resources, a key feature of
modern reconfigurable architectures.

3. PROBLEM DESCRIPTION
We consider the problem of HW-SW partitioning of an applica-

tion specified as a task dependency graph extracted from a func-
tional specification in a high-level language like C, VHDL, etc. In
a task dependency graph (Figure 2), each vertex represents a task
that can start execution only when all its ancestors have completed.

Our target system architecture as shown in Figure 1 consists of a
SW processor and a dynamically reconfigurable FPGA with partial
reconfiguration capability. The processor and the FPGA commu-
nicate by a system bus. We assume concurrent execution of the
processor and the FPGA. We assume that the dynamically recon-
figurable tasks on the FPGA communicate via a shared memory
mechanism– this shared memory can be physically mapped to local
on-chip memory and/or off-chip memory depending upon memory
requirements of the application. Under this abstraction, communi-
cation time between two tasks mapped to the FPGA is independent
of their physical placement. Thus, when adjacent tasks in the task
graph are mapped to the same device (processor or FPGA), the
communication overhead is considered insignificant, while tasks
mapped to different devices incur a HW-SW communication delay.

On such a system architecture, a task can have multiple imple-
mentations: as a simple example, compiler optimizations like loop
unrolling often result in a faster implementation with more HW
area. Another example is the possibility of a very area-efficient
implementation using dedicated resources like embedded memory.

Our objective is to minimize the execution time of the applica-
tion while respecting the architectural and resource constraints im-
posed by the system architecture. Thus, our desired solution is a
task schedule where each task is bound to HW or SW along with a
suitable implementation point for each task.
Dynamically reconfigurable FPGA

Our target dynamically reconfigurable device as shown in Fig-
ure 3 consists of a set of configurable logic blocks (CLB) arranged
in a two-dimensional matrix. Additionally, a limited number of

C4C3C2C1

11

E
x
ec

u
ti

o
n
 t

im
e

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2t

t1 ���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

T
T

T

2

3

Figure 4: Simple infeasible

1

Time

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

2

C9C8C7C6C5C4C3C2C1

 10

9

8

7

6

5

4

3

T

8T

7T

6T

5T

4T 3T

1T2T

10

9T

Figure 5: Detailed infeasible
specialized resource columns are distributed between CLB columns
(the Xilinx Virtex-II architecture is an example of such a device).
The basic unit of configuration for such a device is a frame span-
ning the height of the device. A column of resources consists of
multiple frames. A task occupies a contiguous set of columns.
Such a device is configured through a bit-serial configuration port
like JTAG or a byte-parallel port. However, only one reconfigura-
tion can be active at any time instant. The reconfiguration time of
a task is directly proportional to the number of columns (frames)
occupied by the task implementation.

4. KEY ISSUES IN SCHEDULING
4.1 Criticality of linear task placement

Each task implementation mapped to the target reconfigurable
device occupies a set of adjacent columns. Under our abstraction
that communication between such tasks is realized through a shared
memory accessible from each task, task placement on such a device
reduces to simple linear placement.

LEMMA 1. For a given scheduled task graph with inter-task
communication via shared memory and equal size tasks, a feasi-
ble and optimal placement is guaranteed and can be generated in
polynomial time.

PROOF. The problem for equal sized tasks reduces to graph col-
oring on interval graphs and thus efficient algorithms like left-edge
algorithm can be applied [3]. More details in [16].

However, for tasks that occupy a different number of columns
in the implementation, placement feasibility is not guaranteed
even with an exact algorithm. (detailed explanation in [16]) In
Figure 4 we demonstrate an instance of such infeasibility using an
exact approach for partitioning and scheduling followed by linear
placement for such multi-column tasks. This is a two-dimensional
view of the task schedule where the Y-axis (length) corresponds to
time, the X-axis (width) corresponds to number of columns. The
FPGA has 4 columns and 3 tasks mapped onto it. Tasks T1, T2,
T3 occupy columns C1, (C2,C3), and C4 respectively. At time t2, a
model that does not consider placement information would indicate
that 2 units of area were available. So a new task, say T4, that
requires 2 columns, could be scheduled at time t2. However, this
would be incorrect as 2 adjacent columns are not available at t2.

In Figure 4, of course there is the opportunity for better place-
ment by initially placing task T2 into columns (C3,C4)– then, at

336

time t2, 2 adjacent columns (C1,C2) would be available to place a
2 column task. However, the more detailed example in Figure 5
demonstrates that there are schedules that can not be placed by an
optimal placement tool. At time step 9, task T10 needs 4 columns
for execution- even though there are 6 columns available in the
FPGA, 4 contiguous columns are not available. Note that changing
the task placement at prior time-steps (for example swapping phys-
ical location of task T3 with task T4) would only lead to placement
failure at a previous time-step. To achieve a feasible placement, the
task schedule itself needs to change. Therefore, it is critical to inte-
grate linear placement of the tasks into the scheduling formulation
in order to generate feasible solutions.

4.2 Heterogeneous implementations
Modern FPGAs (such as the Xilinx Virtex-II) have heterogenous

architectures containing columns of dedicated resources like em-
bedded multipliers, embedded memory blocks. Usage of such spe-
cialized resources usually leads to more area-efficient and faster
implementations. As an example, we consider post-routing tim-
ing data obtained from synthesizing a 2-dimensional DCT (dis-
crete cosine transform) under columnar placement and routing con-
straints on the Virtex-II chip XC2V2000. While the heterogenous
implementation with 3 CLB columns and 1 resource column has an
operating frequency of 88 MHz, the homogenous implementation
with 4 CLB columns is able to operate at only 64 MHz (we con-
sider the adjacent column pair of BRAM (embedded memory) and
MULTX18 (embedded multiplier) as a single resource column for
generating numerical data).

However, these heterogenous resources are typically limited in
number and present in specific locations. For instance, XC2V2000
has 48 CLB columns, but only 4 heterogenous resource columns.
Since these resource columns are available only at fixed locations,
they impose stricter placement constraints. Depending on where
a task is placed, the HW execution time and area may vary sig-
nificantly. This provides further motivation for considering linear
placement as an integral aspect of HW-SW partitioning on recon-
figurable architectures.

4.3 Scheduling for configuration prefetch
Configuration pre-fetch [9] is a powerful technique that attempts

to overcome the significant reconfiguration penalty in single-context
dynamically reconfigurable architectures by separating a task into
reconfiguration and execution components. While the execution
component is scheduled after data dependencies from parent tasks
in the task graph are satisfied, the reconfiguration component is not
constrained by such dependencies. This poses a significant chal-
lenge to any scheduling formulation that incorporates prefetch.

5. PROPOSED APPROACH
First, we modify the problem description to address the previous

issues: We have a task graph with n tasks, where each task has
multiple possible implementations. Each HW implementation of a
task occupies a certain number of columns. We have one available
SW processor, and a HW resource constraint of m HW columns for
application mapping. Our objective is to find an optimal schedule
where each task is bound to HW or SW, the task implementation is
fixed, and, for HW tasks, the physical task location is determined.
ILP formulation: To understand the problem space and determine
optimality, we first formulated an ILP (integer linear program) with
key 0-1 variables xi, j,k denoting execution of task Ti starting at
timestep j, leftmost column k, ri, j,k denoting reconfiguration of
Ti, etc. The key constraints enforcing contiguity for multi-column
tasks, configuration prefetch to reduce schedule length, resource
constraints imposed by the single reconfiguration controller, etc.
are explained in [16]. However, a commercial ILP solver (CPLEX)

required an exorbitant amount of computation time to obtain an
optimal solution even for relatively small problem instances. This
motivated us to develop a heuristic approach that generates reason-
ably good-quality solutions with a computation effort many orders
of magnitude lower– our heuristic generates quality solutions to
problems with hundreds of tasks in a couple of minutes.

5.1 Heuristic formulation
Our approach is based on the well-known Kernighan-Lin/Fiduccia-

Matheyes (KLFM) heuristic [15], [14] that iteratively improves so-
lutions to ”hard” problems by simple moves. At each step of the
KLFM heuristic, the quality of a move needs to be evaluated. Sim-
ilar to previous work in HW-SW partitioning such as [8], we eval-
uate the quality of a move by a scheduler. However, our target plat-
form requires that our scheduler is specifically aware of the physi-
cal device architecture.
———————————————————————–
Code segment 1: KLFM loop

while (more unlocked tasks)
for each unlocked task

for each non-current implementation point
calculate makespan by physically aware list-scheduling

select & lock best (unlocked task, implementation point) tuple
update best partition if new partition is better

———————————————————————–
Code segment 1 represents the KLFM kernel: while there are

more unlocked tasks, the ”best” task is chosen in every iteration of
the loop. The kernel is itself repeatedly executed c times where c is
a small constant, around 5-6. As can be seen above, our kernel con-
siders multiple task implementation. In simple cases where each
task has a single HW and a single SW implementation, a ”move” in
HW-SW partitioning usually implies moving the task to the other
partition. In task implementations on FPGAs, multiple area-time
tradeoff points are very common. Restricting a move to only HW -
SW , or vice-versa would restrict the solution space. Thus we define
a move as generic, possible between any two implementation points
of a task, including HW-HW, HW-SW.

For the scheduler, we choose a simple list-scheduling algorithm.
In a list-scheduler, at each stage there is a set of ’ready’ nodes
whose parents have been scheduled. The scheduler chooses the
’best’ node based on some priority measure– the schedule quality
depends strongly on priority assignment of nodes. Note that the
scheduler is embedded inside the partitioner; thus, the scheduler
always sees a bound graph where each task is assigned to HW or
SW and hence the HW-SW communication on each edge is known.

We do simultaneous scheduling and placement– once a node is
selected for scheduling, it is immediately placed onto the device.
This ensures that all generated schedules are correct by construc-
tion. Thus, at every KLFM step, along with task binding, we also
have the placed schedule available.

In traditional resource-constrained scheduling, priority functions
like ”nodes on critical path first” are applied uniformly to all nodes.
But, on our target HW, factors that affect placement, such as con-
figuration prefetch, play a key role in scheduling. So we propose
that during task selection, processor tasks are compared between
themselves on the simple basis of longest path, while FPGA tasks
are compared using a more complex function. Key parameters of
any such function are EST (earliest computation start time of task),
EFT (earliest finish time), task area, and the longest path through
the task, i.e, the function can be described as: f (EST, longest
path, area, EFT). The EST computation embeds physical issues
related to placement, resource bottleneck of single reconfiguration
controller in the configuration prefetch process, etc., as described
in more detail later.

Our observations indicate that it is usually more beneficial to
first place tasks with narrower width (fewer columns): this leads

337

5

6

5

2

2

3

2

3

23

9

11

14

7

10

3

3

2

1

2

4

4

SW
time

HW
area

HW
time

Task

1

2

3

Figure 6: Task parameters

���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����

����
����
����
����

������
������
������
������

������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Time ProcC6C5C4C3C2C1

 10

9

8

7

6

5

4

3

2

1

4R

3R

5R

5E

4E 3E

2E1E

P

����
����
����

����
����
����

65C

6

Figure 7: Optimally placed
to the possibility of being able to accomodate more tasks without
needing dynamic reconfiguration. Similar considerations for other
key parameters lead us to a linear priority assignment function:

−A∗columns−B∗EST +C ∗ pathlength−D∗EF T
Note that components for which it is preferable to have smaller
magnitude, such as earlier start time (EST), or, fewer columns, have
a negative weightage while pathlength has positive weightage.
Placement and EST computation

To illustrate the effectiveness as well as the challenge posed by
configuration prefetch to placement and scheduling, consider the
task graph shown in Figure 2, and its associated parameters in Fig-
ure 6. The HW area is specified as the number of homogenous
(CLB) columns. For this example, we assume that any HW-SW
communication incurs one unit of delay and the reconfiguration
overhead of a task is equal to the HW area of the task.

Under a resource constraint of 6 homogenous columns, the opti-
mal solution to our problem of minimizing latency is given by the
task schedule and physical task location as shown in Figure 7. In
this schedule, each execution (and reconfiguration if needed) com-
ponent of a task is represented as a rectangle of fixed size, such
that the length is the execution (or reconfiguration) time of the task
implementation while the width is the number of columns required.

In Figure 7, Ei and Ri represent the execution start time, and re-
configuration start time respectively, for vertex vi. Ci j represents
HW-SW communication between task vi and v j . Pi represents exe-
cution of task vi on the processor. For this example, with static HW-
SW partitioning, the schedule length would be 36 with vertices v1
and v2 mapped to HW and the remaining vertices mapped to SW.
Since partial dynamic reconfiguration capability with prefetch im-
proves the schedule length to 10, prefetch is a key consideration.

However, a key challenge is posed by the gap between R3 and
E3 illustrating the idle time interval of columns C5,C6 required for
an optimal schedule: in this interval the FPGA column has been
reconfigured, but the task can not start execution as its dependen-
cies have not been satisfied yet. Note that the earliest E3 can start
is at time step 6. So, if we forced R3 to start at time step 4 and
contiguous to E3, then either R4 would need to be separated from
E4 or, the schedule length would increase.

This idle time interval is part of scheduling in that we would pre-
fer to have a schedule with minimum idle time where resource are
underutilized. Since the extent of the interval can not be determined
apriori, placement is complicated: if we consider the aggregate
(time X area) rectangle occupied by a task in the two-dimensional
view, where the aggregate rectangle consists of both the execution
and reconfiguration component of a task, this is a rectangle of un-
known length. Thus, with prefetch, we are unable to directly apply
rectangular packing algorithms from work like [13].

Another key issue in EST computation is the resource bottle-
neck of a single reconfiguration controller. The reconfiguration for
a task can start only when enough area is available, and, the recon-
figuration controller is free. The goal is to complete reconfiguration

before task dependencies are satisfied, leading to minimization of
schedule length. However, realistically, it is not possible to hide the
overhead for all tasks that need reconfiguration– in such cases, task
execution is scheduled as soon as its reconfiguration ends.

In Code segment 2 we present our approach to EST computa-
tion that addresses the issues we discussed above. Our goal is to
find the earliest time slot when the task can be scheduled, subject
to the various constraints. We proceed by first searching for the
earliest instant when we can have a feasible task placement, i.e.
enough adjacent columns are available for the task. Once we have
obtained a feasible placement, we proceed to satisfy the other con-
straints. If the reconfiguration controller was available at the instant
the space becomes available, then the reconfiguration component of
the task can proceed immediately. Otherwise, the reconfiguration
component of the task has to wait till the reconfiguration controller
becomes free. Once the reconfiguration component is scheduled,
we check to see if the execution component can be immediately
scheduled subject to dependency constraints. As an example, we
consider EST computation of task T3 in Figure 7 when tasks T1 and
T2 have been scheduled, and placed. The initial search shows a fea-
sible placement starting at time 3 and the reconfiguration controller
is free, so reconfiguration for T3 can start immediately and finishes
at time 4. However, the execution component can be scheduled
only at time 6 when its dependency is satisfied. In this case, EST
computation indicates that it is possible to completely hide the re-
configuration overhead for the task.

The EST computation thus embeds the placement issues and re-
source constraints related to reconfiguration. As discussed earlier,
the scheduler assigns task priorities based on this information, lead-
ing to high-quality schedules, as shown in our experimental section.
———————————————————————–
Code segment 2: Compute EST for task bound to FPGA

find earliest time slot where task can be placed
reconfig start = earliest time instant space and reconfig controller

are simultaneously available.
if ((reconfig start + reconfig time) < dependency time)

// reconfiguration latency hidden completely: possibility of
// timing gap between reconfig end and execution start

EST = earliest time parent dependencies satisfied
else // not possible to completely hide latency

EST = end of reconfiguration
———————————————————————–

5.2 Heterogeneity
One key benefit of considering linear placement and multiple

task implementations in our heuristic is the ease with which we
were able to extend our approach to consider scheduling onto het-
erogenous devices.

To adapt our approach for heterogeneity, the primary change re-
quired is in the search for space to fit a task. We do this by simply
adding a type descriptor for each column in our resource descrip-
tion. Thus all resource queries at a time instant check the column
type descriptor while looking for free space at that instant. Some
simple initial preprocessing makes the searches more efficient.

6. EXPERIMENTS
We conducted a wide range of experiments to demonstrate the

validity of our formulation and the schedule quality generated by
our heuristic. We also conducted a detailed case study of the JPEG
encoding algorithm, where we explored heterogeneity in the con-
text of multiple task implementation points. In this section we
present a reasonable subset of our experiments– additional details
are in [16]. Note that we are concerned with statically determining
the best run-time schedule for a HW-SW system under resource
constraints, where the HW has partial dynamic reconfiguration ca-

338

Placement Placement
Unaware Aware

Test T area
opt Feas. Topt Theu

tg1 10 Y 10 11
tg5 25 NO 26 26
Mean-value 21 Y 21 21
tg7 20 Y 20 20
tg10 27 NO 28 29
FFT 25 Y 25 25
tg11 36 NO 38 41
tg12 14 NO 15 18
4-band eq 27 Y 27 27

Table 1: Feasibility results and heuristic quality for small tests

pability. Thus, while it is possible for example to fit all our JPEG
tasks in a suitably-sized device, for our experimental purposes we
assume a resource constraint less than the aggregate HW size of all
tasks leading to the necessity of HW-SW partitioning.
Experimental setup

The following assumptions form the basis of our numerical data:
———————————————————————————
HW Device: similar to Xilinx Xc2V2000, organized as a CLB matrix of 56
rows and 48 columns.
SW execution unit: PowerPC operating at 300 MHz.
Communication bus: 64-bit PLB operating at 133 MHz.
1 CLB = 22 frames (a total of 1456 frames on the entire device);
Total reconfiguration time = 17.01 ms (SelectMAP port at 50 Mhz);
Maximum suggested reconfiguration frequency = 66 MHz.
reconfiguration overhead for task occupying one CLB column=

22/1456 * 17.01 * 50/66 = 0.19 ms
———————————————————————————

Area and timing data for key tasks like DCT, IDCT, was obtained
by synthesizing tasks under columnar placement and routing con-
straints on the XC2V2000, similar to the methodology suggested
for ”reconfigurable modules”. Software task execution time on the
PowerPC processor is typically 3 to 5 times slower than the HW
implementation of the task. HW-SW communication time was es-
timated by simply dividing the aggregate amount of data transfer
by the bus speed. As an example, data transfer time for a 256X256
block of 8-bit pixels in a typical image processing application is
estimated as: 256 * 256 * 8/64 cycles at 133 MHz = 0.06 ms.
Note that HW-SW communication time for even this significant
volume of data transfer is only around 30% of the reconfiguration
overhead for a single CLB column: thus, for generating synthetic
experiments, we assumed that HW-SW communication time was
quite low compared to task reconfiguration time.
Experiments on feasibility

Table 1 shows experimental results on feasibility for a set of
synthetic task-graphs and well-known graph structures like FFT,
meanval, etc. These test cases were reasonably small graphs with
between 10-15 vertices such that we could generate optimal results
with the ILP. For each test, we assumed that the number of columns
available for task mapping was approximately 20-30% of the aggre-
gate area of all tasks mapped to hardware. For these tests, one unit
of time is the reconfiguration time for a single column.

In Table1, Topt denotes the schedule length obtained with our ILP
formulation, T area

opt denotes the schedule length obtained from an
exact formulation that considers available HW area instead of exact
task placement (i.e, placement-unaware) [7]. As Table1 shows, in
some cases, T area

opt is shorter than Topt , but in these cases the sched-
ules were physically unrealizable with exact placement, while our
ILP (Topt) guarantees placement through correct by construction.
Experiments on heuristic quality

For each of the initial set of experiments we also generated re-
sults with our proposed heuristic, as denoted by Theu in Table 1. The

Test Few cols More Cols Avg gain Run-time (s)
group (8,12) (16,20) (20 cols)
v20 1.83% 7.60% 4.71% .02
v40 1.68% 7.83% 4.75% 2.0
v60 4.93% 8.80% 6.86% 22
v80 4.09% 10.57% 7.33% 90
v100 8.96% 11.92% 10.44% 180
Avg gain 4.3% 9.34%

Table 2: Aggregate improvements in schedule length

data indicates that for the small cases, Theu corresponds to sched-
ules that are reasonably close in quality to the exact solution.

For analysis of schedule quality generated by our heuristic on
larger test-cases, we generated a set of problem instances with suit-
able modifications to TGFF [10]. In these tests, each task had a
single homogenous implementation point. In subsequent discus-
sions, v20, v80, etc, denote sets of graphs that have approximately
20 nodes, 80 nodes, etc. For each individual test case belonging to
a set like v20, we varied the area constraint from 8 to 20 columns
in steps of 4 to generate a problem instance.

���
���
���
���

���
���
���
���

���
���
���
���

8 12 2016

Sc
he

du
le

 le
ng

th
 -

->

12 20168

Placement aware priority function

Testcase 1 Testcase 2

Placement unaware (longest path)

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Figure 8: Sample experiments for v60

For each generated problem instance, we compared the schedule
length generated by our placement-aware heuristic with that gener-
ated by the placement-unaware ”longest path first” (LPF) heuristic.
The LPF heuristic is widely used in resource-constrained schedul-
ing to assign higher priorities to tasks on critical paths. Note: LPF
is used only for priority assignment at each scheduling step– once a
task is selected, the same linear placement approach ensures correct
schedules, and, hides the reconfiguration latency, if possible.

In Figure 8 we present a sample of the tests we conducted. For
two test graphs in set v20 we show schedule length data correspond-
ing to a total of 8 problem instances. To present the aggregate data
for the complete set of experiments, we define Tlongest path as the
schedule length generated by LPF for a problem instance. And,
the quality criterion indicating improvement (decrease) in sched-
ule length for each problem instance when our placement-aware
priority function is used compared to placement-unaware LPF as:

100∗ (Tlongest path −Theu)/Theu
Figure 8 shows that our placement-aware priority function con-

sistently generates better schedules. Table 2 summarizes the result
for 60 problem instances. Each entry in the table represents data
from a set of instances. As an example, the entry corresponding
to the row labelled v60 and column labelled ”Avg gain (16,20)” is
6.86%. This implies that for a set of problem instances where the
graph size is approximately 60 nodes and the resource constraint
was set at 16 and 20 columns, the average improvement in sched-
ule length generated by our heuristic over LPF was 6.86%.

As is clear from Table 2, while a simple longest path heuris-
tic works reasonably well with small graphs and few columns, our
heuristic clearly generates superior (shorter) schedules, both with
increasing graph size and increase in available resources. The key
difference is that LPF also tries to improve schedule length by

339

A B C D E F
16.74 9.9 9.04 7.21 6.82 9.58

Table 3: Schedule length for different HW-SW partitioning of
JPEG encoder
prefetch, but only after selecting the task to be scheduled, while
our heuristic considers placement implications in task selection.
Case study of JPEG encoder

We next conducted a detailed analysis for the JPEG encoding
algorithm under resource constraints. We obtained data for tasks
like quantize, huffman, by synthesizing the tasks under placement
and routing constraints. For each task, we obtained implementation
points with only homogenous resources, and with heterogenous re-
sources. We assumed that the SW implementation for each task was
approximately 4 times slower than the HW implementation using
only homogenous resources. With only homogenous implementa-
tions, the total area occupied by the tasks was 11 columns. Our
schedule length data is for processing a block corresponding to a
256X256 colour image under a resource constraint of 8 columns.

Table 3 presents a summary of schedule length estimates (in ms)
we generated from various experiments. The first 3 columns A,B,C
correspond to experimental data for the given task graph. Column
A (16.74ms) represents the first experiment with static HW-SW
partitioning (without considering the dynamic nature of HW), B
(9.9ms) represents HW-SW partitioning when the HW is partially
reconfigurable at run-time, C (9.04ms) corresponds to schedule im-
provement with optimal prefetch.

We subsequently exposed more parallelism by making multiple
copies of tasks like DCT based on our knowledge that data blocks
can be independently processed by such tasks. The remaining re-
sults in columns D, E, F corresponds to experimental data for the
finer-grain task graph. Column D (7.21ms) represents the results
generated by our heuristic on the finer-grain graph- this is optimal
for this representation.
Heterogenous Architecture

For the next experiment in Column E (6.82ms) we considered
that the resource constraint of 8 columns now included one spe-
cialized resource column, i,e, the new resource constraint was a set
of 7 CLB columns and 1 resource column. In the schedule gener-
ated by our heuristic, some of the tasks are bound to their faster
heterogenous implementations while others are bound to slower
homogenous implementations. This experiment demonstrates the
exploration capability of our heuristic in considering multiple task
implementations while mapping onto a heterogenous device with
partial dynamic reconfiguration.

While evaluating the schedule length improvement in Column
E, a key factor to be noted is our realistic assumption about the re-
configuration overhead for a specialized resource column- on the
Virtex-II, a resource column has 64 frames whereas a CLB column
has 22 frames leading to a significantly higher reconfiguration over-
head for a specialized column. This fact leads to significantly less
speedup than would be expected simply from considering execu-
tion time difference between homogenous and heterogenous imple-
mentations. Another important observation was that heterogeneity
restricts placement significantly and the relative location of the spe-
cialized resource column strongly affects the schedule length.

Column F (9.58ms) was our final experiment where we restricted
tasks to only their best implementation points. Since the best im-
plementation points are often heterogenous, the schedule length
showed significant degradation because of contention for the dedi-
cated resources.

Overall, our case study confirms the importance of considering
physical and architectural (heterogenous) constraints in a HW-SW
partitioning algorithm for a partially reconfigurable device.

Run time of algorithm: Table 2 also shows the average run-
time of our approach (in seconds) for 20–100 tasks given an area-
constraint of 20 columns– measurements were done on a 502 Mhz
Sparcv9 processor (SunOS 5.8). While the run-time of our placement-
aware approach grows with increase in area-constraint, we believe
that the data, corresponding to our largest experiments, is a fair
representation of the expected run-time in reasonable scenarios.

7. CONCLUSION
In this paper, we first demonstrated with an exact approach that

ignoring linear task placement constraints imposed by a reconfig-
urable architecture with partial dynamic reconfiguration can result
in optimal, but physically unrealizable schedules. We next pro-
posed a placement-aware HW-SW partitioning heuristic that simul-
taneously partitions, schedules and does linear placement of tasks
on such devices. Our approach considers the key issues of configu-
ration prefetch, the bottleneck of a single reconfiguration controller.
We conducted a wide range of experiments to validate the quality
of solutions generated by our placement-aware heuristic. Place-
ment and consideration of multiple implementations in partition-
ing make it easy to extend our approach to heterogenous FPGAs.
We demonstrate with a case study the exploratory capabilities pro-
vided by our approach. Finally, the run-time of our approach is
reasonable: task graphs with hundreds of nodes are processed (par-
titioned, scheduled, placed) in a couple of minutes.

Our approach has powerful capabilities, but there is scope for
improvement in our current implementation in both solution quality
and in the theoretic algorithmic complexity by investigating sophis-
ticated placement techniques and data structures. Also, our heuris-
tic currently is focused on homogenous implementations- more in-
vestigations are required into issues leading to high-quality solu-
tions in heterogenous scenarios.

8. REFERENCES
[1] P-H Yuh, C-L Yang, Y-W Chang, H-L Chen, ”Temporal floorplanning using

the T-tree formulation”, ICCAD, 2004
[2] S. Ghiasi, M. Sarrafzadeh, ”Optimal Reconfiguration Sequence Management”,

ASPDAC, 2003.
[3] J. L. Ramirez-Alfonsin, B. A. Reed (Eds.), ”Perfect Graphs”, John Wiley and

Sons, 2001.
[4] S.P. Fekete, E.Kohler, J.Teich, ”Optimal FPGA module placement with

temporal precedence constraints”, DATE, 2001
[5] H. Singh, G. Lu, E. M. C. Filho, R. Maestre, M-H. Lee, F. J. Kurdahi, N.

Bagherzadeh, ”MorphoSys: case study of a reconfigurable computing system
targeting multimedia applications”, DAC, 2000.

[6] B. Mei, P. Schaumont, S. Vernalde, ”A hardware-Software Partitioning and
scheduling algorithm for dynamically reconfigurable embedded systems”,
ProRisc workshop on Ckts, Systems and Signal processing, Nov 2000.

[7] B. Jeong, S. Yoo, S. Lee, K. Choi, ”Hardware-Software Cosynthesis for
Run-time Incrementally Reconfigurable FPGAs”, ASPDAC, 2000.

[8] K. S. Chatha, R. Vemuri, ”An iterative algorithm for Hardware-Software
partitioning, Hardware design Space Exploration, and scheduling”, Jrnl
Design Automation for Embedded Systems, V-5, 2000

[9] S. Hauck, ”Configuration pre-fetch for single context reconfigurable
processors”, FPGA, 1998.

[10] R P Dick, D L Rhodes, W Wolf, ”TGFF: task graphs for free”, CODES 1998
[11] F. Vahid, T. D. Le, ”Extending the Kernighan-Lin heuristic for Hardware and

Software functional partitioning”, Jrnl Design Automation for Embedded
Systems, V-2, 1997

[12] M. J. Wirthlin, ”Improving functional density through Run-time Circuit
Reconfiguration”, PhD Thesis, Electrical and Computer Engineering Dept,
Brigham Young Univesity, 1997.

[13] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, ”Rectangle-packing based
module placement”, ICCAD, 1995

[14] C. M. Fiduccia, R. M. Mattheyes, ”A Linear-time heuristic for improving
network partitions”, DAC, 1982

[15] B Kernighan, S Lin, ”An efficient heuristic procedure for partitioning graphs”,
The Bell System Technical Journal, V-29, 1970

[16] S Banerjee, E Bozorgzadeh, N Dutt, ”HW-SW partitioning for architectures
with partial dynamic reconfiguration”, Technical Report CECS-TR-05-02, UC
Irvine.

[17] www.xilinx.com

340

