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ABSTRACT

In many of embedded systems, particularly for those with high data
computations, the delay of memory access is one of the major bot-
tlenecks in the system’s performance. It has been known that there
are high variations in memory access delays depending on the ways
of designing memory configurations and assigning arrays to memo-
ries. Furthermore, embedded DRAM technology that provides effi-
cient access modes is actively developed, possibly becoming a main-
stream in future embedded system design. In that context, in this
paper we propose an effective solution to the problem of (embed-
ded DRAM) memory allocation and mapping in memory access code
generation with the objective of minimizing the total memory access
time. Specifically, the proposed approach, called MACCESS-opt,
solves the three problems simultaneously: (i) determination of mem-
ories, (ii) mapping of arrays to memories, and (iii) scheduling of
memory access operations, so that the use of DRAM access modes is
maximized while satisfying the storage size constraint of embedded
system. Experimental data on a set of benchmark designs are pro-
vided to show the effectiveness of the proposed integrated approach.
In short, MACCESS-opt reduces the total memory access latency
by over 18%, from which we found that our memory mapping and
scheduling techniques in MACCESS-opt contribute about 12% and
6% reductions of total memory access latency, respectively.

Categories and Subject Descriptors:
C.3 [Special-purpose and application-based systems]: Real-time and
embedded systems

General Terms: Algorithms, Design

Keywords: memory access, scheduling, binding

1. INTRODUCTION

An effective utilization of chip area is an important issue in the design
of embedded systems. In particular, with the increasing design com-
plexity, embedded memory has become a critical component whose
integration needs to be addressed during the process of system de-
sign. To improve the access bandwidth, modern memories provide
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efficient access modes such as page mode and read-modify-write [1,
2]. Since the new generation of memories (e.g., extended data out
DRAM’s, synchronous DRAM’s, etc.) incorporates some of those
efficient access modes, it is very necessary to exploit the memory
access modes in the memory allocation problem in embedded sys-
tem design. The major tasks which affect the memory accesses are
scheduling of memory accesses in code, allocation of memory mod-
ules, and binding variables to memories for storage. Since the results
of those tasks affect each other in significant ways, to fully exploit
the access modes of memories to reduce the total memory access la-
tency, it is required to have a global view on the interactions among
the tasks.

In most memory access intensive embedded applications, array ac-
cesses are dominant in the total memory accesses. On the other hand,
it is known that page mode access is one of the most efficiently used
DRAM accesses. Consequently, the ways of determining the number
and size of memories (i.e., allocation), the ways of assigning arrays
to memories (i.e., binding), and the ways of determining the memory
access time (i.e., scheduling) would significantly effect the amount
of the use of page mode accesses.

Several memory-related hardware and software optimization is-
sues, such as memory configuration to minimize the area, memory
selection, and variable binding, have been addressed in the litera-
ture. Schmit and Thomas [3] addressed the problem of allocating
memories to minmize the cost of index calculation cost delay in be-
havioral synthesis. However, they did not consider the exploitation
of DRAM’s efficient access modes. Panda [4] proposed a memory
bank exploration algorithm which makes use of a sequence of mem-
ory accesses in behavioral HDL code to minimize the number of
page misses. Panda, Dutt, and Nicolau [5] modeled a number of
realistic page access modes in DRAMs and proposed an algorithm
for arranging scalar variables to memory and organizing array vari-
ables by applying loop transformation techniques in behavioral syn-
thesis with the objective of maximizing the number of page mode
accesses. Shiue and Chakrabarti [6] proposed an optimal ILP model
and a heuristic based algorithm for solving the problem of determin-
ing memory configuration with minimum area satisfying power con-
straint, or with minimum power consumption satisfying area con-
straint. Balasa, et al. [7] used a dataflow analysis technique to con-
figure a memory architecture consisting of one or more memories
satisfying a given timing constraint. Note that the forementioned
approaches did not take into account the utilization of scheduling ef-
fect, which is a critical factor that can influence the quality of mem-
ory configuration. In [8, 9], the problem of memory allocation is ad-
dressed. Given a library of memory modules, the authors tried to find
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a memory organization that results in a maximum performance or a
minimum energy consumption under performance constraint. (A full
survey on memory and array optimization in high-level synthesis can
be found in [10].) Kadayif er al. [11] proposed a locality-conscious
memory access scheduling strategy, where they evaluate the poten-
tial data reuse between processes, and determine the memory access
schedule based on the evalutaion. However, they focused on the use-
ability of cache, and did not consider various types of memory mod-
ules or access modes. Choi and Kim [12] showed that the problem
of (non-array) variable assignment to memory to maximize the page
mode accesses is NP-complete, and proposed a greedy heuristic to
solve the problem.

In this paper, we propose an effective method of maximizing page
mode accesses of code, that is, minimizing DRAM access latency of
code, by solving the two important tasks in embedded system design:
(1) memory access scheduling in code, which is a software optimiza-
tion task and (2) memory allocation and mapping' for arrays in code
under memory size constraint, which is a hardware-software opti-
mization task.

2. PRELIMINARIES AND MOTIVATING
EXAMPLE

Memory size area

module || (bits * words) | (mm?)
M1 16 x 1024 5.4154
M2 32x 1024 10.8309
M3 16 x 2048 7.6586
M4 32 x 2048 15.3171
M5 16 x 4096 10.8308
M6 32 x 4096 21.6617
M7 16 x 8192 15.3171

Table 1: A memory module library

Before we illustrate how the memory allocation for arrays and ac-
cess scheduling affect the execution of page mode memory accesses,
we explain briefly what the normal and page modes are in DRAMs
[12]. The execution of normal mode access starts from a row de-
coding stage where the entire row that contains a set of m words? is
copied into a row buffer. In the following column decoding stage,
the element (i.e., word) in the buffer corresponding to the column
address is selected, and is read or written according to the status of
r/w signal. Finally, a precharging stage is performed to prepare the
execution of row decoding for the next memory access operation. On
the other hand, in page mode an initial access which starts from row
decoding followed by column decoding is first performed. Then, if
the word to be accessed in the next memory operation has already
been in the same page that was retrieved just before, the execution of
row decoding is not needed. That is, only an additional column de-
coding using the corresponding column address is required to access
the word from the buffer. Such a subsequent access is called page ac-
cess, and the initial access followed by page accesses is called page
mode access(s). In terms of access delay, the page access delays are
usually much shorter than the initial access delay. Consequently, ap-
plying as many page accesses as possible to a sequence of memory
accesses is a key to reduce the overall memory access latency.

Fig. 1(a) shows a segment of high-level source code in DFG (dataflow

graph) form, in which there are 9 instructions manipulating four ar-

'In some literature, memory allocation and mapping are collectively
referred to as memory configuration.

2The value of m is memory-dependent. Such a row of m words in
memory is collectively called a page of size m.

rays A, B, C and D with size of 16bits * 1024words each. Fig. 1(b)
then shows a possible execution schedule of the instructions. Note
that a schedule of instructions determines the order of memory ac-
cess operations in the instructions. For example, in the schedule in
Fig. 1(b), read_A[i] and read_B[i] in opl should be executed be-
fore the execution of read_B[i] and read_C[i] in op2 because op2 is
scheduled to be executed after the execution of opl. However, the
schedule alone cannot tell exactly which memory access operations
are page accesses and which operations are non-page accesses until
the outcomes of memory allocation and binding are known. Fig. 1(c)
shows a set of possible memory allocations and bindings for arrays
A, B, C and D when we use the DRAM module in the library of Ta-
ble 1. We can easily see that the total memory cost will be the largest
when each array is bound to a distinct memory module, but the page
accesses will be at a maximum. Conversely, the total memory cost
becomes the smallest when all arrays are bound to a single memory
module, but the page accesses will be at a minimum.

Example 1. (memory access sequence with no allocation/binding
and schedule optimization) Fig. 1(d) shows memory access sequences
resulting from the execution schedule of instructions in Fig. 1(b) and
a random allocation/binding indicated at the top of Fig. 1(d) (i.e.,
two memories, one containing A and B, the other containing C' and
D). As a result, the total memory cost and memory access latency
corresponding to the schedule in Fig. 1(b) and the allocation/binding
in Fig. 1(d) are 21.66 units of area and 59 (=45 +4-8 + 22 + 1.3)
clock cycles, which is the sum of the access delays of 4 NRs (normal
reads), 4 NWs (normal writes), 2 PRs (page reads) and 1 PW (page
write), respectively, and an NR, an NW, a PR, and a PW take 5, 8, 2,
and 3 clock cycles, respectively.

Example 2. (memory access sequence with allocation/binding op-
timization only) On the other hand, the top of Fig. 1(e) shows an-
other memory access sequences generated when we use the alloca-
tion/binding at the top of Fig. 1(e) and the schedule in (b), which
results in total 18.48 units of memory cost and 41 cycles of access
latency, which is about 31% reduction over that in (d).

Example 3. (memory access sequence with both allocation/binding
and schedule optimization) Finally, Fig. 1(f) shows another memory
access sequences when the memory allocation/binding and schedule
are changed according to the top of Fig. 1(f). Consequently, the cor-
responding total latency is reduced to 38 cycles, which is about 36%
and 7% reductions over those in Fig. 1(d) and Fig. 1(e), respectively.
This example strongly implies that both of the tasks of memory al-
location/binding and instruction scheduling can affect the amount of
the use of page accesses significantly, thus, the total memory access
latency, and the two tasks should be taken into account in an inte-
grated fashion to fully exploit the use of page mode accesses.

3. THE PROPOSED ALGORITHM

The problem we want to solve is: Given a DFG of high-level source
code with array accesses and DRAM module library and memory
cost constraint, allocate memories, bind arrays to memories, and
schedule instructions in DFG, so that the total memory access la-
tency is mimimized while satisfying the memory cost constraint.

For an initial schedule of instructions in DFG, our proposed ap-
proach, called MACCESS-opt (memory access code optimization),
solves the problem by performing the two steps iteratively: (Step
1) memory reallocation/rebinding and (Step 2) rescheduling memory
accesses. In Step 1, we reconsider the task of memory allocation
and array binding to reflect the changes of instruction schedule in
the previous iteration. This step tries to find a memory configuration
that is well suited to the new schedule so that the latency of memory
accesses is further reduced. In Step 2, we attempt to reschedule the
instructions (incrementally) in a way that the changed schedule com-
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(b) An execution sequence

(a) DFG representation of a segment of of the DFG in (a)

high—level source code

Memory Configuration Area
opl: e= Ali] + BI[i] ; read A[i], read BJi] (array group : memory) (mn?)
op2: f=B[i] - C[i] ;read BIi], read C[i] A:MI1, B: M3,C: M1, D:M3 | 26.1480
op3: g=A[i]-3 s read A[i] AC: M3, B: M3, D: M3 22,9758
(write D[i) op4: h=C[i] +D[i] ;read Cli], read D[i] A: M1, BC: M5, D: M3 23.9048
op6 (=) op7 op5: Bli+l]=e—g :writeB[i+1] A: M1, B: M3, CD: M5 23.9048
op6: D[i]=h ; write D[i] AC: M3, BD: M5 18.4894
op7: i=f-h
op8: t=D[i+1]+4 :read D[i+l] ABCD: M7 153171
op9: Cli+l] =i+t 5 write C[i+1]

(c) A set of possible memory allocations and

(i.e. schedule) bindings for the arrays A, B, C, D used in (a)

execution order (schedule):
allocation/bindin opl—>0p3—>0p2—>0p4—>0p5—>...—>0p9|
o allocation/binding i Lo
| | allocation/binding
I | !
| |
A B
L L A B
exe. delay ¢ b C D
1. read A[i] NR :NR + NR » exe. delay
read B[i] NR op: . delay
2.read B[i] PR read C[i] N\ :NR l.read A[i] Nk read B[i] Nk :NR op# o ) exe. aelay
3. read A[i] NR :NR 2.read C[i] NN read B[i] PR  :NR l.read A[i] Nk read B[i] Nk :NR
:NW 3. read Ali] NR :NR 3. read A[i] PR . ‘PR
4. read C[i] PR PR+NW 4.read C[i] Nk readD[i] NR :NR 2.read C[i] Nk read B[i] PR :NR
read D[i] NW 3. write Bli+1]NW : NW 4. read C[i] NR read D[i] NR ) :NR
5. write B[i+1]NwW NW 6. write D[i] NW : NW S. write Bi+1] NW NW
6. write D[i]pw PW 8. read D[i+1] PR : PR 6. write D[i] Nw - NW
8. read D[i+1JPR  : PR 9. write C[i+1]PwW :PW 8 . read D[i+1] PR : PR
9. write C[i+1]Nw : NW 9. write C[i+1] pw PW
area : 21.6616 mnt area : 18.4894 mn’ area : 18.4894 mm’
total latency : 59 cycles total latency : 41 cycles total latency : 38 cycles

(d) Memory access sequences resulting from
the operation schedule in (b) and a random
memory allocation and binding shown above.

the operation schedule

(e) Memory access sequences resulting from

reallocation and rebinding from (c)

(f) Memory access sequences resulting from
a careful rescheduling of operations and
memory allocation/binding shown above.

in (b) and memory

Figure 1: Examples showing how two tasks, memory allocation/binding and operation scheduling, affect the results of total latency
of memory accesses. We assumed that a page read (PR), a normal read (NR), a page write (PW) and a normal write (NW) take 2, 5,

3, and 8 clock cycles, respectively.

bined with the memory allocation/binding obtained in Step 1 leads
to a reduced total latency of memory accesses. (The rescheduling
step is further divided into two substeps called macro-rescheduling
and micro-rescheduling, which will be described in detail in the next
section.) We repeatedly performed the two step until there is no re-
duction on the total latency of memory accesses. We now provide
the details of the procedure of the two steps. Note that the initial
schedule of instruction in DFG is the one that is written initially in
the code.

o Step 1: Reallocation/Rebinding
In this step, we attempt to find a solution of allocation and binding
that is best suitable to the result of scheduling memory access oper-
ations obtained in step 2 of the previous iteration. The objective is
to find a solution of allocation and binding that leads to a minimum
latency of memory accesses under the total memory cost constraint.
We use a bottom-up approach to solve the problem. Initially, we
assume that each array is bound to a distinct memory instance, thus
using a total of N memory instances for N arrays. Consequently, the
total memory cost of the initial allocation/binding will be the largest,
but the latency is the least. Then, we apply a pair-wise merge among
the memories allocated; For each pair of allocated memories m; and
mj, we find a memory, M;;, with the lowest cost from the mem-
ory library that can occupy all the arrays bound to m; and m;, and

10

compute the resultant latency. We then, among the pairs of memory
instances, select the pair with the largest value of the quantity

Mo — M

A =
G L — Lo

)]
where Lo and My are the latency and total memory cost of the cur-
rent schedule and allocation/binding, respectively and L and M are
the latency and total memory cost for the merging of the two mem-
ory instances. AC} indicates a measure of the effectiveness of the
memory merge on the memory cost reduction.

For example, Fig. 2(a) shows a number of results for the merging
of pair of memory instances, from the leftmost to the right, merg-
ing memory instance containing A and instance containing B, merg-
ing instance with A and instance with C, and merging instance with
C' and instance with D. The table in Fig. 2(b) summarizes the to-
tal memory cost (i.e., area), latency and the value of AC for each
merge, from which we found that merging two memory instances
having arrays A and D produces the largest value of AC;. Conse-
quently, we merge the two memory instances into one to contain the
arrays in the instances. The merge process then repeats until there re-
mains only one memory instance. Fig. 2(c) shows the merging steps
from bottom to top in which the right side indicates the total memory
cost and latency obtained at each iteration of the merging process.

7



a| L] [o] sl (] [0 A [ |
B C D
op# op# op#
1. read A[iNr : NR+NR 1.read A[iNk  read B[iNr :NR . 1.read A[iNr  read B[i]nr :NR
read B[i]Nr 2.read C[i]Nk  read B[iJpr :NR 2. read B[i]Jpr  read C[i]nr :NR
2.read BliJprr  read C[i]nr :NR 3. read A[iNr :NR 3. read A[ipr :PR
3. read A[iNr :NR 4.read C[i]NrR read D[i]nr :NR 4. read C[i]pr :PR+NR
4 read C[iJpr  read D[i]nr :NR 5. write B[i+1pw :PW read D[i]nr
5. write B[i+1Nw NW 6. write D[iJpw  : PW 5. write B[i+1pw :PW
6. write D[ilpw  : PW 8. read D[i+1Pr : PR 6. write D[ilpw  : PW
8. read D[i+1]pr : PR 9. write C[i+1pw :PW 8. read D[i+1Pr  : PR
9. write C[i+1pw : PW 9. write C[i+1Nw : NW
area : 23.9048 mmt area : 22.9758 mmt area : 23.9048 mmt
total latency : 41 cycles total latency : 31 cycles total latency : 33 cycles

(a) Possible groupings of 4 memory instances and the corresponding memory costs (in terms of area) and latencies for the schedule in Fig.1(b)

MO (initial memory cost) = 26.1480; LO (initial latency) = 28

area: 153171 mm >
latency : 46 ns

area : 18.4894 mm’
latency : 36ns_
area : 23.9048 mm °

_ area constraint = 20.0

latency : 28 ns

area : 26.148 mm

Memory grouping | M:memory cost | L:latency| A C1
{AB}, {C},{ D} 23.9048 41 0.172
{AC}, {B}, {D} 22.9758 31 1.05
{AD}, {B}, {C} 23.9048 28 infini
{A}, {BC}, {D} 23.9048 40 0.186
{A}, {BD}L,{ C} 21.6617 38 0.44
{A}, (B, (CD) | 23.9048 33 0.44 A

latency : 28 ns

B C D

(b) A summary of all the possible mergings of memory
instances and their costs

(c) The results of botton—up clustering of memory instances
for the schedule in Fig.1(b)

Figure 2: Example explaining the procedure of refining allocation/binding (in a bottom-up fashion) for the schedule of memory

access operations obtained from Step 1 of the previous iteration.

When we assume to have a total memory cost constraint of 20 mm?,
the best allocation and binding for the schedule in Fig. 1(b) is the
third layer from bottom in Fig. 2(c), where two memory instances
are allocated, one bound to arrays A, C and D, and the other bound
to array B.

Reallocation/rebinding(S, £, M _limt)
/* S: schedule, £: memory library, */
/* M _limit: upper bound of total memory cost */
e For each array in S, allocate and bind a distinct memory
instance of the lowest-cost from £;
e Set Q = {allocated and bound memory instances};
e Compute Mo = f(Q); /* f(-): total memory cost */
while (Mo > M _limit) {
e Compute Lo = g(S, Q); /* g(-): latency
foreach (pair of m;, m; € Q) {
e Get a memory instance, m;;, from £ of the lowest-cost,
which can occupy all arrays in m; and m;;
e Compute M = f(Q-{m;, m; }+{m; ;});
e Compute L = g(S, Q-{m, m; }+{m; ; });
e Compute AC1(M, L, My, Lo); /* Eq.(1) */
} endfor
e Select mi, m; € Q with the largest value of AC1(+);
e Allocate m; ; and bind all arrays in m; and m; to m; ;;
o Set Q = Q-{m;, m; }+{m; ; });
e Update My = f(Q);
} endwhile
e return Q;

Figure 3: The proposed reallocation/rebinding for a schedule S in
MACCESS-opt.

Fig. 3 summarizes the procedure of reallocation/rebinding. No-
tation () is used to represent an instance of memory allocation and
binding, and f(Q) and g(S, Q) are used to represent the calculation
of the total memory cost for Q and the calculation of total memory
latency for schedule S and allocation/binding Q, respectively.

o Step 2: Rescheduling
The objective of this step is to find a best schedule of intructions and
memory access operations for the result of the updated memory allo-
cation and bining produced in Step 1. The rescheduling step consists
of two parts: macro-rescheduling, which tries to change the sched-
ule of instructions and micro-rescheduling, which tries to change the
schedule of memory access operations in the execution of the in-
structions. The macro-rescheduling should preserve the data depen-
dencies in the code while the micro-rescheduling should take into
account the limited use of the registers in the processor. We perform
the macro-rescheduling, followed by the micro-rescheduling. Dur-
ing the macro-rescheduling, it is assumed that the executions of the
memory read and write accesses of the instruction occur immediately
before and after the clock step of the execution of the instruction.
(The micro-rescheduling will exploit the possiblity of pre-read and
post-write under the register constraint to reduce the latency further.)
We use an iterative approach to solve the macro-rescheduling, and
consists of two loops, one nesting the other. The inner-loop performs
the following: It first generates all possible candidates of reschedules
of instructions that can be obtained by rescheduling each instruction
for execution without violating the data dependency in the code, and
calculates the quantity.

ACy =L - Lo )

where L and Ly is the latencies before and after the corresponding
reschedule of instruction, respectively. Then, among the instances of
schedules, it chooses the one with the least value of AC, and ap-
plies the corresponding schedule. The instruction that was selected
and rescheduled is then locked. The process repeats from the updated
schedule and the iteration stops when all the instructions are locked
or no more rescheduling can be applied without violating the instruc-
tion dependencies in the code. The best schedule of instructions is
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Current execution schedule : opl—> op2 —> op3 —> op4 —> op5 —> op6 —> op8 —> op9

Current memory allocation/binding : {A,C,D}, {B}

op2-> opl ->op3 —>.. op2->op3 —>opl —>opd—>.. op2-> op3 —>op4 —>0pl —> op4 —>
op2. read B[i], read C[i] :NR op2. read B[i], read C[i] :NR op2. read B[i], read C[i] :NR
opl. read h./#{[i], readPE[i] :NR op3. read Ali] ~ :NR op3. read Ali] :NR
op3. read Ali] - PR opl. read }Q[‘]’ read E‘R[‘] :PR op4. read C[i], read D[i] : NR + NR
op4. read C[i], read D[i]  : NR+NR opé. read C[i, read D[i]  : NR + NR opl. read Ali], read B[] : NR
op5. write B[i+1] (PW ops. write B[i+1] :PW opS. write Bli+1] PW
op6. write D[i] - PW op6. write DIi] PW op6. write DFI] :NW
Op8. read D[i+1] : PR 0p8. read D[i+1] - PR 0p8. rea'd D[l'+1] :PR
op9. write C[i+1] :NW op9. write C[i+1] - NW op9. write C[i+1] :NwW
AC2=-3 AC2=-3 AC2=0
#PR+#PW = 5 #PR+#PW = 5
(a) Results for all possible macro—reschedulings of op1
reschedule L | AC2 | #PR+#PW
reschedule L | AC2 | #PR+#PW ...=>0pl—>o0p4—>op5—>... 33 0 5
opl—>0p2—>... 36 0 ...=>0opl—->o0p5->0p4—>0p6->.|. 33 0 5
opl op2—>opl->op3—>... 33 -3 5 op4 op2—>op3—>op4—>opl—>... 43 | 410
op2->0p3->0pl->0p4d—>... 33 -3 5 op2—>0pd—>op3—>... 40 +7
...=>op3—>op4—->opl->0p5->.]. 36 0 opd—>o0p2—>... 40 +7
op2—>op3—>opl—>... 33 0 ...=>0p4—>0p5—>0p6—>... 33 0 5
op? op3—>op2—>opl—>... 36 +3 ...=>0p5—>0p4—>0p6—>... 33 0 5
op3—>opl—>op2—>0pd—>... 36 +3 op3| ...—>op4—>op6-—>op5—>op8—>.|. 33 0 5
..=>opl—>0p4—>op2—>0p5->.l. 36 +3 ...=>0p6—>0p8—>0p5—>0p9 33 0 5
op2—>op3—>opl—>... 33 0 5 ...—>0p8—>0p9—>0p5 33 0 5
op3| op2—>opl->op3—>op4—>... 33 0 5 ...=>0p5—>0p6—>0p8—>... 33 Q 5
...=>0p4—>0p3—>op5—>... 36 +3 opf| ...—>op5—>op8—>op6—>0p9 33 0 5
...—>0p8—>0p9—>0p6 36 +3

(b) The cost computations for all possible macro—reschedules

Figure 4: Example explaining the procedure of macro-rescheduling for the result of reallocation/rebinding obtained from Step 1.

the one with the least AC> value among the schedules obtained dur-
ing the iteration process. The outer-loop then unlock all the instruc-
tions, and again, set the best as an initial schedule to inner-loop. The
outer-loop stops when there is no more reduction in total latency.
For example, consider a reschedule of operation opl in Fig. 1(b),
given the memory allocation and binding (i.e., {A, C, D}, {B}) in
Fig. 2(c), to a clock step after the execution of operation op2 as
shown in the left side of Fig. 4(a). The schedule leads to a latency re-
duction of 3, as indicated by AC at the bottom of Fig. 4(a). Fig. 4(a)
shows all the possible reschedules of opl with the corresponding
AC, values. For every operation, we attempt to reschedule the op-
eration and compute the quantity of AC in Eq.(2). For example,
the table in Fig. 4(b) shows all candidates of macro-reschedules (i.e.,
instruction-level) with AC> values. Among the reschedules of all
instructions, we select the reschedule of instruction with the smallest
AC5 value. If there are ties, we select the one with less number of
page read and write accesses in the schedule. For example, in the ta-
ble in Fig. 4(b), the second and third schedules are selected because
their AC’ is the smallest. We then check the numbers of page read
and write accesses of the two reschedules (denoted by #PR+#PW in
the table). In this example, the numbers are the same. In that case,
we select one randomly from the two reschedules. The next step is to
apply the micro-rescheduling to the final schedule obtained from the
macro-rescheduling. We omit the details due to the space limitation.

4. EXPERIMENTAL RESULTS

We implemented our proposed technique MACCESS-opt in C, ran
on a Linux PC equipped with 2.4GHz Pentium4 processor, and tested
it on a set of benchmark programs in numerical recipes [15] to check
how much the proposed technique is effective. The programs of nu-
merical recipes includes many function modules for solving math-

ematical problems and most of them belong to the memory access
intensive applications with arrays. FOURFS is the function for the
interpolation and extrapolation, SPLINE is a cubic spline algorithm
used to performs interpolation of the coordinates during the raw po-
sition computation. STOERM is a routine implemented according
to stoermer’s rule which has been used as a typical method for the
system of second-order conservative equations, and PZEXTR is the
polynomial extrapolation routine. Finally, RATINT is a rational in-
terpolation and extrapolation function. We evaluate our technique in
two-fold: (1) checking the effectiveness of MACCESS-opt in max-
imizing page mode accesses and (2) checking the effectiveness of
MACCESS-opt without Rescheduling and with Rescheduling in
reducing total memory access latency.

e Checking MACCESS-opt in maximizing page mode accesses:
Fig. 5 shows the amount of the increases of page mode accesses by
the application of MACCESS-opt to the initial codes by varying the
page size to 16, 64, 128, 256, and 512 for each design. The curves
in Fig. 5 clearly shows that MACCESS-opt quite performs well in
maximizing the use of page mode accesses by the exploration of
memory allocation, binding and scheduling. In summary, the overall
increase of page mode accesses by MACCESS-opt is in the range
of 9% - 65%, and as the page size increases, the number of page
accesses by MACCESS-opt also tends to slightly increase.

e Checking MACCESS-opt without and with Rescheduling in
reducing total memory access latency: Table 2 summarizes the to-
tal memory latencies used by an initial schedule with a random bind-

ing, our MACCESS-opt without Rescheduling and with MACCESS-

opt. The second column indicates the number of arrays of the corre-
sponding code to test and the constraint of total memory cost. (We
used the memory library in Table 1.) The remaining columns in-
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design array/ Total memory access latency (page_size = 16/64/128/256)
area No_Realloc/Rebind/Resch MACCESS-opt w/o Rescheduling | MACCESS-opt w/ Rescheduling
FOURFS | 6/21.5 171/168/168/168 160/157/156/156 150/148/146/146
SPLINE | 4/17.5 85939/82871/82360/82104 69451/65713/65090/64778 69451/65713/65090/64778
4716.5 85939/82871/82360/82104 76540773616/73129772885 72134768683/68108/67820
STOERM | 4/17.5 59077/58933/58909/58897 59077/58933/58909/58897 44642/44570/44558/44552
PZEXTR | 6/28.5 || 189886/189762/185075/184731 143172/138760/138025/137657 143172/138760/138025/137657
RATINT | 4/8.25 || 321483/303196/300148/298624 284310/269040/266495/265223 284308/269038/266493/265221
improvment 12.2%/12.9%/12.5%/12.7% 18.0%/18.9%/17.2%/18.8%

Table 2: Total memory access latencies by initial schedules with random binding, MACCESS-opt without and with Rescheduling.
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Figure 5: The increase of page mode accesses by the application
of MACCESS-opt to the initial codes, varying the page size to 16,
64, 128, 256, and 512 words.

dicate the total memory access latencies used by initial schedules
with random memory allocation and binding by performing Real-
location/Rebinding only in MACCESS-opt and by MACCESS-
opt, where we used the same delay numbers of memory accesses
that are used in Fig. 1. The results show that the overall reduction
of total memory access latency by our Reallocation/Rebinding is
more than 12%, and about 6% additional reduction (i.e. total 18%
reduction) is possible when our Rescheduling is combined with
Reallocation/Rebinding. From the table, we can see that the re-
duction by MACCESS-opt is consistent independently of both the
page size and the testcase, which is also verified by Fig. 6, in which
the numbers indicate the percentage of reduction in total memory ac-
cess latency used by Reallocation/Rebinding and MACCESS-opt
for each testcase.

S. CONCLUSION

In this paper, we proposed an effective memory access code opti-
mization algorithm, MACCESS-opt, which simultaneously solves
the three important problems: (i) determination of memories, (ii)
mapping of arrays to memories, and (iii) scheduling of memory ac-
cess operations, with the objective of maximizing the use of DRAM
access modes to reduce the total memory access latency, while sat-
isfying the memory size constraint in embedded system design. The
proposed algorithm can be usefully applied to the memory-resource
constrained, but memory access intensive embedded system applica-
tions to improve the memory access latency by utilizing the efficient
page mode accesses in (embedded) DRAMs. From our experimental
data, we found that the three problems were almost equally effec-
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Figure 6: The reductions of total memory access latency by Re-
allocation/Rebinding and Rescheduling for each testcase with
page size = 128 words.

tive in reducting the total memory access latency, contradicting each
other in significant ways. In summary, the overall reduction of mem-
ory access latency by our MACCESS-opt was 18% on the average.
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