
RoboSoft – Wed, 13-14 November 2019 –
Royal Academy of Engineering

Arnaud Gotlieb
Simula Research Laboratory
Norway

Testing Robotic Systems: A New Battlefield!

2

Industrial Robotics Evolves Very Fast!

Industrial robots are now complex cyber-physical systems
(motion control and perception systems, multi-robots sync.,
remote control, Inter-connected for predictive maintenance, …)

They are used to perform safety-critical tasks in complete autonomy
(high-voltage component, on-demand painting with color/brush change, ..)

And they collaborate with human co-workers

3

Testing Robotic Systems is Crucial and Challenging

• The validation of industrial robots still involve too much human labour

• “Hurry-up, the robots are uncaged!”: Failures are not anymore handled using fences

• Robot behaviour evolves with changing requirements

• Today, industrial robots can be taught by-imitation.
Tomorrow, they will learn by themselves More

automation
in testing

More
diversity in

testing More
efficiency in

testing

From…. To…

How Software Development of Industrial Robots Has Evolved...

Single-core, single application system Multi-core, complex distributed system

All source code maintained by a small team
located at the same place

Subsystems developed by distinct teams
located at distinct places in the world

Manual system testing only handled in a
single place, on actual robots

Automated software testing handled in
continuous integration, on virtual controllers

A Typical Cycle of Continuous Integration:

Developer
commit

Software
building

Software
Deployment

Software
Testing

Developer
feedback

Test Case Selection/Generation

Test Suite Reduction

Test Case Prioritization

Test Execution Scheduling

Timeline

+ Test Execution

2. Test
Execution
Scheduling

3. Test of Intelligent
Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

Global Constraints
Constraint Optimization

7

2. Test
Execution
Scheduling

3. Test of Intelligent
Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

Global Constraints
Constraint Optimization

Test Selection and Test Suite Reduction

10..30 code changes per day

Test Case Repository:
~10,000 Test Cases (TC)
~25 distinct Test Robots
~500 distinct features

From a concrete set up:

→ Select, schedule and execute about 150 TC per CI cycle

Optimal Test Suite Reduction

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimally Reduced
Test Suite

Fi: Requirements
TC: Test Cases

Similar to the Vertex
Cover problem in a

bipartite graph
NP-hard
problem!

Constraint Programming (CP)

Domain
Filtering

Variable
Labeling

Constraint
Propagation• Routinely used in Validation & Verification,

CP handles efficiently hundreds of thousands
of constraints and variables

• CP is versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models and heuristics requires expertise)

→ Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms

The nvalue global constraint
[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)
Where:

N is a finite-domain variable

V = [V1, …, Vk] is a vector of variables

N = 𝑐𝑎𝑟𝑑(Vi 𝑖 𝑖𝑛 1. . 𝑘
)nvalue(N, V) holds iff

nvalue(N, [3, 1, 3]) entails N = 2
nvalue(3, [X1, X2]) fails
nvalue(1, [X1, X2, X3]) entails X1 = X2 = X3

N in 1..2, nvalue(N, [4, 7, X3]) entails X3 in {4,7}, N=2

Sol: F1 = 2, F2 = 3, F3 = 2
Optimally Reduced Test Suite

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimal Test Suite Reduction with nvalue

However,
only F1, F2, F3

are available
for labeling!

The global_cardinality constraint (gcc)
[Regin AAAI’96]

gcc(T, d, V)
Where

T = [T1, …, TN] is a vector of N variables

d = [d1, …., dk] is a vector of k values

V = [V1, …, Vk] is a vector of k variables

∀𝑖 𝑖𝑛 1. . 𝑘,
Vi= card({j | Tj=di})

gcc(T, d, V) holds iff

Filtering algorithms for gcc are based on max-flow computations

Example

gcc([F1, F2, F3], [1,2,3,4,5,6], [V1,V2,V3,V4,V5,V6])
means that:

TC1 covers exactly V1 features in [F1, F2, F3]
TC2 ‘’ V2 ‘’
TC3 ‘’ V3 ‘’
...

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Here, V1=1, V2=1, V3=1, V4=0, V5=0, V6=0 is a feasible solution

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
V1 in {0, 1}, V2 in {0, 1, 2}, V3 in {0, 1}, V4 in {0, 1}, V5 in {0, 1}, V6 in {0, 1}

But, not an optimal solution!

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc([F1, F2, F3], [1,2,3,4,5,6], [V1, V2, V3, V4, V5, V6])
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Mixt model using gcc and nvalue

Model pre-processing

F1 in {1, 2, 6} → F1 = 2
as cov(TC1)  cov(TC2) and cov(TC6)  cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC 2

TC 3

TC4

TC5

TC6

F3 is covered → withdraw TC5

F2 in {3,4} → e.g., F2 = 3, withdraw TC4

Pre-processing rules can be expressed once
and then applied iteratively

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)
(Reduced Test Suite percentage in 60 sec)

Other criteria to minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Requirement coverage
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

Optimal Test Suite Reduction with Constraint Programming (CP)

CP with global constraints (nvalue, gcc) and search heuristic and presolve
Time-contract solving of the multi-criteria optimisation problem

NP-hard
problem!

A. Gotlieb and D. Marijan - FLOWER: Optimal Test Suite Reduction As a Network Maximum Flow – ACM Int. Symp. on Soft. Testing and
Analysis (ISSTA'14), San José, CA, Jul. 2014.
M. Mossige, A. Gotlieb and H. Meling - Generating Tests for Robotized Painting Using Constraint Programming - In Int. Joint Conf. on Artificial
Intelligence (IJCAI-16) - Sister Conference Best Paper Track. New York City, 2016.
A. Gotlieb and D. Marijan - Using Global Constraints to Automate Regression Testing - AI Magazine 38, no. Spring (2017).

Optimized
(reduced)
test suiteUnoptimized

test suite

Diagnostic views, feature coverage

Variability model to
describe a product line

IRB 52

IRB 5400-22 IRB 580 IRB 540

IRB 5400-12

IRB 5500

IRB 58Rail sys

S. Wang, S. Ali and A. Gotlieb - Cost-Effective Test Suite Minimization in Product Lines Using Search Techniques -Journal of Systems and Software 103 (2015): 370-391.
A. Gotlieb, M. Carlsson, D. Marijan and A. Petillon - A New Approach to Feature-based Test Suite Reduction in Software Product Line Testing - In ICSOFT-EA 2016, 11th Int. Conf. on Sof. Eng.
and Applications, Lisbon, July 2016, Best Paper Award. INSTICC Press, 2016.
D. Marijan, A. Gotlieb, M. Liaaen, S. Sen and C. Ieva - TITAN: Test Suite Optimization for Highly Configurable Software - In International Conference on Software Testing, Verification and
Validation (ICST 2017) . IEEE, 2017.

2. Test
Execution

Scheduling

3. Test of Intelligent
Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

Global Constraints
Constraint Optimization

Constraint-Based Scheduling

Tasks
with distinct
characteristics

Agents
with limited time or
resources capacity

Assignment of Tasks to Agents such that:

1. Task execution is not interrupted or paused;
2. Agents are well occupied;
3. Tasks sharing a global resource are not
executed at the same time;
4. Diversity of assignment of tasks to agents is
ensured;

Schedule

Goal:
Schedule as much tasks as possible on available agents
such that the overall execution time is minimized

Test Case Execution Scheduling

T: a set of Test Cases

M: a set of Machines, e.g., robots

G: a set of (non-shareable) resources

d: T → N estimated duration

g: T → 2G usage of global resources

f: T → 2M possible machines

Function to optimize:
TimeSpan: the overall duration of test execution TE

(in order to minimize the round-trip time)

(T, M, G, d, g, f)

Disjunctive scheduling,
non-preemptive,
non-shareable resources,
machine-independant
execution time

In practice, global optimality is desired but not mandatory, it’s more important to control TS w.r.t TE

→ Time-contract global optimization

m3

m2

m1

A simple
example

d f g

r1

Test Cases: t1, t2, t3, t4, t5, t6, t7, t8, t9, t9, t10

The CUMULATIVE global constraint [Aggoun & Beldiceanu AAAI’93]

CUMULATIVE(t, d, r, m)

Where

t = (t1, …, tN) is a vector of tasks, each ti in Si .. Ei

d = (d1, …., dN) is a vector of task duration

r = (r1, …, rN) is a vector of resource consumption rates

m is a scalar

෍

𝑖=1

𝑁

𝑟𝑖 ≤ 𝑚

ti ≤ t ≤ ti + di

CUMULATIVE (t, d, r, m) holds iff

Using the global constraint CUMULATIVE

CUMULATIVE((t1,..,t10), (d1,..,d10), (1, ..,1), 3),

M1,..,M6 in 1..3,

M7 = 1, M8 = 2, M9 = 3, M10 in {1,3},

(E2 ≤ S3 or E3 ≤ S2), (E2 ≤ S4 or E4 ≤ S2),

(E3 ≤ S4 or E4 ≤ S3),

MAX(MaxSpan, (E1, …, E10)),

LABEL(MINIMIZE(MaxSpan), (S1,..,S10), (M1,..,M10))

An optimal solution:
S1 = 0, S2 = 4, S3 = 8, S4 = 0, S5 = 4, S6 = 7, S7 = 2, S8 = 9,

S10 = 3,

M1 = 1, M2 = 1, M3 = 1, M4 = 2, M5 = 2, M6 = 2, M7 = 1,

M8 = 2, M9 = 3, M10 = 3

MaxSpan = 11

M. Mossige, A. Gotlieb, H. Spieker, H. Meling and M. Carlsson - Time-aware Test Case Execution Scheduling for Cyber-Physical Systems - In Proc. of Principles of Constraint Prog. (CP’17), 2017.

Limitations of this model

• Static model – In practice, robots and test cases are not necessarily available
at each CI cycle → Need a more dynamic model!

• Historical data about test case success/failure is not taken into
consideration!

• Diversity in scheduling among CI cycles is not handled

T2, T5,
T34 T45,

T55

T4,
T56,
T67

T7,
T23

T3, T6,
T45,
T78

A. Test results from n
previous runs (Pass/Fail)

B. Developer priority
C. Test duration
D. Time since last execution

- Modeled as a Multi-Cycles Assignment Problem
- Computing priorities based on A, B, C (Priority)
- Combined with D (Affinity) with several heuristics
- Incremental solving from CI cycle to CI cycle

A New Approach Based on Priority and Affinity

Affinity: more diversity in the test execution process

90

2 cycles since last
exec.

10 cycles since last
exec.

3 cycles
since last
exec.

1 cycle
since last
exec.

0 cycle
since last
exec.

Rotational Diversity Priority only (FOP)

Affinity only (FOA)

Product Combination (PC)

Objective Switch (OS)

Weighted Partial Profits (WPP)

“SWMOD deployed at ABB Robotics and used every day to schedule tests
throughout several ABB centers in the world (Norway, Sweden, India, China)”

- ~1500 lines of SICStus Prolog Code with CP(FD)
- Fully integrated into the MS-TFS Continuous Integration
- Using the global constraint binpacking + Rotational Diversity
- Deployed at ABB since Feb. 2019

SWMOD: Deployment of Test Case Execution Scheduling
at ABB Robotics

M. Mossige, A. Gotlieb and H. Meling - Generating Tests for Robotized Painting Using Constraint Programming In Int. Joint Conf. on Artificial Intelligence (IJCAI-16) – Sister Conference
Best Paper Track. New York City, 2016.
H. Spieker, A. Gotlieb, D. Marijan and M. Mossige - Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration - In Proc. of the 26th ACM Int.
Symp. on Software Testing and Analysis (ISSTA’17). New York, NY, USA: ACM, 2017.
H. Spieker, A. Gotlieb and M. Mossige - Rotational Diversity in Multi-Cycle Assignment Problems - In Proc. of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Feb.
2019.

2. Test
Execution
Scheduling

3. Test of
Intelligent Systems

1. Test Suite
Reduction

Deployment of “Intelligent” Continuous Testing at ABB
Robotics

Constraint Programming Constraint-based Scheduling

Global Constraints
Constraint Optimization

Optimal Stress Test Trajectories for Robots with CP

Generate (near-optimal) stress test trajectories for
detecting deviations in 3D workspace with obstacles

Robtest: using global constraints (table, subcircuit) and
dedicated search heuristics (max-costs, max-regrets)

M. Collet, A. Gotlieb, N. Lazaar and M. Mossige - Stress Testing of Single-Arm Robots Through Constraint-Based Generation of Continuous Trajectories - In Proc. of the 1st IEEE Artificial
Intelligence Testing Conference (AI Test 2019). San Francisco, CA, USA. Apr. 2019.

Mathieu Collet

Test of Learning Robots

Using constraint acquisition to a CP model, enabling
the testing of learning collaborative robots

DeepRegression: exploiting regression testing
to reduce training datasets

M. Ahuja, A. Gotlieb, D. Marijan and H. Spieker – DeepRegression: Regression Testing of Deep Learning Systems
using Reduced Training Dataset – In writing

Mohit K. Ahuja

Adaptive Metamorphic Testing

Object Detection case study – MS COCO dataset of 5,000 imagesTensorFlow.org - Image classification – dataset of 10,000 images

Motivation: Deep Learning based vision systems are hard to test – Metamorphic Testing is the State-of-the-Art method
Adaptive Metamorphic Testing: using contextual bandits to select the Metamorphic Relation which works best

H. Spieker, A. Gotlieb – Adaptive Metamorphic Testing with Contextual Bandits – 14p – submitted to a journal

Helge Spieker

• Testing industrial robots brings new interesting challenges for software V&V research

• Constraint Programming (CP) and global constraints are successful in
test case generation, test suite reduction and test execution scheduling

• Testing learning capabilities of collaborative robots ischallenging as:
- Expected behaviours cannot be specified in advance
- Interactions with humans involve more safety issues

Take Away Message

Thank You

We are eager to collaborate with experts in Robotics,
to find new methods for testing learning robots

