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Industrial Robotics Evolves Very Fast!

Industrial robots are now complex cyber-physical systems
(motion control and perception systems, multi-robots sync.,
remote control, Inter-connected for predictive maintenance, ...)

The?; are used to perform safety-critical tasks in complete autonomy
(high-voltage component, on-demand painting with color/brush change, ..)




Testing Robotic Systems is Crucial and Challenging

* The validation of industrial robots still involve too much human labour
* “Hurry-up, the robots are uncaged!”: Failures are not anymore handled using fences
* Robot behaviour evolves with changing requirements

» Today, industrial robots can be taught by-imitation.

Tomorrow, they will learn by themselves More

automation
in testing

More
diversity in
testing

More
efficiency in
testing



How Software Development of Industrial Robots Has Evolved...

From.... To...
Single-core, single application system Multi-core, complex distributed system
All source code maintained by a small team Subsystems developed by distinct teams
located at the same place located at distinct places in the world
Manual system testing only handled in a Automated software testing handled in

single place, on actual robots continuous integration, on virtual controllers



A Typical Cycle of Continuous Integration: Timeline

—
commit Test Case SeIection/Generation/'{
Software / -
Developer building — Test Suite Reduction
feedback |
Software — Test Case Prioritization
» Deployment

— Test Execution Scheduling
Software
Testing B

+ Test Execution




Constraint Programming

Global Constraints
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Test Selection and Test Suite Reduction

PRODUCT BASIC SPECIFICATIONS PRODUCT BASIC SPECIFICATIONS
IRB 14000 Load (kg) 0.50 IRB 1200 Load (kg) 5.00 7.00
YuMi® Reach(m)  0.559 P Reach(m) 0.90 0.70
~ Q. N
C D Protection  Std:IP30; Clean room ISO 5 o Protection  Std: P40
\ . 4 Option: IP67, Clean room ISO
Mounting Bench, table (-. 4, food grade lubricant
Safety PLb CatB { Mounting  Anyangle
IRB 14050 Load (kg) ~ 0.50 IRB 140 and Load (kg)  6.00
Single Arm YuMi Reach(m)  0.559 IRB 140T Reach(m) 0.81
w Protection  Std:IP30; Clean room ISO 5 Ravsn Protection  Std: P67
1 \'LQ Option: Cleanroom class 6,
o)) Mounting Any angle - table, wall, ceiling \;.‘ L Foundry Plus
"E Safety PLd Cat3,PLb Catb, g Mounting  Floor, wall, inverted, and
S SafeMove Pro option . tilted angles
IRB 1100 Load (kg) 400 4.00 IRB 1600 Load (kg) 6.00 6.00 10.0 10.0
Reach (m) 0.475 0.58 P Reach (m) 1.20 145 1.20 1.45
, f’) Armload (kg) 0.50  0.50 & Protection  Std:IP54
A X . Option: IP67 with foundry
1D Protection  Std: P40
) plus 2
f Mounting Any angle Mounting Floor, wall, inverted, tilted
: angles, and shelf
IRB 120 and Load (kg)  3.00 IRB 16601D Load (kg) ~ 4.00 6.00
IRB 120T Reach(m) 0.58 v Reach(m) 1.55 1.55
Protection Std:IP30 3& Protection  Std: IP40 (wrist IP67)
Option: Cleanroom class 5,
certified by IPA
Mounting Floor, wall, inverted, and p Mounting Floor, wall, inverted, and

tilted angles

tilted angles

10..30 code changes per day

- Select, schedule and execute about 150 TC per Cl cycle



Optimal Test Suite Reduction

F.: Requirements
TC: Test Cases

Optimally Reduced
Test Suite




Constraint Programming (CP)

: : : : cpe L /\ Const n’r
e Routinely used in Validation & Verification,
CP handles efficiently hundreds of thousands ' ermg
of constraints and variables Variable
Labeling

e CPis versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

— Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms



The nvalue global constraint
[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)
Where:

N is afinite-domain variable
V=]V, .. V.| isavector of variables

nvalue(N, V) holdsiff N=card( {V};,,: )

nvalue(N, [3, 1, 3]) entails N=2

nvalue(3, [X,, X,]) fails

nvalue(l, [X;, X, X;]) entails X; =X, =X,

N in 1..2, nvalue(N, [4, 7, X;]) entails X5 in {4,7}, N=2



Optimal Test Suite Reduction with nvalue

However,
only F,, F,, Fg
are available
for labeling!

Sol: F,=2,F,=3,F,=2
Optimally Reduced Test Suite

F,in{1, 2,6}, F,in{3,4}, F;in{2, 5}
nvalue( MaxNvalue, [F,, F,, F;])
Minimize(MaxNvalue)



The global cardinality constraint (gcc)
[Regin AAAI’96]

gee(T, d, V)

Where

T= [T, .. T\l isavectorof N variables
d=[d,, ..., d,] is avector of k values
V=[V, .. V,] isavector of k variables

Viinl..k,

gCC(T, d, V) holds iff Vi= card({j | szdl})

Filtering algorithms for gcc are based on max-flow computations



Example

gCC( [F1r Fz; F3]I [1121314151611 [V1IV21V31V4IV51V5])
means that:

TC1 covers exactly V, featuresin [F, F,, F;]
TC2 “ Vv, N
TC3 “ V, N

F.in{1, 2,6}, F,in{3, 4}, F;in{2, 5}
V,in{0, 1}, V,in{0, 1, 2}, V,in {0, 1}, V, in {0, 1}, Vc in {0, 1}, V. in {0, 1}

Here, V,=1, V,=1, V;=1, V,=0, V.=0, V=0 is a feasible solution

But, not an optimal solution!



Mixt model using gcc and nvalue

F,in{1,2, 6} F,in{3, 4} F,in{2, 5}
gCC( [F]_I F21 F3]1 [11213141516]1 [V]_) V21 V3r V4r V5) V6] )
nvalue(MaxNvalue, [F,, F,, F5])
Minimize(MaxNvalue)



Model pre-processing

Flin{l, 2,6} > F,.=2
as cov(TC,) < cov(TC,) and cov(TC,) < cov(TC,)
withdraw TC, and TC,

F is covered = withdraw TC;
F,in {3,4} 2 e.g., F, = 3, withdraw TC,

Pre-processing rules can be expressed once
and then applied iteratively
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Comparison with CPLEX, MiniSAT, Greedy (uniform costs)

(Reduced Test Suite percentage in 60 sec)

== == =
= = =
= =
TD1 | TD2 | TD3 | TD4
Requirements| 1000 | 1000 | 1000 | 2000
Test cases 5000 | 5000 | 5000 | 5000
Density 7 7 20 20




Other criteria to minimize

Requirement coverage
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!



Optimal Test Suite Reduction with Constraint Programming (CP)

Optimal TSR: the core problem

«— Optimal-TSR

D
G
D

ORONCLON0I0

Optimal-TSR: find a minimal subset of TC such that each F is covered at least once
(Practical importance but NP-hard problem!) — An instance of Minimum Set Cover

Our best CP model: Mixt

@

D .{;--@ |
&)
GO

NP-hard
problem!

0606

Fyin{1, 2,6}, F;in{3, 4}, Fyin{2, 5}
geel (Fy Fy, Fa), (1,2,3,4,5,6), (Vy, Vy, Vi, Vg, Ve, Vi) )
nvalue(MaxNvalue, (Fy, F,, F3)
label(minimize(MaxMNvalue))

Introducing model presolve

Fiin{1,2,6}=2 F, =2 ascov(TC,) = cov(TC;) = cov(TC,)

withdraw TC, and TC;

| F; is covered = withdraw TC;

Optimal-TSR

F,in{3,4} = eg., F, =3, withdraw TC,

We proposed an iterative algorithm to apply these
preprocessing rules to simplify the problem

B REOOR

™3
L

D4

7 = = -
CP with global constraints (nvalue, gcc) and search heuristic and presolve |
Time-contract solving of the multi-criteria optimisation problem I == - = -
= =

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow — ACM Int. Symp. on Soft. Testing and TDT T F03 T TD3 T TD4
Analysis (ISSTA'14), San José, CA, Jul. 2014. Requirements| 1000 | 1000 | 1000 | 2000
M. Mossige, A. Gotlieb and H. Meling - Generating Tests for Robotized Painting Using Constraint Programming - In Int. Joint Conf. on Artificial Test cascs 5000 | 5000 | 5000 | 5000
Intelligence (1JCAI-16) - Sister Conference Best Paper Track. New York City, 2016. Density 7 7 20 20

A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - Al Magazine 38, no. Spring (2017).




Variability model to
IRB 5500 IRB 5400-22 IRB 580 IRB 540 . R
describe a product line
<
’ file Edit Window Help
[F]
% Variant Projects| 3% 7 = B |[4F *C90vdm 2 = 8 ||dli Coverage view % =g
& CiscoVideoSystem Selected variant model; C90.vdm Project; CiscoVideoSystem - selected variant mode
: @ C20 Feature Priority * 1 Feature Coverage -
5 C40 MultiStream 0 - No priority I i
. MuitiStream i
Rail Sys IRB 5400-12 @ c40vdm H264 1- High H264 B
2 60 H323t05ip 3-Low - H323toSip
- ?9;60“‘“” H323 2 - Medium @ t Ha23 7
LocalControl 0 - No priori 7 u s
@ Co0vdm - prionty / [Fem LocalControl E
MultiSite 0 - No priority . g [7 Pator | MultiSite b
5 Common : : i -
@ com Dicomect 2. Nt (<o - o] Dicomes b
CameraControl 1 - High [ CamersCona ~ 5 CameraControl [
@ B0 . e .
, ssH 2 - Medium 7 * tag = ‘cameracsfirt] SSH
& input L [ prionkeys | e
Transfer 3-Low @ Requires: ‘Ripteras . - Transfer ]
& output eter ° " [> By ‘optionkeys [Fach g ]
5 5X20 Registration 1-High - A —— . Registration ﬂZ
CFM_Cisco.ccfm Audio 2 - Medium [[£ capontl " ] EXTERTEN ||| Audio il 3
CFM_example.ccfm SNMP 0 - No priority - SNMP i
FM_marliaae.ccfm Scheduling 1-High Scheduling
CFM_master.ccfm x8021x 0 - No priority 1 Phonebock x8021x
CFM_master2.ccim sip 1- High > tag = ‘phonebook T Registration P FETT
FM_new.ccfm Codec 2 - Medium @ Requires "TMIS_pro = tag = registration’ Codec B
CFM_new2.ccfm H265 0 - No priority @ Requires: "Registrars™ H265 |1
CFM_new3.ccim DataTransfer 1- High DataTransfer
]
CFM_new4.ccfm Marcie_ISDN 3-Llow Marcie ISDN E
FM_newS.ccfm DoNotDisturb 1- High DoNotDisturb I
CFM_new6.ccfm - iori <
M nawsecr Softwarelpgrade 0 -No priority T SoftwareUpgrade
_satc5Lccfm MultiWay 2 - Medium . MultiWay b
CiscoCFM.ccfm CUCM_provision 1 - High i
R 7 . CUCM_provision
CiscoVideoSystem.ccfm B [ CalRates] (2 Localations] [T Peripherais] p = ik
HoldResume 3-Low HoldResume E
8 CiscoVideoSystematm || yrrp 1- High T AudoProtocais] [ 1 SEheduiers] (7 Rocotons HTTP It
5 CiscoVideoSystemxtc || oo 0 No priority [ tag = rosolutons Cameras
) Examplexfm 5 -l ™
i — tation e e
2 test filext resen
.6 Unmatched test tags | =" Unmatched variant tags ¢ | @] Error Log = B &) Unmatched feature tags &2 = B ||| FirewallTraversal 0 ptl m lzed
Project: CiscoVideoSystem 147 tagged items without any correspondance in the test case file Project: CiscoVlideoSystem - 41 tagged items without any correspondance in the test case file Swap il d d
U . . d Filter: |All variant models - Filter: [All feature models - dle | (re uce )
Spider L .
noptl mize Feature Feature tag Model ||| Feature Feature Tag Model 21 ozp state test suite
test -t H323t0Sip h323tosip C20vdm [E)1| _1080p60_capable 1080p60_capable Examplefm (| ar [l
est suite SsH ssh C20vdm x8021x 8021x Bxamplexfm VideoController =
SNMP snmp C20vdm dusica atribut Examplefm M provision
Scheduling scheduling C20vdm dusical atributl Examplexfm Telnet
X8021x 8021x C20.vdm Autoanswer autoanswer Example.xfm EarEndControl E
DataTransfer datatransfer C20vdm Bug bug Bxamplefm TiphAddon I
SoftwareUpgrade swupgrade C20vdm _ ||| cameras cameras Examplexfm e L :

Diagnostic views, feature coverage

S. Wang, S. Ali and A. Gotlieb - Cost-Effective Test Suite Minimization in Product Lines Using Search Techniques -Journal of Systems and Software 103 (2015): 370-391.
A. Gotlieb, M. Carlsson, D. Marijan and A. Petillon - A New Approach to Feature-based Test Suite Reduction in Software Product Line Testing - In ICSOFT-EA 2016, 11th Int. Conf. on Sof. Eng.
and Applications, Lisbon, July 2016, Best Paper Award. INSTICC Press, 2016.

D. Marijan, A. Gotlieb, M. Liaaen, S. Sen and C. leva - TITAN: Test Suite Optimization for Highly Configurable Software - In International Conference on Software Testing, Verification and

Validation (ICST 2017) . IEEE, 2017.
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Constraint-Based Scheduling Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or paused;
2. Agents are well occupied;

3. Tasks sharing a global resource are not
executed at the same time;

4. Diversity of assignment of tasks to agents is
ensured;

Agents Goal:

with limited time or Schedule as much tasks as possible on available agents
resources capacity such that the overall execution time is minimized



Test Case Execution Scheduling

(T, M, G,d,qg,f)

T: a set of Test Cases Disjunctive scheduling,

M: a set of Machines, e.g., robots non-preemptive,

G: a set of (non-shareable) resources non-shareable resources,
machine-independant

d: T = N estimated duration execution time

g: T =26 usage of global resources
f: T 2 2M possible machines

Function to optimize:
TimeSpan: the overall duration of test execution T
(in order to minimize the round-trip time)

In practice, global optimality is desired but not mandatory, it’s more important to control Ts w.r.t Te
—> Time-contract global optimization



d f g m3
Test [Druration Executable on U=z of global resource )
£l 2 ml, m2, ma - =
£2 4 ml, m2, m3 rl i
A simple t3 3 ml, m2, m3 rl &
example td 4 ml.m2, ma r1
47} 3 ml. m2, ma -
41 2 ml, md, ma -
5] ] il -
td 2 m2 -
9 3 e -
£10 3 ml, md -

H

Test Cases: t1, t2, t3, t4, t5, 6, t7, t8, 19, t9, t10

s sreiosons v stbe




The CUMULATIVE global constraint  [Aggoun & Beldiceanu AAAI'93]

CumuLATive( t, d, r, m)

Where
t=(t, ..., ty) is a vector of tasks, each t; In S; .. E;
d=(d, ... dy) is a vector of task duration

r=(ry, ..., ry) is a vector of resource consumption rates

M is a scalar

CumuLATIVE (t, d, I, m) holds iff




Using the global constraint CUMULATIVE

Test [ruration Executable on U=z of global resource
CuMULATIVE((ty,...,t;0), (dy,..,d50), (L, ..,1), 3), . ; :i:j N
|\/|1,..,|\/|6 In 1..3, t3 3 ml, m2, m3 rl
M, =1, Mg =2, Mg = 3, My, in {1,3}, 5 3 mimams "
(E,<S;0rE;<S,), (E,<S,0rE, <8S,), 6 2 mlm2ma
(E; <S,0r E, <5,), - : il
Max(MaxSpan, (E,, ..., E1p)), t9 3 ms3
LageL(Minivize(MaxSpan), (Sy,..,S;), (My,...My,)) m o ml.me

An optimal solution:
5;=0,5,=4,5;=8,5,=0,5:=4,5,=7,5,=2,5, =9,
Sip=3,

Mi=1LM,=1, M;=1,M;=2, M; =2, Mg=2, M, =1,
Mg =2, Mg =3, M;;=3

MaxSpan = 11

M. Mossige, A. Gotlieb, H. Spieker, H. Meling and M. Carlsson - Time-aware Test Case Execution Scheduling for Cyber-Physical Systems - In Proc. of Principles of Constraint Prog. (CP’17), 2017.



Limitations of this model

Static model — In practice, robots and test cases are not necessarily available
at each Cl cycle - Need a more dynamic model!

Historical data about test case success/failure is not taken into
consideration!

Diversity in scheduling among Cl cycles is not handled



A New Approach Based on Priority and Affinity

. Test results from n
previous runs (Pass/Fail)

. Developer priority

. Test duration

. Time since last execution

Modeled as a Multi-Cycles Assignment Problem
Computing priorities based on A, B, C (Priority)
Combined with D (Affinity) with several heuristics
Incremental solving from CI cycle to Cl cycle




Affinity: more diversity In the test execution process

«® .
l 3 cycles

= Since last

exec.
.
T 10 cycles since last h 2 cycles since last
- exec. —~ exec.

1 cycle
since last
exec.

Lz
0 cycle e
since last &

exec.




Rotational Diversity

Definition 1. Multi-Cycle General Assignment Problem

Maximize Z Z TijVij (1)

icA* jeTE

subject to »  ajjwi; < b, vieA* (2
JETE
Zx%‘jgl, VieTt @3)
ic Ak

with
k : Index of the current cycle
AP : A set of integers i labeling m agents
T : A set of integers j labeling n tasks
b; : Capacity of agent ¢
v;; - Value of task j when assigned to agent ¢ 4)
w;; + Weight of task j on agent 7

v {(1) (T)‘talj:riiizeassigned toagent: A7 € C;? 5)

Profit (% of FOP)

100

o
Lh

\O
=}

o.d]
Lh

80

Weighted Partial Profits (WPP) Vij = A} -

ﬁ%iié

FOA

Priority only (FOP)

Affinity only (FOA)

Product Combination (PC)

Pij

i€ Ak jeTk

max Imax pj,

A
Vi; = Pij

FAY
Uij = Gﬂ,;j

i if v > max ;1 AP*
Objective Switch (05) vi; = 77 JETH

-

1

PC OS/10 OS/20 OS/30 OS/40 WPP

a;; otherwise
A« B
Vij = Pij * Qg
k Qij
max max g
ic AR jETE
Agents 20 20 20 30
Tasks 750 1500 3000 3000 Total
FOA 15(24.4) 6(15.7) 3(9.5) 3(85) 27(14.5)
OS/10  14(22.2) 6(155 3094 3(84) 26(13.9)
0S/20 9(18.6) 6(153) 3(9.2) 3(83) 21(12.9)
0S/30 7(16.9) 5(143) 3(9.1) 3(8.1) 18(12.1)
0S/40 7(16.2)y 4(13.1) 3389 379 17(11.5)
pPC 15(24.0) 7(144) 3(8.3) 3(7.5) 28(13.6)
WPP 14(24.1) 7(14.2) 3(7.3) 3(7.0) 27(13.2)
FOP 3(15.7) 0(10.8) 0(7.1) 04.06) 3(9.6)

Strategy

(b) Diversity: Full rotations of all tasks (Avg. rotations per task)



SWMOD: Deployment of Test Case Execution Scheduling
at ABB Robotics

- ~1500 lines of SICStus Prolog Code with CP(FD) Visual Studio e PUthOﬂ | SIGSt4u's
- Fully integrated into the MS-TFS Continuous Integration feamFoundationsenver

- Using the global constraint binpacking + Rotational Diversity

- Deployed at ABB since Feb. 2019

“ ll ll “SWMOD deployed at ABB Robotics and used every day to schedule tests
" .. l. throughout several ABB centers in the world (Norway, Sweden, India, China)”

M. Mossige, A. Gotlieb and H. Meling - Generating Tests for Robotized Painting Using Constraint Programming In Int. Joint Conf. on Artificial Intelligence (IJCAI-16) — Sister Conference
Best Paper Track. New York City, 2016.

H. Spieker, A. Gotlieb, D. Marijan and M. Mossige - Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration - In Proc. of the 26th ACM Int.
Symp. on Software Testing and Analysis (ISSTA’17). New York, NY, USA: ACM, 2017.

H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Feb.
2019.
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Optimal Stress Test Trajectories for Robots with CP

/ Specified path
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0.00
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T T T T T T T T
0.95 1.00 105 110 115 120 125 130

1140

1145

Generate (near-optimal) stress test trajectories for
detecting deviations in 3D workspace with obstacles

Robtest: using global constraints (table, subcircuit) and
dedicated search heuristics (max-costs, max-regrets)

1150 1.155

Results

Near-Optimal solution

1160

Computer configuration:

+ Core |7, 2,6 GHz
+  BGERAM

Parameter configuration:

* D=1

[#Points | CR
[ 10 0,12
| !
[ 12

13
I 14
—

5
1t
I 17

1=
| 19

20
21

Simulated
path

% from optimall solution

Mear-optimal solutions

simula
@crtus ABB

M. Collet, A. Gotlieb, N. Lazaar and M. Mossige - Stress Testing of Single-Arm Robots Through Constraint-Based Generation of Continuous Trajectories

Intelligence Testing Conference (Al Test 2019). San Francisco, CA, USA. Apr. 2019.

- In Proc. of the 1st IEEE Artificial



Using constraint acquisition to a CP model, enabling
the testing of learning collaborative robots
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Test of Learning Robots
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DeepRegression: exploiting regression testing
Acpisition to reduce training datasets

V4

0.0 =0 \/ Constraint

# — (48, -4, ..., -32) x
safe safe a8 Confusion Matrix . )
unsafe Chsso BB 0B 01 5151 5 8 —_— E?onzusclponsl\ﬂitn;( -
V,=0. Vs+ B. v ,.0@B4 1 7 4 3 14 1810 - 1000 C'asso'--ﬂ - 1000
=W Vo -V Class1- = g Class1- O QB0 0 0 0 1 4 0 2
] Class2 - 5 3-E|12 33 6 B 61 - Class2- 0 4‘&!!12 01 02 5 0 a0
TR “ee Semantics Analysisof V5>‘3- Vet e Vyy 1 3 7BRA1 9 1 9 45 17 )
o Class3 o  Class3- 0 3 s-Homl 8 4 7
2 s q,
observed trajectories s £ Classa- 0 0 4 o-!'l 318 3 1015 a— 8 Classa-0 116 1‘550 6 4 5 16 - &00
gc|a55541020-!!160:|.11 Soasss-4 1o 1E8s 1198
FoClassg-3 3 4 0 5 1n.¥!'l 0w o 00 F oClasg-7 11 12 3 9 uBERo 1 o -400
Clase7-2 1 16 13 6 7 u-!:ls £l Class7-2 1 4 5 30 ﬂ.ﬁ; 3
Classg-1 4 5 3 3 9 5 o-EIl - 200 Classg-3 2 9 10 4 4 4 oBHa -0
sg-0 0 0 2 29 5 0 2 3ER
Classg-1 0 0 1 36 & 0 415-5 Class 9 I e S e S B -0
-0 s e s e e s
‘ A . v A A A e i+ "DQ .‘o\' ,h:ﬂy ,ﬂ;b .s} ,&o% ,w‘o ,s:\ ,ﬂ:b Mo, .\’EE’%.\’EE’%,\’EE;O.\’EE’%.\’EE;O.\’EE’%.\’EE’%.\’EE;O.\’EE’%.\’EE;g
M. Ahuja, A. Gotlieb, D. Marijan and H. Spieker — DeepRegression: Regression Testing of Deep Learning Systems R s N PN T TN

using Reduced Training Dataset — In writing

i Predicted label
Predicted label



Adaptive Metamorphic Testing

Ige Spieker

H.,

4) iRobot Rumba

T ] X ,

'f '
LA

7) Riba Medical Robot 8) TALON ‘ | 9) Zoomer l:!obot Dog i
TensorFlow.org - Image classification — dataset of 10,000 images Object Detection case study — MS COCO dataset of 5,000 images

Motivation: Deep Learning based vision systems are hard to test — Metamorphic Testing is the State-of-the-Art method
Adaptive Metamorphic Testing: using contextual bandits to select the Metamorphic Relation which works best

~ 50 - Airplane  Automobile  Bird Cat  Deer Dog  Frog Horse  Ship Truck  Avg.
1S3
S 40 — Blur 10.60 11.40  13.10 9.81 730 1350 17.70 9.00 6.00 6.20  10.46
-
i) 30 4 Flip L/R 2.90 1.00 4.10 6.71 2.20 6.80 1.30 2.40 0.90 240 3.07
é Flip U/D 14.90 74.60  37.80 3313 59.10 5390 2930 9240 7220 43.30 51.06
g 20 1 I Tetraband Grayscale 4.70 5.40  28.10 791 18.10 26.00 14.30 6.70 4.80 5.30 1213
= - : er 3.5 29.- 29.5 33.13  41.4 70.: 38.: 27.: 35.70  36.3:
= 10 I Baseline Invert 16.50 29.40  29.50  33.13  41.40 70.30 41.80 3830 27.30 3570  36.33
= 0 Rotation 25.49 37.09 3543 17.70 69.00 46.10 20.63 60.44 4244  50.01 40.43
Shear 11.22 4.99  26.69 35.79 4545 5197 15.63 40.24 19.78 5524 30.70
@-Q’\& &e‘ 99 09 AP n)Q 4@*\ @ Avg. 12.33 23.41 2496 20.60 34.65 38.37 20.10 3564 2477 2831 2631
N &% RN
K & & & N @ R
& PSS T L D + the true ¢ ; S . « the porce
(€ S (:30 Q‘O o Q Table 1: CIFAR-10 dataset: Effects of MRs by the true class of the image. Each cell value shows the percentage of images
Q' in the class, which are wrongly classified after applying the MR. Every class contains 1000 images. Rotation and Shear are
(a) Image Classification parameterized by 30 degrees.

H. Spieker, A. Gotlieb — Adaptive Metamorphic Testing with Contextual Bandits — 14p — submitted to a journal



Take Away Message

Testing industrial robots brings new interesting challenges for software V&V research

Constraint Programming (CP) and global constraints are successful in
test case generation, test suite reduction and test execution scheduling

Testing learning capabilities of collaborative robots ischallenging as:
- Expected behaviours cannot be specified in advance
- Interactions with humans involve more safety issues

We are eager to collaborate with experts in Robotics,
to find new methods for testing learning robots
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