
HAL II: A MIXED LEVEL HARDWARE LOGIC SIMULATION SYSTEM 

Shigeru Takasaki*, Tohru Sasaki**, Nobuyoshi Nomizu*, 

Hiroshi Ishikura* and Nobuhiko Koike*** 

* NEC Corporation 10, 1-chome, Nisshin-cho, Fuchu City, Tokyo, 183 Japan 
** NEC-TOSHIBA Information Systems, Inc. Shiba, Minato-ku, Tokyo, Japan 

*** NEC Corporation C&C Systems Labs. Kawasaki, Japan 

Abstract 

This paper describes a mixed level hardware 
logic simulation system, called Hardware Logic 
Simulator II (HAL II). This paper first shows a 
HAL II simulation method. Then, it overviews HAL 
II hardware and software system configurations, 
simulation mechanism and estimates system 
performance. The HAL II system can handle a 
maximum of 5.8 million gates and a high level 
design language FDL (Functional Description 
Language). Finally, it discusses system applica- 
tions and results, The paper also indicates that 
HAL II has been successfully used. 

I. INTRODUCTION 

In order to manufacture highly reliable and 
cost effective digital systems, LSIs have played 
an important role. when the improved LSI tech- 
nology is used in designing digital systems, 
network designers have to pay careful attention to 
differences between a custom made LSI network 
design method and previous SSI and MSI network 
design methods. Using the previous methods, it is 
easy to manufacture a prototype digital system 
after an original design and to verify the system 
functions on the prototype. On the other hand, it 
is not easy to manufacture a prototype digital 
system using custom LSIS, because design 
modifications caused by logic errors are quite 
difficult to make. The reason is that LSI 
refabrications require a long turn around time and 
are expensive. Therefore, network designers have 
to carefully verify custom LSIS and system 
functions before LSIs are fabricated. 

To verify/guarantee system functions/qualifi- 
cations completely, a test program, which checks 
system instructions and diagnoses, is carried out. 
The test program length is more than 10~ clocks 
in a large computer system. It is impossdble for 
a software logic simulator to carry out the test 
program in a reasonable computer run time. 
Therefore, a high speed hardware logic simulator 
is an indispensable tool to meet these require- 
ments in the LSI design era. 

Up to now, several hardware simulators have 
been reported [3][4]. The implemented systems are 
YSE, LSM and ZYCAD simulators. However, they were 
gate level simulators and used the compiled 
simulation method. Though gate level simulation 

is a useful tool, it requires a long simulation 
model generation time and simulation time, because 
of the large amount of network connection informa- 
tion and status propagation. To overcome gate 
level simulation problems, a block level hardware 
logic simulator, called HAL, was developed [l][Z]. 

Though the HAL system has lots of advantages, 
it limited the block size from several gates to 
several hundred gates. As LSIs become larger, 
blocks generating from LSIs become larger. In 
order to achieve these technology improvements, a 
new block hardware logic simulator was developed. 
The simulation method for blocks is drastically 
improved. The HAL II system can handle block size 
ranging from several gates to two hundred thousand 
gates. In addition, the HAL II system can deal 
with a high level design language FDL (Functional 
Description Language) [5] . This expands the HAL 
II system application field. Such applications 
are, for example, higher level computer system 
simulation based on FDL descriptions, and 
hierarchy verification using FDLs and logic design 
files. The HAL II system has these features. 

II. SIMULATION METHOD 

1) Simulation Algorithm 

HAL II adopted two logic values, i.e., zero and 
one, and a zero delay simulation technique. The 
main HAL II objective is to simulate very large 
computer system functions. In the logic simula- 
tion, especially computer system level simulation, 
two logic values are sufficient to simulate the 
system. 

From the timing analysis view point, it is 
necessary to carry out minimum, maximum and 
nominal delay simulations, in addition to the 
logic simulation. This delay and logic simulator 
can simulate asynchronous circuit behaviors. 
However, in order to implement this kind of 
simulator, it is necessary to have almost three 
times the memory capacity of a zero delay 
simulator. Besides the additional memory 
capacities, there is a simulation speed problem. 
This simulator method utilizes a time-wheel 
technique for simulation. In this technique, 
simulation events are set on the time-wheel, based 
on media and circuit delay, and the same time 
events are only simulated concurrently. 
Therefore, simulation concurrency, that is, 
parallel processing possibility, is reduced 

23rd Design Automation Conference 

073&100X/86/0000/0561 $01.00 01986 IEEE 
Paper 33.3 

581 



compared to a zero delay simulation. 
On the other hand, though a zero delay simula- 

tion can only handle a synchronous logic circuit, 
it has many advantages. From the simulation 
processes, it can utilize level sorting/ordering 
technique. This can increase simulation 
concurrency, i.e., parallel processing ratio in 
gate evaluations. That is, gates belonging to the 
same level in the block can be simulated simulta- 
neously. Hardware implementation requires only 
intermediate gate status memory. A simulation 
controller is also simpler than a nominal delay 
simulator. 

As most general purpose mainframe computers are 
made up from synchronous logic circuits, it is 
sufficient for a zero delay simulator to simulate 
their logic functions. In large computer systems, 
there are lots of logic functions to be verified 
before LSIs/PKGs in the systems are fabricated. 
If a nominal delay simulator requires a several 
times longer simulation speed than a zero delay 
simulator, for logic designers to carry out the 
test programs using this tool is intolerable. 

Though the timing analysis and asynchronous 
simulation using a nominal delay simulator are 
also important for digital network designs, they 
have a lower ratio compared to synchronous logic 
function verifications, from the current computer 
system view point. 

A unit delay simulation is located in between a 
zero delay and a nominal delay simulation, and is 
a very efficient technique. However, this simula- 
tion also requires two status memory sets for 
storing gate input and output values. It has the 
same problems for logic stabilization as the 
nominal delay simulator. 

2) Block Definition 

A block is defined as a set of gates/memories. 
A set of gates is called a logic block. 
Similarly, a set of memories is called a memory 
block. A block is generated from real logic 
design files or FDL description files. 

A) Logic block 

A logic block must be a combinational circuit 
consisting of primitive gates, i.e., AND, OR, EXOR 
etc. Therefore, a custom LSI, including scan 
registers, must be partitioned into two or more 
combinational circuits, i.e., logic blocks. A 
combinational custom LSI has one-to-one corre- 
spondence to a logic block. For example, as ALU, 
decoder and selector chips are combinational 
circuits, they correspond to logic blocks. On the 
other hand, a register chip, including selectors, 
random logics and registers, must be partitioned 
into two or more logic blocks. The FDL 
descriptions are transformed into .a logic block 
consisting of primitive gates by a software 
program. This will be described in Section III. 

B) Memory block 

A memory block is used to describe a set of 
memory chips having an address, read date, write 
data and control signal. Therefore, many memory 
chips are modeled as a single memory block. The 
FDL descriptions are also transformed into a 

memory block by the software program. 

3) Block Level Simulation --- 

HAL II is a block level event driven simulator. 
Simulation networks, for example, in computer 
systems are modeled as block-connections. Blocks 
are arranged in sequence according to block depth 
from primary inputs/registers to primary 
outputs/registers. Simulation can be carried out 
from input side blocks to output side blocks. 
Blocks belonging to the same level are simulated 
simultaneously. Block evaluations are carried out 
based on block models consisting of gates. The 
gate evaluation also makes use of a level sort 
technique. Gates are evaluated concurrently in 
blocks. 

III. HAL II SYSTEM OVERVIEW 

1) Hardware System Overview 

A HAL II system blockdiagram is shown in Fig. 
1. HAL II consists of 29 logic processors, two 
memory processors and one master control pro- 
cessor. It is also possible to have 27 logic and 
4 memory processor configuration, Each processor 
is connected to a router cell network. Logic 
processors are used to simulate random logic 
custom LSIs. A logic processor consists of a 
block processor and a logic block simulator. 
Memory processors are used to simulate ROMs and 
static/dynamic RAMS. A memory processor consists 
of the block processor and a memory block simu- 
lator. The master control processor is used to 
control the overall system, to load initial data 
and to store simulation results in memories. 

A) Logic processor 

o Block processor - 

The block processor performs event processing. 
It holds input/output pin data and an output pin 
connection. It receives an event packet, includ- 
ing a block category, and its input pin data from 
the router cell network. After setting an event 
in the input status memory, it fetches an event 
and input pin data, and sends the data to the 
logic block simulator. 

Then, it receives the simulated block outputs 
from the logic b:Lock simulator and compares the 
block outputs with previous output values. If any 
change is detected, it searches for input pins 
connected to the changed output pin. After making 
event packets to change the input pin value, it 
sends them to the router cell network. 

o Logic block simulator 

The logic block simulator simulates block 
functions. It receives block input pin logic 
values along with the block category from the 
block processor. The block simulation is per- 
formed through block element evaluations from the 
inputs to the outputs. The logic block simulator 
sends the simulated output pin values to the block 
processor. 

Paper 33.3 
582 



B) Memory processor D) Router cell network 

o Memory block simulator 

The memory block simulator carries out the 
same functions as static/dynamic RAMS. It 
receives an address, memory control bits and an 
array of write data as an input and returns an 
array of read data as an output. It has a direct 
interface with the main memory for the host 
processor. It uses a part of the main memory as a 
storage area for memory LSIs. 

The router cell network is a multi-stage 
interconnection network with 32 input ports and 32 
output ports. It consists of 80 router cell LSIs, 
which are a store-and-forward switch with two 
input ports and two output ports. Packets are 
transferred through this router cell LSI in a 
pipeline fashion. 

2) Software Supporting System Overview 

C) Master control processor 
A software system blockdiagram for HAL II is 

shown in Fig. 2. It mainly consists of three 
functions. Individual functions are as follows: 

The master control processor contains a packet 
transceiver, an execution controller and a DMA 
(Direct Memory Access) interface with host pro- 
cessor. The packet transceiver communicates with 
logic processors, in the form of a packet via the 
router cell network. 

i> Block model generation 

Logic and memory models are generated using LSI 

The execution controller performs level and 
clock synchronization among logic processors. All 
blocks are arranged by signal propagation order 
and grouped into levels. The logic processors 
simulate blocks belonging to the same Level at a 
simulation period. When all logic processors have 
ffnished simulation for a simulation cycle, the 
simulated results are saved in the host processor 
memory and the execution controller broadcasts a 
level start command to all logic processors to 
start the next simulation cycle. 

design files, FDL description files and a LSI 
component gate library, A random logic LSI, 
including registers, is partitioned into combina- 
tional blocks. Gates in the blocks are arranged, 
according to logic depth, from block inputs to 
outputs. When FDL descriptions are used for logic 
network design, logic/memory blocks are generated 
from FDL description files by a FDL translator. 
At this stage, random logic descriptions are 
transformed into primitive gate networks. 

FDL descriptions for an LSI are shown in Fig, 3 
(a). In the descriptions, for example, a 
statement Z (called node Z) is transformed into 
primitive gates by the FDL translator. That is, 

Block 
Processor 

J 
-I 

I Block 

r 

Fig. 1 HAL II System Blockdiagram 

Paper 33.3 
583 



the primitive gate syntheses for the node Z are 
carried out. This is shown in Fig. 3 (b). 

ii) Inter-block connection generation 

A system design file, consisting of multi-chip- 
packages and boards, is regenerated as inter-block 
connections using the block input/output file. 
Therefore, the system design file becomes a file 
of block connections. The blocks are also 
arranged according to block depth from system 
inputs/registers to registers/outputs. After 
that, the blocks are optimally allocated t'o an 
individual processor. The optimal allocation 
means that nearly the same block numbers are 
allocated in an individual processor. 

iii) Simulation execution control 

This supports functions necessary for the 
simulation preparation, including loading 
simulation models, controlling simulation 
execution, running test programs and firmware, and 
listing traced signal time charts. As many user's 
commands are provided, users can easily control 
the simulation execution. 

IV. SIMULATION MECHANISM 

A simu ation mechanism is shown in Fig. 1 ((from 
@ to ($1. Using Fig. 1, HAL II Simulation 

ISI design file System design file 

ISI 

I I; contr--_J ,, 

Fig. 2 Software System Blockdiagram 

processes are exp:lained, as follows: 

S-l: Block processor ( (3 ) -- 

Checks input status memory data,including events, 
block categories and input pin logic values, in 
sequence and detect an event. Then, it fetches 
the event and determines the block category and 
the input pin logic values. Sends the block 
category and the input pin logic values to the 
logic block simulator, and resets the event flag. 
If a level flag, which is used for a final level 
simulation flag, is detected during checking the 
input status memory, Lt stops detecting an event, 
and sends a level final signal to a control 
processor. 

s-2: Logic block simulator or memory block 
simulator ( 2 ) 

Logic block simulator or memory simulator evalua- 
tes a block based on the block category and the 
input pin logic values, and returns the block 
output pin logic values to the block processor. A 
block simulation mechanism in logic block simula- 
tor is set up in the following ways: 

s-2-1: Sets the input pin logic values to Data 
Mem, and determines a start address for Element 
Connection Memory and Element Category Memory 
from the address memory according to the block 

INPUT FC(O:S),SQ(O::l), -----,SI(4:4); 

OUTPUT SX(O:B),SXP, -----,EIF,SOT; 

FCMU = SQO'*SQ3'*FC(O); 

STF = ALH + CT0 + CI'W + IO1 + CCM + 102 + DRQ + CSE ; 

o z = (A(O:8)~GT.B(ll:Ei)).OR.((A(O:8).EQ.B(G:8)~*C~; 

EIF = QEIF(O:18).ROR.; 

SOT = QEIF(0); 

(a) FDL descrimions for an LSI. 

A(1) 

B(1) 

A(7) 

B(7) 

-2 

(b) Primitive gate sytheses for statement (node ) 2. 

Fig. 3 FDL Descriptions and Primitive Gate 
Syntheses 

Paper 33.3 
584 



category. The start address is sent to an 
address counter. 

A) Block capacity 

s-2-2: Reads the previous level logic values 
from Data Mem, and element categories from 
Element Category Memory. 

S-2-3: Evaluates the current level elements 
from the read data. For example, eight gates 
are evaluated simultaneously. 

s-2-4: Stores the evaluated element logic 
values to Data Mem. 

S-2-5: Checks the evaluated element level. If 
the level is final, sends the block output pin 
logic values to the block processor (S-3). 
Otherwise, it increases the level and the 
address counter and goes to S-2-2. 

s-3: Block Processor ( 3 ) 0 

Compares the new block output pin logic values 
with the previous block output pin logic values in 
the output status memory, and sets the new value 
to the status memory. 

s-4 : Block processor ( 3 ) 0 

If any output pin value change is detected, it 
determines packets, including processor, block and 
input pin numbers, to which the changed output 
pins are connected, by checking the block connec- 
tion memory. 

s-5: Router cell network ( @ ) or block 
processor 

Sends the packets to the processors connecting the 
changed pins via the router cell network. If the 
processor is the same processor, i.e., itself, it 
sends the packets directly to the same processor 
packet input. 

S-6 : Block processor ( 1 ) 0 

Receives changed input pin values as a packet. 

s-7 : Block processor ( @ ) 

Updates the input status memory by using block and 
pin numbers, and sets an event flag. Then, it 
goes to S-l. 

Process 1 (S-l, S-6 and S-7), Process 2 (S-2), 
Process 3 (S-3 and S-4) and Process 4 (S-5) can be 
operated in pipeline processings. 

V. SYSTEM PERFORMANCE 

1) System Capacity 

The HAL II block, processor and system 
capacities are as follow: 

I Memory 

Capacity 200,000 gates I 512 K bytes I 

Inputs 
Address: 13 pins 

(Max.) 128 pins Write: 64 pins 
Control: 2 pins 

Outputs max.) 128 pins Read: 64 pins 
. 

B) Processor capacity 

Logic 

Capacity 
ofax.) 

200,000 gates 

NO. of Blocks 
ofax) 

1024 

Block cate- 
gory (Max.) 

128 

C) HAL II system capacity 

Memory 

2 M bytes 

1024 

128 

Capacity 
(Ma- 1 

NO. 

8 million 

Memory 

Y gates 4 M bytes 
us.. , 
of Blocks 
.I 29696 2048 

k cate- 
(&x. 1 3712 256 

2) System Performance Estimation 

The clock simulation processes were described 
in Section IV. The simulation processes can be 
partitioned 

d 

nto four phases. They are Block 
Processor 1 (S-l, S-6 and S-7), Lo ic Block 
Simulator or Memory Block Simulator 2 

Network 0 (S-5p ~~~e~~~ebes~~~~~t~~z; 
Block Processor 3 (S-3 and S-4) and Router Gel; 

line processings. , 
can be estimated in examining each phase. The 
following are assumptions for estimating individ- 
ual phase performance. 

Al. Active total block event ratio per simulation 
cycle is E,. For example, Ev is 213. 

A2. Number of generated events per block evalua- 
tion is eV. For example, ev is 10. 

A3. A block consists of g gates. ex., g-1500. 

i) One block simulation cycle time 

a) Block Processor 0: Input pin status memory 

A block simulation requires e, accesses, and 1 
event fetch access. Therefore, input pin status 
memory processing 
follows: 

time INMT is computed as 

INMT = (ev + 1) x MI . . . . . . . . . . . . . . . . (1) 

where 

Paper 33.3 
585 



M : I input pin status memory access time, ax., 
MI=3OOns in HAL II. 

b) Logic Block Simulator 2 0: Logic Block 
Simulator 
Processing time 

Logic Block Simulator processing time LBST is 
computed by the element connection memory access 
time, No. of gates, required logic connection bits 
per gate, No. of parallel evaluation gates at a 
time and parallel evaluation efficiency ratio. 

LBST =MAxmxgx$xp . . . . . . . . . . . (2) 

where 

MA' the element connection memory access time 
(This is the longest access time in Logic 
Block Simulator.), ex.. MA=3OOns in HAL II, 

m: required connection bit unit per gate, ex., 
8 bits when m=l, 

g : No. of gates, ex., g=1500, 

P: No. of parallel evaluation gates at one tl:me, 
ex., p=8, 

u : parallel evaluation efficiency rate, ex., lJ=l, 

cl Block Processor 0: Block connection 
memory processing t:Lme 

In order to send ev packets, it is necessary to 
have ev block connection memory accesses. There- 
fore, block connection memory processing time :BCMT 
is computed as follows: 

BC&$= 
Mc x ev 

. . . . . . . . . . . . . . . . . . . . . . (3) 

where 

M,: block connection memory access time, sex., 
Mc=450ns. 

d) Router Cell Network 4 0: Packet transfer 
processing time 

Router cell packet transfer time RTRT can be 
computed by number of block events, packet transfer 
time per event, transfer degradation ratio due to 
packet collision, and ratio of blocks sent to some 
other processor. 

RTRT = ev x et x cd x Tr . . . . . . . . . . . . (4) 

where 

et: packet transfer time per event, ex., et=400ns 
in HAL II, 

=d: transfer degradation ratio due to packet 
collision, ex., c -1.4, d 

Tr: ratio of blocks sent to some other pro- 
cessors, ex., Tr=0.8. 

As these phases can be operated in pipeline 
processings, one block simulation cycle time S 
obtained as follows: i is 

% = Max {I N+ LBS,. BCMT, RTRTj . . . (5) 

ii) System performance -- 

System performance S can be computed by number of 
blocks, one simulation cycle time, number of 
processors, parallel processor efficiency ratio, 
block event ratio and number of repeated process- 
ing times per simu:lation cycle. 

GN 
s=~x~xEvx&x c si . . . . . . . . . (6) 

P r i=l 

where 

G : N 
number of blocks, 

s : i 
one simulation cycle time, 

N : 
P 

Number of available logic processors, ex., 
Np=27, 

Pr: parallel processor efficiency ratio, ex., 
Pr=0.4, 

Ev: active block event ratio per cycle, ex., 
Ev=2/3, 

6 : number of repeated processing times simula- 
tion cycle, ex., 6=1. 

Example: 

What is the clock simulation time required to 
simulate a 1 million gate computer system? 

Assumptions: This system is designed with fully 
customized 1500 gate LSIs, including registers. 

INMT, LBST, BCMT, RTRT and Si are computed 
based on Eqs (1) to (51, as follows: 

INMT = (IO + 1) x 300 = 3.3 us 

LEST = 300 x 2.5 x1500x$x 1 = 141 I.ls 

BC5r 
= 450 x 10 = 4.5 ps 

RT$ = 10 x 400 x 1.4 x 0.8 = 4.3 vs 

si = MAX {INTO, LBST, BC?, R~> = 141~~. 

In order to design this system, required LSIs NL 
are 

NL = 
100 x lo'= 670 

1500 . 

If an LSI is partitioned into 2 blocks, the number 
of blocks for GN is 

GN = 670 x 2 = 1340. 

Therefore, system performance S is 

11 2 
s=yxo.4"7 x 1 x 1340 x 141 = 12 ms. 

This is more than 1000 times 
software simulator. 

VI. APPLICATIONS 

1) Various Simulation Methods 

The RAL II system can support 

faster than a 

not only block 
level simulation, but also gate level simulation 
and mixed (gate, block and FDL) level simulation. 
When a block has only single level primitive 

Paper 33.3 
586 



gates, HAL II can perform the gate level simula- 
tion. Therefore, it has various application 
methods. For an LSI processor or a small size 
computer system, the gate level simulation method 
is useful. For a large computer system, the block 
level simulation method is more useful than the 
gate level simulation method. The FDL level 
simulation has many advantages. For example, when 
a newly designed part is not fixed as LSI design 
files, or when designers want to utilize some 
other maker's LSIs, whose internal detail logics 
are not clear, the FDL level simulation is quite 
useful. As designers can describe the newly 
designed part/other maker's LSI functions by using 
the FDL, they can simulate the total system. 

2) Application Fields 

A) LSI design verification 

As LSIs become larger, their design verifica- 
tions become harder and harder. A large number of 
test patterns are required for verifying LSI logic 
functions. Furthermore, many custom made LSIs have 
been developed. Therefore, if these LSIs are 
verified by a software tool, they require enormous 
computer resources. HAL II can easily be 
applicable for LSI design verifications. 

B) Computer system design verification 

As the HAL II system can perform test programs 
before building up computer systems, most logic 
errors are removed. Therefore, at the system 
test, only assembling faults remain. It is easy 
to detect them. This design verification method 
is quite useful to a system consisting of custom 
made LSIs. This is because the custom made LSIs 
cannot be refabricated when the design cycle and 
cost are critical. 

HAL II can perform a system test on firmware, 
This test tool checks system firmware functions, 
Therefore, HAL II can verify both system logic and 
firmware functions. 

C) System diagnosis evaluation 

HAL II is basically a block level simulator. 
This technique can be used for a system diagnosis 
evaluation. Block boundaries are real chip 
terminals or registers. Therefore, HAL II can set 
up a pseudo-failure on these boundaries and check 
whether or not a system diagnosis circuit detects 
this fault. Sometimes, it is quite difficult for 
a prototype hardware system to set up desired 
pseudo-failures. On the other hand, HAL II can 
easily set up the pseudo-failures on any block 
boundaries. 

VII. RESULTS 

Both gate and block level simulations were 
carried out on the hardware simulator. These 
results are shown in Table 1. 
From Table 1, it is clear that the block level 
simulation is about 10 times faster than the gate 
level simulation, in regard to both simulation 
model generation and simulation execution time. 
The simulation execution efficiency can be con- 
sidered due to less network status propagation and 

Table I. Comparison between gate and block 
level simulation results. 

I Simulation Category bate1 /GateZIBlockllBlockZ I 

System size (K gates) 130 100 110 105 

Model generation time (15 MIPS,sec) ( 871 [ 685 1 96 1 91 ( 
I I I I 

No. of total processor 32 28 32 27 

No. of simulation 
clocks (K clocks) 100 100 100 100 

concurrent evaluation of several gates. The 
modeling efficiency is also due to the fact that 
less network connection information is required. 
That is, the smaller the number of gates/blocks 
and signal lines among gates/blocks become, the 
shorter the linkage and level assignment time 
becomes. 

VIII. CONCLUSION 

A mixed level hardware simulation machine HAL 
II simulation method, system overview, and per- 
formance have been presented. The mixed level 
simulation has many effective applications. The 
simulation results have shown the block level 
simulation efficiency. The HAL II system can be 
used as an effective practical design tool in 
custom LSI design environments. 

ACKNOWLEDGEMENT 

The authors would like to thank Dr. Saito, Mr. 
Kuwata, Mr. Sugimoto and Dr. Yamamoto for their 
encouragement and management efforts. They are 
also grateful to Mr. Minowa. Mr. Tanaka. Mr. 
Kurashita and Mr. Kikuchi for developing the 
HAL II system, 

REFERENCES 

[l] N. Koike, K. Ohmori, H. Kondo and T. Sasaki, 
“A High Speed Logic Simulation Machine", 
Digest of papers COMPCON Spring, 83. pp. 
446-451, March, 1983. 

1 

I 

2] T. Sasaki, N. Koike, K. Ohmori and K. Tomita, 
"HAL: A Block Level Hardware Logic Simulator", 
Proc. of 20th Design Automation Conference, 
pp. 150-156, June, 1983. 

31 G. F. Pfister, "The Yorktown Simulation 
Engine: Introduction:, Proc. of 19th Design 
Automation Conference, pp. 51-54, June, 1982. 

[4] T. Blank, "A Survey of Hardware Accelerators 
used in Computer-Aided Design", IEEE Design h 
Test Vol. 1, No. 3, pp. 21-39, Aug. 1984. 

[51 s. Kato and T. Sasaki, "FDL: A Structual 
Behavior Description Language", 6th Int. Symp. 
CHDL., pp. 137-152, May 1983. 

Paper 33.3 
587 


