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STATEMENT OF ETHICS 

Any work in the field of robotics requires the author to address its 

potential ethical implications, particularly about the safety of those 

interacting with the robot. We would like to argue that the usual 

considerations concerning to this field, or to that of AI since the robot 

is autonomous, need not apply in this situation—the former because 

we are not actually constructing a physical robot, but only a model of 

its software, nor is it intended to interact with a human being. The 

latter because the application’s autonomy consists of merely 

following a pre-determined path, and the output of our work is a 

model of how these decisions would be taken if the robot were 

actually constructed. There is also the question of whether this work 

could be acquired and used for malicious purposes. We believe the 

results of our work cannot be used to cause any damage, as the 

modelled application itself is harmless. 
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Executive summary 

This project aims to investigate the improvements modelling can 
bring to an existing real-world application—an autonomous vacuum 
cleaning robot for solar panels. By grounding our work in a pre-
constructed, documented robot, we build a case study of the benefits 
modelling can bring to this both in terms of documentation and testing. 

Modelling has been used extensively in software development to 
make designs more robust to change, and eliminate ambiguity from 
discussions about the software’s functionality. In this work we argue 
that the same principles could be used to obtain these results in the 
field of robotics. The robotic vacuum cleaner in particular exhibits 
many documentation issues and ambiguities that could be eliminated 
by using a domain-specific language (DSL) for robotics—a modelling 
language that abstracts away common constructs specific to robotics. 
Furthermore, model verification may allow developers to reason about 
properties of their robots and correctness of their designs prior to 
investing the time and resources of building or programming them.  

In our work we discuss the shortcomings of the vacuum cleaning 
robot’s documentation, and derive from these a set of requirements for 
a useful model. We highlight the incompleteness and ambiguity of the 
specification, its lack of consistent syntax in its figures, and the 
absence of formal proof of the robot’s claimed properties—charging 
itself and resuming cleaning afterwards, achieving full coverage of the 
solar panels. Our objectives are to compare the available DSLs, select 
the most suitable language for the application, and construct a 
readable model that accurately captures the robot’s functionality, and 
includes enough detail to reason about the above properties. We set 
as additional objectives to test whether RoboChart, our selected 
language, can model a robot with such an expressive platform, 
whether it can capture multiple levels of abstraction in an intuitive 
manner, and to create the first RoboChart model of a PID controller, a 
common robotics component which may prove useful in future projects 
in the language. Our requirements for the model are to be accurate, 
unambiguous, clear, and to capture all assumptions, definitions, 
components and their interactions. Furthermore, we aim to use 
verification tools on our model in order to prove the claimed properties. 

We create a model in RoboTool, RoboChart’s associated tool, by 
following the design described in the original paper. Where the 
documentation is ambiguous or incomplete, we rely on communication 
with one of the paper’s authors to clarify the intended design. When 
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this is not possible, we derive information from the specifications of the 
robot’s hardware, and make our own design decisions where no data 
can be found. We document all of our assumptions and possible 
deviations from the original specification. We use CSP – the notation 
behind RoboChart – to mathematically define the robotic properties we 
aim to prove. Finally, we verify whether our model exhibits these 
properties using RoboTool and FDR, a CSP refinement checker. 

Our results are a model of the original robot and a set of 
mathematical proofs of its properties. The model is as faithful to the 
original specification as is possible to achieve with the current amount 
of information, fulfilling all of our requirements about accuracy, 
completeness and lack of ambiguity. Its clarity is a subjective matter. 
We argue that while some components are verbose, it is overall easy 
to understand and reason about. We capture most hardware 
assumptions as required, with the exception of a few properties that 
we document in writing, but should incorporate into the model in future 
work. We fail to capture assertions on the environment, as this is not 
possible in RoboChart, but describe this in writing instead.  

We prove that the components of our model are non-terminating, 
deterministic, and free of deadlock and divergence. We are unable to 
prove this is true for the entire model as it is too complex for FDR to 
feasibly reason about. We provide evidence that the modelled robot 
does not fall off the solar panels, charges when it is low on battery, 
resumes cleaning afterwards, and achieves full coverage of the 
panels. Due to the fact that we cannot reason about the entire robot, 
these assertions are done on the path planning component of the robot 
instead, and should be supplemented by further proof that other 
components are correctly integrated with this in future work. 

Our model successfully builds on the existing application by 
capturing all of its functionality in a way that can be clearly discussed 
and reasoned about. As a result of this, we are able to prove claims 
from the original paper that were not formally verified or tested.  We 
find RoboChart to be highly expressive and suitable for modelling real-
world, complex applications. We also contribute bug reports of wrongly 
generated semantics we encounter in our development process, and 
suggest future improvements for RoboTool to make models more 
readable. Finally, our work highlights issues with RoboChart’s 
optimisations—specifically, that the way it compresses the generated 
semantics cannot feasibly be applied to a model as complex as ours, 
and thus need to be improved in future versions of the language. 

Since the product of our work is a model rather than a physical 
application, we also argue the absence of any legal, social, ethical, 
professional, or commercial issues that can arise from our results. 
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1 Introduction 

1.1 Motivation 

As of 2015, renewable sources accounted for 19.3% of the world’s 
energy production [1], and continue to grow in popularity. Solar energy 
is at the forefront of this trend, due to a significant decrease in cost: 
80% from 2008 to 2015 [2]. Photovoltaic (PV) panels have seen the 
greatest cut in pricing and as such are attracting more usage [3]. 

One main driver for the reduction of cost of PV panels has been 
innovation in cleaning methods. Solar energy is best harnessed in 
areas with hot, dry climates, where accumulation of dust poses a 
serious problem—it has been found to lower their efficiency by up to 
50% [4] and lead to overheating and permanent damage [5]. 

PV panel cleaning has been achieved with great efficiency, removing 
over 90% of dust particles [6]. Still, complete coverage is yet to be 
reached, and so there is still ongoing research in alternative solutions, 
such as that proposed by Aravind et al.: an autonomous vacuum 
cleaning robot powered by the panels [7]. Their approach is a light-
weight robot designed to traverse the panels cleaning them, and a 
docking station for whenever it needs to charge.  

Avarind et al. implemented a working robot. Their outcomes show 
complete coverage of the panel and satisfactory cleaning. 

However, the work does not include any formal or even rigorous 
specification of the robot’s software. This is instead detailed in English 
descriptions and state diagrams with no formal semantics. These are 
open to interpretation and cause difficulty in reproducing the 
experiment. Additionally, the software is only tested using Code 
Composer Studio [8], and no systematic account of any claimed 
properties is performed. It would be helpful to have a more abstract 
description of the design, particularly such that people using different 
platforms could recreate the application. This abstraction, in turn, may 
help us reason about the robot’s properties and the software’s 
correctness before expending resources on building it. 

One way to provide this abstraction is to build a model of the robot. 
Software models depict what a system does, whereas the code 
describes how it does it [9]. Modelling increases the productivity of 
developers, by reducing the product’s sensibility to change. 
Expressing the design formally allows for the development process not 
to be affected by a change in personnel, and for the application itself 
to require minimal alterations when requirements or platforms are 
changed [10]. It also facilitates better communication and discussion 
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of the design prior to implementation, and helps developers manage 
the increasing complexity of their codebase [11]. The outcome is 
reduced cost and time-to-market, as well as solving recurring 
architectural problems. 

Model-driven engineering further adds to the benefits of modelling by 
combining two technologies: transformations and domain-specific 
languages (DSLs) [12]. Two types of transformation exist: model-to-
model, converting from one model to another, within the same 
language or to a different one, and model-to-text. Model-to-text 
transformations enable the generation of text files such as deployment 
scripts or even code directly from a model. This allows developers to 
translate an abstraction into platform-specific code, and bypass writing 
code for architectural problems they have already solved by modelling. 

This is even more beneficial when paired with DSLs: modelling 
languages defined for an application domain. These enrich the 
expression power of modelling by abstracting recurring features of a 
domain, and providing constraints that reflect the reality of the area. 

By nature, DSLs are numerous and varied [13], and particularly in 
robotics, there is no industry standard.  

1.2 Objectives 

To build upon Avarind et al.'s work, we set the following objectives. 
Firstly, we aim to explore the available domain specific languages for 
robotics and evaluate what they can bring to this application. With our 
selected language, we will build a software model of the robot that: 

1. Specifies the robot’s functionality as defined in the paper 
2. Is easily readable and understandable 
3. Provides enough level of detail to reason about the properties 

that were experimentally proven in the paper: 
a. The robot’s charging function operates correctly and it 

does not run out of battery. 
b. After charging, the robot resumes cleaning from the 

position it paused at. 
c. The robot achieves full coverage of the solar panels. 

In carrying out this work we have chosen RoboChart [14], due to its 
strong mathematical foundation, provisions for reasoning about robotic 
properties, and intuitive graphical tool. In the use of this language we 
have a number of additional objectives: 

1. Test whether RoboChart can model such an expressive 
platform as that provided by the application. 

2. Test RoboChart’s ability to model multiple layers of 
abstraction in a readable and intuitive manner. 
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3. Create the first RoboChart model of a PID controller, a very 
commonly used component in robotics, which may prove 
useful for future applications. 

1.3 Structure of document 

Chapter 2 aims to provide an overview of the available DSLs and a 
basic understanding of the selected modelling language. It 
investigates available languages that may be suitable to our 
undertaking, justifies our choice in more detail, and provides a short 
explanation of the selected language’s features. 

Chapter 3 focuses on the robot we intend to model, detailing the 
existing work, the questions its documentation does not answer, and 
deriving a set of model requirements from these such that our results 
may contribute to said documentation. 

Chapter 4 presents the actual model we created and the assertions 
we use to verify it. 

Finally, chapter 5 presents an evaluation of the model against our 
requirements, and chapter 6 briefly draws some conclusions from our 
work. 
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2 Related Work 

In this section we cover the background material for our work. In 
section 2.1, we identify the DSLs for robotics that have formal 
semantics and are thus suitable for our task, and describe them. We 
provide a more detailed analysis of our language of choice in section 
2.2, and draw our final considerations in section 2.3. 

2.1 Domain-specific Languages for Robotics 

For the purpose of accomplishing our task we are interested in 
languages which meet the following criteria: 

 They are domain-specific languages for robotics and provide 
abstractions for concepts in this area. 

 They hide low-level programming details, such that their 
usage does not require expertise in the domain of robotics. 

 They have formal semantics, and thus have meaning beyond 
being a representation of the system’s architecture. 

2.1.1 RobotML 

RobotML [15] was born out of a desire to solve variability issues in 
robotics and abstract away from low-level coding details. It provides 
tools for modelling, simulation and deployment, focused on 
component-based architectures. A model is built by declaring a set of 
components, their behaviours, via either algorithms or finite state 
machines, and their communications. The user specifies the system’s 
environment for simulation, and the target platform, for code 
generation. RobotML has a well-defined and straightforward workflow. 

The language uses Ontology for its semantics. An Ontology is a 
definition of a set of concepts and the relationships between them, but 
not their behaviour. RobotML exploits an already existing domain-
specific ontology, such that concepts do not require re-definition. The 
result of this choice is a collection of classes that provide a suitable 
level of abstraction, making the language easy to use. 

One can construct RobotML models via a simple graphical tool that 
is an extension of Papyrus [16], part of the Eclipse Modelling Project. 
The tool supports a variety of target platforms and simulation 
environments and is therefore fitting for a number of different robotic 
applications. However, it provides no form of verification of the 
model’s correctness, allowing only for static model validation.  

2.1.2 Gen
oM 

Gen
oM [17] is a language designed for code generation and testing. 

Like RobotML, it focuses on a component-based architecture. These 
components, called modules, are responsible for a physical or logical 
resource, performing the processing, failure detection and recovery. 
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Modules operate in a client/server architecture of execution requests 
and control requests (reading and writing parameters or interrupting 
execution). The language allows for the definition of a hierarchy of 
processes using these modules, all communicating via posters, areas 
of shared memory. A user can describe modules in a declarative 
language similar to C, specifying their inputs, outputs, execution 
steps, posters and timing properties. A Gen

oM parser tool is provided. 

Gen
oM’s strength lies in the facilities it provides for deployment, 

generating code and interactive tests. Its successor, Gen
oM3 [18], 

allows specification of optional temporal properties for execution tasks. 
It also supports the use of verification tools such as D-Finder. 

Recent developments in Gen
oM3 have led to the possibility of creating 

Fiacre [19] and RT-BIP [20] templates that synthesise models [21]. 
These templates are relative to the targeted middleware to ensure that 
they are semantically equivalent to the generated component. Both 
templates allow Gen

oM3 users to check models for client requests and 
monitor components, as well as their timing properties. 

While Gen
oM3 brings great improvements in terms of model 

verification, it is still restrictive in terms of the architecture imposed. 
We also argue that writing the specification in a C-like language leads 
to a limited level of abstraction, and reduced readability of the model. 

2.1.3 ORCCAD 

ORCCAD [22] provides a greater emphasis on the real-time aspects 
of robotic applications. Its specifications consist of Robot-Tasks and 
Robot-Procedures. Robot-Tasks represent elementary robotic 
actions, and can be defined using a graphical user interface in the 
provided toolset. Robot-Procedures range in complexity from simple 
actions to full mission specifications, and can be described using a 
dedicated language called MAESTRO. Both constructs include 
attributes such as pre- and post-conditions, and the user can specify 
temporal properties such as the period of a cyclic execution. From the 
completed model, the toolset can generate ESTEREL or C++ code. 

While this is restrictive in terms of target platforms, ORCCAD excels 
instead at formal verification. One can check the synchronisation of 
every Robot-Task, finding any structural deadlocks or temporal 
inconsistencies. The tool also provides logical analysis using theorem-
proving techniques tailored for MAESTRO. Additionally, application-
dependent requirements can be verified interactively as relationships 
between events, or between events and actions. ORCCAD performs 
this check by constructing and analysing an automaton.  
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2.1.4 RoboFlow 

Unlike previously discussed languages, RoboFlow [23] stands out by 
having a different target user. Its aim is to enable people to describe 
the intended behaviour of robots without any prior knowledge of 
programming. To this end, RoboFlow is a simple graphical flow-based 
programming language, which uses programming by demonstration. 

RoboFlow allows for the definition of three types of procedures: 
manipulation, navigation, and active perception. Instantiating these 
procedures is similar to filling out a template. They have preconditions 
and postconditions, which are determined by the type of procedure, 
and their behaviour can be specified in terms of a set of parameters. 

RoboFlow programs are graphs, and their operational semantics 
is provided by logical inference rules of state transitions. The language 
also allows for procedural abstraction: users can define nesting 
programs as procedures, allowing for a layered system architecture. 

RoboFlow is implemented as a Java applet for the PR2 research 
robot. While the language’s constructs are generalizable, its tool has 
a restricted scope in that it enforces a specific target platform, and 
constrains the achievable types of tasks. However, it is very 
expressive within its limited scope, and accessible for non-experts. 

2.1.5 RoboChart and RoboSim 

RoboChart [14] was born out of an initiative to build a more rigorous 
connection between the modelling and simulation stages of robotic 
development. RoboChart is the language developed for the former, 
while RoboSim was created for the latter. 

In RoboChart, robots are specified in terms of modules, which 
encapsulate and connect platforms and controllers. Platforms 
represent in-built facilities of the hardware, while controllers offer 
implementation details of the functionality executed within the 
platform. Controllers describe behaviour using finite state automata 
based on UML [24] SMs (State Machines) stripped of features deemed 
non-essential for robotics. SMs are augmented to allow for the 
specification of timing properties, which are often crucial to robotic 
behaviour, and probabilistic properties, implemented using P-nodes. 

The language also includes an API comprising of a set of datatypes 
and functions. It does not provide code for these, nor does it have any 
facilities for code generation. However, it is strongly tied to RoboSim 
[25], a state-machine based language for the definition of simulations, 
supporting automatic generation of simulation code. 

The semantics of RoboChart is specified in CSP [26], a 
mathematical notation for communicating sequential processes. The 
user constructs a model via a graphical tool called RoboTool, a set 
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of Eclipse plug-ins, and this is translated into CSP. This allows for 
verification using FDR [27], a CSP refinement checker. Specifically, 
FDR allows one to assert the determinism of a specification, as well 
as absence of divergences and deadlocks. It can also be used to verify 
reachability of states in the SMs, and assumptions about the 
hardware, as long as it is not abstracted away in the model. If one of 
these assertions fails, FDR provides a counterexample scenario for 
debugging. RoboTool also provides a validator that implements well-
formedness conditions of the language. 

While it is lacking in terms of facilities for code generation and 
deployment, RoboChart is highly expressive, and allows for thorough 
verification based on a mathematical model. 

2.1.6 Evaluation 

Table 1 provides a summary of the above discussion. Often in 
robotics, developers split software into multiple layers depending on 
the level of abstraction involved, from planning to controller-level code. 
None of the discussed languages provide facilities for defining these 
layers, but some allow the user to create them using other constructs. 

Validation, in this context, encompasses a tool’s ability to verify that 
a model conforms to the language’s syntax along with a set of well-
formedness rules. Verification involves checking the specification 
against a set of requirements based on the semantics rather than the 
syntax. Formally, it is defined as “confirmation by examination and 
provision of objective evidence that specified requirements related to 
a product or process have been met” [28]. 

RoboFlow is not fit for our purpose, due to its tool targeting specific 
hardware different from that used in our application. Additionally, while 
our application could feasibly be modelled in terms of RoboFlow’s 
three task templates, the current tool requires us to physically 
manipulate the hardware, which we do not have access to. 

Of the remaining languages, we consider only those with verification 
tools. We deem the C-like language of Gen

oM to fall short of achieving 
the level of abstraction and readability we desire, particularly in 
comparison with ORCCAD and RoboChart. 

We believe ORCCAD and RoboChart would be most suitable for this 
application. They both allow the user to specify software at different 
layers of abstraction, and have strong provisions for formal verification. 

We could use ORCCAD, as it has outstanding features for specifying 
real-time properties of a system, which may be useful particularly in 
asserting that the robot returns to its docking station in time to charge. 
This is not to say that RoboChart does not have any timing primitives. 
RoboChart allows for the specification of time budgets and deadlines. 
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We deem these to be sufficient, as the period and WCET properties 
provided by ORCCAD belong to a more concrete design level. 
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Table 1 Properties of robotic DSLs 

Unlike ORCCAD, RoboChart does not currently facilitate code 
generation, but as we are only interested in constructing a model of 
the robot, this shortcoming is not relevant to us. Additionally, its API 
library may be useful to us, and while its real-time features are not as 
expressive as ORCCAD’s, its conversion to CSP allows for checking 
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properties of the hardware that are included in the model using FDR, 
a provision that is unusual yet very useful to the field of robotics. 
Because of these reasons, we choose RoboChart as our language. 

2.2 RoboChart and RoboTool 

In this section we provide a description of RoboChart, and RoboTool, 
the tool used to build RoboChart models. We use an example of a 
mobile vending-machine robot. This has the task of moving to a 
specified location, and delivering tea or coffee according to a user’s 
request. It navigates the building by using a stored map.  

 

Figure 1: Vending robot module 

The top-level construct of a RoboChart model is a Module, a 
structure that records assumptions made about the robot’s hardware, 
describes its controlling software, and links these together. It either 
contains or references a Platform and any number of Controllers, 
and defines the connections between them. For example, our vending 
machine robot contains one module (figure 1), which references one 
platform, contains one controller, and connects their events. 

Platforms represent in-built facilities of the hardware. These include 
typed variables and constants, operations the robot can perform and 
events. The platform of our robot specifies the operations 
dispense_tea() and dispense_coffee(), representing the actuators that 
produce a cup of tea or coffee, and the operation 
move(location:Location), which models the robot navigating to a given 
position, specified by a parameter of type Location. The type, shown 
in figure 2, is composed of integers X and Y representing coordinates. 

In this example, we have modelled the operation move as the robot 
planning a route to a given location and travelling to it, without 
describing any of the details of this process. When writing a model for 
the vacuum robot, we will specify the path planning algorithm in detail. 

All of the above operations are contained in a Provided Interface 
called vendinginterface. Interfaces serve to encapsulate events, 
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variables and operations. They can be of three types: provided, 
defined and required. The first describe variables and operations a 
robotic platform provides. Defined interfaces declare events and 
variables used in an element. Required interfaces describe 
operations and variables a controller or state machine assumes are 
provided by the platform and other controllers, allowing for behaviour 
to be defined independently of specific platforms. 

 

Figure 2: Vending robot interfaces, datatypes, and platform 

Events represent an atomic communication. In our example, the 
robot’s platform has the events tea_button and coffee_button, 
symbolising the user pressing a button to request tea or coffee 
respectively, as well as call_button, an event of type Location. Values 
of type Location can atomically be communicated over call_button. 

Events exist at the platform level, as well as at Controller and State 
Machine level. For example, our robot’s controller has a required 
interface of operations and variables it expects from the platform, 
which links to the interface provided by our platform. Controller also 
defines 3 events: request _tea, request_coffee, and call_to : Location. 
The Module contains both a reference to the platform and the definition 
of the controller, and links their events together: tea_button is linked to 
request_tea such that whenever the former occurs so does the latter. 
Effectively, whenever a user presses the tea button, a request for tea 
is passed on to the controller. The same is true for coffee_button and 
request_coffee, as well as call_button : Location and call_to : Location. 

It is worth noting that this architecture of one-to-one event mappings 
at every level is part of our example, and not enforced by RoboChart. 
Event connections can also exist between state machines, or between 
controllers. Connections can be unidirectional or bidirectional, and 
synchronous or asynchronous, although connections involving a 
platform must always be asynchronous. 

Having defined the platform and the controller and linked them 
together in the module, we define the behaviour within the controller. 
This is done with a state machine, Main (figure 3). This has the same 
required interface as the controller, a variable location of type Location 
and the events tea, coffee, call : Location, specified in a defined 
interface called internalevents and linked to the controller events as 
expected. 

Every state machine is composed of states, junctions, and 
transitions. States may have actions to be performed on entry to the 
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state, during active stage of the state, or on exit. Junctions may not 
have these operations, and must have at least one outgoing transition. 
Their transitions may not have triggers, and their guards must form a 
cover. They act as unstable ‘temporary states’ that the robot must pass 
through and exit immediately. Every SM must have one initial junction. 
Ours immediately transitions into a state called AwaitCall, where the 
robot waits to be summoned to a Location via the call event. 

 

Figure 3: Vending robot state machine 

Once a Location is received via call, it is stored in the variable 
location and the transition to the state AwaitRequest is triggered. On 
entry, the operation move(location) is performed, the robot travels to 
the place specified by the location, and waits for the user to request 
either tea or coffee. This then triggers a transition to either the state 
ServeTea or ServeCoffee, which, on entry, triggers one of the 
corresponding operations dispense_tea() or dispense_coffee(). The 
SM then transitions back to AwaitCalll to await the next request. 

To summarise, our robot uses data types we have defined, and its 
operations and external events are contained in a platform. Its 
behaviour is specified by a state machine, which is a component of a 
controller. The top level of our specification is a module, which links 
together the platform and controller. There is, of course, more to 
RoboChart than the basic building blocks described here, and we will 
explain any other necessary concepts as they are used. 

2.3 Final Considerations 

In this chapter we have discussed and compared a selection of 5 
robotic modelling DSLs. We have justified our choice of using 
RoboChart as our implementation language and provided a brief 
account of its features. In the next chapter we will present the 
application we intend to model in more detail, review its 
documentation, and derive from it the requirements of our model. 
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3 Problem analysis: autonomous vacuum 
robot for solar panels 

In this chapter we provide a detailed report of the existing application 
and our goals. We give a comprehensive description of the robot in [7] 
in section 3.1, an analysis of issues with the documentation in section 
3.2, and a list of requirements for our model in section 3.3. 

3.1 Existing application and its documentation 

Aravind et al.’s goal was to create an energy efficient and therefore 
cost-effective vacuum cleaning solution for solar panels. They 
addressed four key challenges. These included cliff detection, efficient 
navigation on the inclined surface of a solar panel, traversal from one 
panel to another, and use of a generic algorithm, such that it could be 
deployed on different sets of panels without modification. 

The robot performs a two-stage cleaning process—because the dust 
sticks to the panels, it uses a rolling brush to agitate it and push it 
towards a vacuum. The controller sends a common signal to both the 
brush and the vacuum motor to continuously operate. It also verifies 
the battery level regularly. Whenever the voltage is beneath a pre-set 
threshold, the robot finishes its current cleaning cycle and returns to 
its docking station, which is connected to the panels. The robot 
charges itself using two safety mechanisms. If the voltage exceeds 
12.6V, it lowers the charging current to prevent battery damage. Once 
the battery is charged, which is also verified via comparison with a 
reference value, the robot disconnects itself from the charging circuit 
to avoid damage, and resumes cleaning from its last position. 

 

Figure 4: Vacuum route [7] 

Navigation follows a pre-deifned cleaning path, traversing the 
entirety of each solar panel. Panels are usually linked together in 
arrays, which Avarind et al. connect with rails to facilitate the robot’s 
traversal. The robot uses two motors and differential drive for steering. 
It continuously monitors the output of two accelerometers on either 
side and a front mounted ultrasonic sensor in order to ensure it is 
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following the correct path and avoiding cliffs. It uses a Proportional 
Integral Derivative (PID) technique to stay on its defined path. 

The pattern the robot navigates in can be seen in figure 4, and the 
algorithm can be visualised in figure 5, which we will revisit in detail in 
the next section. The robot begins by climbing up the first panel, while 
using the ultrasonic sensor to continuously measure the distance to 
the surface beneath it. Eventually, the ultrasonic’s returned value 
exceeds a threshold, indicating that the robot has reached the edge of 
the panel. It performs a 90° turn to the right, and moves a pre-set 
distance, equal to the vacuum nozzle’s length, before turning 90° to 
the right again. This is done in order to cover the entire panel’s surface 
without overlapping. The robot then travels down the solar panel until 
it reaches its end, turns left twice in the same fashion and repeats the 
entire pattern until it has finished cleaning or must return to charge. 

The robot records its position by counting the number of such 
cleaning cycles it has completed. Whenever it has finished a cycle and 
needs to return to the docking station, either because it has finished 
or because it needs recharging, it rotates 180° and follows the path 
forward. 

 

Figure 5: Path planning algorithm [7] 

The diagram in figure 5 is a visualisation of this algorithm. Note that 
the meaning of the variables is not obvious, nor is it defined in the 
paper. The next section further elaborates on this aspect and the figure 
as a whole, as a result of discussion with the authors. 

Avarind et al. created a robot that can traverse an entire array of solar 
panels at a speed of 2-6 cm/s, cleaning with satisfactory results. They 
have provided experimental evidence that it traverses inclined 
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surfaces with no difficulty, and that it recharges itself successfully and 
resumes cleaning. Their solution achieved all of its requirements while 
remaining simple and cost-effective.  

3.2 Documentation issues 

Here we discuss our identified issues in the robot’s documentation. 

3.2.1 Software Diagrams 

While the paper gives an understandable high-level explanation of 
how the robot works, many questions are left unanswered. Aside from 
the textual explanations of its algorithms, the only available 
documentation is in the form of two diagrams, in figure 5, the path 
planning algorithm, and in figure 6, the battery preservation algorithm. 
These diagrams are not consistent with each other in terms of syntax. 
The Return statement is represented differently in both, and the 
conditionals are depicted as diamond shapes containing predicates in 
figure 6, but as separate conditions in rectangles and Yes/No 
decisions in diamonds in figure 5. 

 

Figure 6: Battery preservation algorithm [7] 

The diagrams are not only inconsistent with each other in terms of 
syntax, but within figure 5 the syntax also changes. The last conditional 
lacks input from the sensor, and it is unclear whether this is an 
accidental omission, or perhaps the Sensor, which is never defined, 
does not provide the values for D and W. 

The meaning of the Return statement is also unclear. If it has the 
same semantics as a return statement in programming, then the loop 
back to Start is broken. It is possible that the use of a dashed line 
instead of a solid line like the rest of the diagram is meant to convey 
this, but the significance of the line style choices is never clarified. 
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Moreover, both diagrams are difficult to read. It is unclear which 
branch of the conditional is to be followed if a predicate is true, or false. 
While we can easily deduce this from textual explanation in figure 6, 
this is much more difficult in figure 5, since the variables used are not 
defined. 

As a result of communication with the paper’s authors [29], we 
understand that the meaning of these variables is as follows: the 
ultrasonic reading is labelled U, and T is the threshold for its value, 
beyond which the robot is considered to have encountered a cliff. D is 
the horizontal displacement of the robot measured using the 
accelerometers, and W is the length of the vacuum nozzle. 

With this clarification in mind, we can deduce that the right branch of 
every conditional is the true/Yes branch, and the lower one is the 
false/No branch. Read in this manner, the diagram specifies that the 
robot moves up until the ultrasonic reading exceeds the cliff threshold 
(the first conditional statement, U < T), then turns right and proceeds 
until it reaches another cliff or has moved the distance of the vacuum 
nozzle (the second conditional statement, U < T && D < W). It then 
moves down the panel and eventually to the left, in a similar pattern. 

Note the description of the robot’s movement—upon encountering 
the first cliff, it turns right, then performs the operation “move side”. 
The common approach when specifying such an algorithm is to 
describe its movement relative to its own orientation. Instead, here it 
is described relative to the top-down view of the panels, as seen in 
figure 4. This convention is not declared in the paper, and is all the 
more confusing as the turn operations are performed relative to the 
robot’s orientation, but the move operations are not. 

Finally, the second to last decision in the diagram discerns whether 
the robot has encountered the end of a group of panels. Following the 
syntax that has been used thus far, the false branch, where the edge 
has not been encountered, leads to the robot performing a 180° turn, 
and the true branch results in the robot moving forward over the cliff. 
This clearly cannot be the intended behaviour, but rather the lack of 
explicit convention leading to an error in specification. 

The diagrams are also incomplete in terms of operations described. 
While the meaning of the movement and turning operations is intuitive, 
the way these highly abstracted operations are communicated and 
performed at a more concrete level is not described. Similarly in figure 
6, the robot’s return to cleaning is a single high-level operation, but this 
is abstracting away a number of smaller steps that are not modelled. 

The same issues are encountered with the diagrams’ variables. 
Beyond them not being declared, no details are provided on how these 
variables are obtained. For instance, how is the distance D derived? 
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The authors have confirmed to us that it is obtained from the 
accelerometers’ output, but not how it is calculated. 

The software description is meant to be supported by these 
diagrams. But due to their inconsistent and unclear syntax, lack of 
definition of variables used, unclear use of operations and 
incompleteness they do not help convey a clear understanding of the 
algorithms, on the contrary they introduce errors and confusion. 

3.2.2 Software descriptions 

Another issue with the documentation is that there is no centralised 
description of the software components. While their interactions are 
mentioned, neither of the diagrams model this interaction.  

Some aspects of the software are not modelled at all. It is claimed 
that the robot returns to the place it was cleaning prior to charging, but 
not how it does this, apart from the mention that it keeps track of its 
location by number of completed cleaning cycles, presumably using a 
counter, which is not present in the path planning algorithm. 

The constants used are also unclear. In the error calculation formula 
provided for PID, as seen below, the error values ep, ei and ed are 
proportional, integral and derivative errors found via comparison to 
preset values, but no indication of what these predefined values 
represent is given. 

𝑒 = 𝑒𝑝 × 𝑘𝑝 + 𝑒𝑖 × 𝑘𝑖 + 𝑒𝑑 × 𝑘𝑑 [7] 

Similarly, it is claimed the robot always returns to the charging 
station successfully due to the voltage monitoring algorithm, but no 
clarification is given as to how the reference value used is calculated. 
Is it a constant derived experimentally, or based on a formula to 
ensure the robot does not run out of battery on its way back to the 
docking station? 

Constants, variables and their datatypes are not declared in a 
unified manner. It is unclear which datatypes are used, and whether 
this imposes any restrictions on the implementation language. 

Additionally, while the paper details the specific hardware used for 
the implementation, the requirements expected of the hardware 
platform are not provided. If one would attempt to implement these 
algorithms on different hardware, in order to further improve on 
weight and cost as suggested by the authors, hidden or implied 
requirements may cause issues. 

Much like the platform requirements, the assumptions made on the 
environment are also incomplete. The paper lists 5 assumptions 
made—limiting panel inclination to 30 degrees, the panels only being 
covered in dust and small impurities, weekly dust collection via the 
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robot, provision of rails and a docking station, and differential turns 
being zero radius. However, at least one other assumption is made 
implicitly. Namely, that the furthest point a robot must clean is close 
enough for it to be possible to reach it and travel back to the docking 
station without exhausting the battery on the way. 

Moreover, important aspects of the software’s interaction with the 
hardware are not discussed. For example, how often is the ultrasonic 
sensor sampled? Considering the robot’s speed travelling both up 
and down the panels, what sampling rate is sufficient for a cliff to be 
detected in time to stop moving? 

To add to the issues with the documentation, the software was only 
tested with Code Composer Studio [8], and the experimental 
evidence given that it meets its requirement may not be sufficient.  

3.3 Model requirements 

Revisiting all of the above issues, we can summarise them in the 
following table, such that we can refer to them easily in future sections: 

Number Issue 

1 Diagrams are inconsistent with each other in terms of 
syntax 

2 Meaning of different diagram elements (Sensor, Return, 
different line styles, etc) unclear 

3 Unresolved ambiguity in diagrams 

4 Description of movement and turn operations based on 
uncommunicated convention 

5 Error in path planning diagram 

6 Meaning of operations in diagrams unclear 

7 No declaration of variables in diagrams 

8 No indication of how variables and constants are 
obtained or what they represent 

9 Lack of centralised description of software components 

10 Interaction between software components not modelled 

11 Software model is incomplete 

12 No unified declaration of datatypes used 

13 No statement of platform requirements 

14 Incomplete environment requirements 

15 Aspects of software interaction with hardware are not 
modelled 

16 Only experimental evidence that the robot charges 
successfully 

17 Only experimental evidence that the robot returns to its 
previous cleaning location after charging 

18 Only experimental evidence that the robot achieves full 
coverage of solar panels 

Table 2: Documentation issues 
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To further build upon the existing application as described in the 
previous section, we identify the following requirements for our model, 
referring to the issues we wish to address from table 2: 

1. Reflect the functionality of the robot as specified in the paper 
and present it in a consistent manner (1, 5, 11) 

2. Model the software components and their interactions (10) 
3. Depict information clearly, unambiguously, and readably (2, 3, 

4, 9) 
4. Use a clearly defined set of variables and constants (7, 8) 
5. Define the robot’s operations and their parameters 

consistently (6) 
6. Declare all its non-primitive datatypes in a unified manner (12) 
7. State all assumptions on the robotic platform (13) 
8. State all assumptions on the robot’s environment (14) 
9. Model software interaction with hardware (15) 
10. Provide enough detail such that the following assertions can 

be tested using FDR: 
a. The robot returns to the docking station successfully 

(i.e. it does not run out of battery) (16) 
b. If cleaning is not finished after charging, the robot 

returns to the location it was previously cleaning and 
resumes the process (17) 

c. The robot completely covers all of the solar panels (18) 

We have restricted the scope of the properties we intend to prove 
using our model. This is because other assertions made in the paper, 
such as those about the robot’s speed and its cleaning efficiency, 
require us to reason about physical properties that we are unable to 
include in our specification, but may be better suited for simulations. 

In the following chapter we will describe our RoboChart model of the 
vacuum cleaning robot. 
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4 Model and verification 

In this chapter we describe our RoboChart model of the robot and its 
properties, as verified in RoboTool. In the first section we discuss the 
model, while in the second we detail the assertions we will use to verify 
our required properties in the next chapter. 

4.1 Robot model 

Although this cannot be made explicit through RoboChart, we 
structure our model in the following layers: a planning, a functional, 
and an executive layer. We use this architecture because the original 
paper clearly characterises the former two layers in the form of its path 
planning algorithm and PID controllers respectively, and we aim to 
stay true to the original implementation. The paper does not mention 
how the two layers interact, and we therefore use an executive layer 
to bridge this gap. We give an overview of the model, followed by a 
detailed description of the components operating on each layer. 

4.1.1 Overview 

Our model consists of Module, which connects Platform to the only 
controller, PathPlanningController. The platform simply provides all 
of the operations required by the controller, and all the events that 
must be connected to the controller’s defined events. 

We define PathPlanningController, a model for the original robot’s 
only controller, containing all three layers of our application. This 
requires the interfaces CleaningOperations and 
MovementOperations. The former contains the operations 
vacuum(x:int) and brush(x:int), which allow the controller to output to 
the motors controlling the vacuum and brush. The latter contains 
output_left_motor(x:int) and output_right_motor(x:int), used to 
controller the movement of the robot. The controller defines the 
interface SensorEvents containing the events it needs to receive 
information about its environment: battery_level:int, ultrasonic:int, and 
charging, which is received whenever the robot begins charging. 
Additionally, the controller defines the events acc_l:TripleAxis and 
acc_r:TripleAxis to receive input from the left and right accelerometers. 
The datatype TripleAxis models the data returned by the triple axis 
accelerometers used in [7]. These return three values, namely the 
acceleration on three different axis. These are the values X, Y, and Z 
of TripleAxis in our model. 

Within the controller (figure 7), we define PathPlanningSM to make 
navigational decisions based on sensor input. These decisions are 
communicated to MidLevelSM, which translates them to target values 
to be sent to the two PID SMs regulating linear and angular speed. 
These speeds are provided by LinearSpeedSM and 
AngularSpeedSM. The accelerometer outputs from the left and right 
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of the robot are converted into two speed values by two SpeedSMs. 
The operation of the brush and vacuum is handled by CleanSM, based 
on PathPlanningSM’s comnands. The displacement variable required 
by the latter is calculated by DisplacementSM. 

 

Figure 7: PathPlanningController 

4.1.2 Planning layer 

We begin by describing PathPlanningSM, depicted in figure 8, the 
SM operating on the planning layer, as it is a more detailed 
representation of the diagram depicted in figure 5, and therefore the 
easiest part of our model to directly relate to the source material. 

This state machine is tasked with deciding which direction the robot 
should move in. It uses the events move_forward, stop, and 
turn:Direction (where Direction is an enumeration with elements left 
and right), defined in the interface MovementCommands to 
communicate its decisions to the lower layer state machines that enact 
them. It receives information about its environment via the events 
ultrasonic:int, displacement:int, battery_level:int, and charging, and 
uses the event clean:boolean to command the robot to activate or 
deactivate its vacuum and brush motors. Whenever the robot turns 
right it sends out the number zero on the displacement channel to 
communicate that it needs to begin measuring displacement anew. 
The state machine has an integer variable called cycles, which keeps 
track of the number of cleaning cycles completed, as defined in 
chapter 3, in order to be able to resume cleaning after charging. The 
constants used in figure 5 are defined in our model in the interface 
SensorConstants—cliff is the equivalent of T, the cliff threshold, and 
W is mapped onto nozzle, the length of the vacuum nozzle. 
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Figure 8:  Path planning state machine 

We assume the robot begins operating from its docking station, 
located at the bottom left corner of the panels, facing towards its exit. 
It first enters the state Resume, which is meant to guide it to its last 
position before it returned to the docking station—in this case, the 
start. This destination is defined by using the completed cycles. 
Although the details are not discussed in the original paper, Figure 4 
suggests that the total horizontal length of a cleaning cycle is two times 
the length of the robot’s vacuum nozzle. We therefore deduce that in 
order to reach its last cleaning position the robot must simply travel to 
the right until its horizontal displacement reaches double the nozzle 
length multiplied by the number of completed cleaning cycles. This is 
the transition condition to move to the next state, Go_up. Although this 
is not discussed in the paper, as it never relates figures 5 and 6 to 
each other, we make the assumption that the robot checks its battery 
level only at the end of a cleaning cycle. 

Where possible, states are named after the stage of a cleaning cycle 
the robot is in. The command to turn left is sent on transition to Go_up, 
followed by the command to move forward on entry. Once it 
encounters the end of the panel, a condition defined as 
ultrasonic?u[u>=cliff], it transitions to the state Go_right. The SM 
instructs the robot to move right, and at this point it may either finish 
moving the length of its vacuum nozzle, or reach the end of the current 
panel array, in both cases transitioning to Go_down. In the former case 
this is simply following the pattern of a cycle. In the latter case, this is 
because there may be more arrays to clean and therefore a connecting 
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rail at the bottom of the panels, and the same action is taken as in 
figure 5. 

The transition to Go_down begins the second half of the cleaning 
cycle: moving down, then right again via Go_right_again. This state 
and Check_end capture the last two conditional nodes in figure 5. 
Either the robot encounters a cliff, in which case it has finished 
cleaning and can transition to Return, or its horizontal displacement 
reaches the length of the vacuum nozzle, in which case a cleaning 
cycle has been completed, and cycles is incremented accordingly. The 
SM then checks the robot’s battery, as seen in figure 6, and either 
transitions to Return if it is found to be below the threshold, or 
transitions to Go_up and begins a new cleaning cycle. 

When it eventually transitions to Return, this instructs it to move to 
the left until it encounters a cliff, meaning it has reached the beginning 
of the very first panel, and can transition to the state Dock, moving into 
the docking station. Here it waits to recharge in the state Sleep, and 
then enters Resume and begins its operation once more as described. 

4.1.3 Executive layer 

The state machine MidLevelSM is responsible for converting the 
movement commands received from PathPlanningSM into voltages 
to send to the left and right motors of the robot. It receives the events 
defined in MovementCommand and uses the channels 
target_speed:int, target_angle:int, speed_adjustment:int, and 
angle_adjustment:int to send out the desired speed and angles to the 
PID SMs and receive the PID error output. These values are 
necessary for determining the correct voltages the SM should output 
to the motors by using the operations output_left_motor(x:int) and 
output_right_motor(x:int). This output is done at this level rather than 
the functional layer because it requires additional state information PID 
does not have. Figure 9 presents the state machine with all state 
actions hidden in order to make it easier to read. Due to how verbose 
the diagram is we have colour coded it to make it easier to distinguish 
transitions: looping transitions are grey, others are blue if they are 
triggered by a turn and black if they are triggered by moving forward. 

The SM uses the variable orientation to keep track of which way it is 
facing. It begins under the same assumption as PathPlanningSM, 
that the robot is facing upwards. Therefore it moves into the state 
Go_up. The SM has a set of states for moving (Go_up, Go_side, 
Go_down), one for stopping (Stop) and two for turning (Turn_right, 
Turn_left). Every state has the same set of entry actions. It sends out 
a constant target speed it aims to achieve to the Linear Speed PID 
SM, and receives a speed adjustment in response, which it needs to 
incorporate in order to near its target. It then follows the same pattern 
with the Angular Speed PID.  It updates its left and right motor voltage 
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variables, lspeed and rspeed according to the adjustments retrieved 
from the PID SMs, and outputs these values to the motors. 

The states are connected by transitions that verify the robot’s 
orientation to determine the correct state to move to, and adjust the 
orientation accordingly, using the functions turn_left and turn_right. 
Apart from the PID adjustments to angular and vertical speed, we 
assume the robot must move forward at a constant speed. This is 
represented by the constants movesp and stopsp, which lspeed and 
rspeed are set to in transitions when the robot begins or stops moving. 

The commands issued by PathPlanningSM must be performed 
continuously until the next command arrives—for instance, if 
MidLevelSM receives a command to move forward, it must send the 
appropriate voltages for moving forward to its motors repeatedly until 
the next command causes it to change these values and so forth. This 
is because PID needs multiple iterations to guide MidLevelSM to the 
correct motor outputs. To accomplish this, all states have a loop 
transition with a sinceEntry(state)>=step condition—every step units 
of time, all the actions of the state are repeated, until a new command 
arrives, and the SM transitions to a different state. These transitions 
are hidden in diagram 9 to make the image less verbose. 

The state machine maps every movement command to a set of target 
speed and target angle constants to send to PID— climb_speed, 
descent_speed, side_spped, left_angle, right_angle, and 
forward_angle. The constants used for target values act as the 
“predefined set of values” used in accelerometer output comparisons 
in Avarind et al.’s work. The actual values depend on the hardware 
available and should be estimated via simulation, but we have 
established the following conventions: the target speed should be 
positive for moving up, negative for down, and zero for stopping or 
turning; the target angle should be positive for turning right, negative 
for turning left, and zero for any other action.  

These rules allow us to use the same PID feedback on both motors, 
since they often require opposite adjustments—a -90º differential drive 
turn, for example, is performed by reversing the left motor, and 
outputting positively to the right motor. Therefore, if the Angular PID 
output determines the robot is not turning to the left enough, it will 
return a positive value – see PID implementation in the next sub-
section – we can add to the right motor and subtract from the left 
motor. In the reverse of this condition, the value returned by the PID 
would be negative, and so adding and subtracting in the same way 
would still work. Similarly, the Speed PID will return a positive value if 
the robot is moving too fast, and this value will be subtracted from both 
motors, reducing the overall speed. These conventions are not made 
explicit in the model, but this could be done by declaring the constants 
as being of restricted positive or negative integer types. 
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Figure 9: Middle level state machine, with state actions and sinceEntry loops removed (full 
diagram available in appendix A) 



Model and verification 
 

25 
 

4.1.4 Functional layer 

At the lowest layer of our model, a number of SMs process sensor 
data into variables that can be used by the higher layer SMs. The most 
critical component at this part of the hierarchy is the PID SM. 

Avarind et al. include in the paper the use of PID “to control the 
navigation of the robot” [7]. They make no mention of what role exactly 
the PID plays in this task—it could be used to prevent the robot from 
steering too far to the left or right, regulating its speed, or to address 
the concern they highlighted earlier of the robot accelerating 
appropriately on inclined surfaces. 

Due to the lack of information available on this aspect of the original 
robot, we have chosen to implement two PID controllers based on the 
data in the paper and our own assumptions. Avarind et al.’s 
experiment description indicates that PID is used to correct the robot’s 
orientation when it crosses a bump between panels, and as such we 
implement a PID SM to control the robot’s movement angle. This 
leaves us with the question of how the other issues, regulating speed 
and tackling incline, are handled. We assume the robot should move 
at approximately the same speed regardless of movement direction, 
and as such a constant can be assigned to the movement speed—
movesp and stopsp in MidLevelSM. We could simply assign different 
speed constants for ascending and descending the panels to solve the 
incline problem in a similar manner, but considering the criticality of 
the issue – if the robot accelerates too much or too little on an incline 
it may fall and break – we decide on the implementation of another 
PID SM to continuously regulate the robot’s climb or descent speed, 
which we call the linear speed PID SM. 

Both PID SMs work exactly in the same way. As such, our model 
contains only one PID SM and two references to it within the controller, 
handling linear and angular speed respectively. PID uses a feedback 
system to calculate a more appropriate output value based on the 
result of a previous iteration [30]. An error value is obtained by 
subtracting the target value we are trying to reach (as received from 
MidLevelSM) from the actual value observed (the linear/angular 
speed calculated from the accelerometers). This is the proportional 
error. Additionally to this, we calculate the integral of errors observed 
thus far in order to eliminate offsets accumulated over time, and the 
derivative error in order to adjust the rate of change of the output. The 
final error value is calculated by adding these three errors together, 
each multiplied by its own constant, as seen in the equation in [7]. 

Our implementation of PID (figure 10) stays true to this algorithm, 
receiving its target and actual values via the events target:int and 
actual:int, and calculating a discretised version of the errors to output 
over err_output:int on every iteration. The only modification we 
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introduce is resetting the prior error and integral to zero if the target 
value has changed. This is to address a problem raised by Balaji et al. 
[31], who highlighted PID’s poor handling of sharp turns, and 
implemented an open loop controller to handle them separately. 
Rather than doing this, we erase the prior error history, as the robot’s 
errors when turning left, for example, are irrelevant when it is trying to 
move forward. 

 

Figure 10: PID State machine 

The actual value inputs are provided by LinearSpeedSM and 
AngularSpeedSM. LinearSpeedSM obtains an overall ascent or 
descent speed from the speed returned on the robot’s left and right 
accelerometers’ Z axis by averaging the two values. Similarly, 
AngularSpeedSM reads in both the left and right accelerometers and 
produces an angular speed using the formula depicted in the equation 
below [32], where D is the distance between the accelerometers. We 
retrieve the sign of one of the accelerometer values and apply this sign 
to the output to respect our imposed conventions for MidleLevelSM. 
This is under the assumption that the accelerometers return negative 
values for acceleration to the left, and positive to the right. This 
assumption is rooted in the ability of the MMA7361 – the 
accelerometer used by Avarind et al.’s robot – to measure both 
positive and negative acceleration [33]. Both of these SMs, along with 
the other building blocks of the model, are available in Appendix A. 

𝜔 =  √
|𝑎𝑦2 − 𝑎𝑦1|

𝐷
 

The speeds used in LinearSpeedSM are retrieved from two 
references to SpeedSM, one for the left accelerometer and one for the 
right. This calculates the speed the robot is travelling based on its 
acceleration and time elapsed. Similarly, DisplacementSM calculates 
the distance it has travelled based on its speed and elapsed time, and 
outputs it to PathPlanningSM. 
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A state machine called CleanSM receives the Boolean values 
transmitted over the clean event by PathPlanningSM and turns the 
motor controlling both the brush and vacuum on or off accordingly. 

It is worth noting that some of the inputs of these state machines 
overlap—for example, the input from the accelerometers is used both 
by the SpeedSMs and the AngularSpeedSM. Multisynchronisation is 
not possible in RoboChart. In order to work around the absence of this 
feature, we have created InputDuplicationSM, which takes in a value 
and outputs it on two separate events. This state machine is 
referenced wherever multiple copies of the same value are needed by 
different SMs. This solves the problem of allowing multiple SMs to use 
these values, but introduces dependency in the order of 
communication—InputDuplicationSM still outputs sequentially, and 
so the SM receiving its second output cannot receive it until the first 
output has reached a different SM. This could potentially lead to 
deadlock, but in the next chapter we verify the absence of this problem. 

4.2 Model verification 

In order to reason about our model we must define its constants and 
functions. Due to the complexity of our model, we aim to minimise the 
state space FDR must explore by restricting the values variables can 
take. Therefore, we define int and real as being the set {-1, 0, 1}. We 
set all constants to be within this set, and define all functions’ output 
for every possible input. By inspection, this is sufficient to represent 
the different states of our SMs and overall model. This is because the 
decisions made in every SM are rooted in comparisons to constants 
and conditions based on the positive or negative nature of variables. 

We define our own assertions to prove the properties we set out in 
requirement 10. We include a description of the assertions here, the 
full definitions in Appendix B, and their results in the next chapter. 
Ideally we would reason about the robot as a whole and verify against 
Module, but it is not feasible with the current version of RoboTool to 
check any assertions at this level of our model, as we will discuss in 
the next chapter. Instead we reason about all properties on the 
planning layer, and therefore verify them against PathPlanningSM.  

We define a set of CSP processes capturing these properties. All of 
them are put in parallel with RUN({tock}), a process which accepts the 
event tock. This is done in order to be able to test these assertions on 
the timed semantics. Firstly, we set out to prove that the robot does 
not fall off the panels. For this purpose we define NoFall (figure 11), a 
CSP process that accepts and ignores any event until it receives a 
value via the ultrasonic channel. If the read value is below the cliff 
constant defined in the model, then NoFall proceeds as before. 
Otherwise, it turns left, right, or back, and resumes moving. By 
asserting that PathPlanningSM trace refines NoFall – that all of its 
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possible execution traces are a subset of NoFall’s traces – we assert 
that on the planning layer the robot is directed to always move away 
from the edge of the panels. There are a set of implicit assumptions 
here—that the cliff constant is adequate, that the software and 
hardware’s response times are small enough to transmit and enforce 
the movement commands before it is too late, and that sensor noise 
is ignorable. We also rerun this assertion, swapping the two transitions 
from Go_right_again in  PathPlanningSM to capture the second to 
last conditional as described in figure 5. This is to confirm our 
assumption in section 3 that this conditional does not respect the 
syntax and its branches should be swapped – item 5 in table 2. 

 

Figure 11: Definition of NoFall 

Next, we assert that the robot returns to charge whenever it is 
running out of battery (requirement 10.a). We define the process 
ReturnToCharge similarly to NoFall, except that it accepts and 
ignores all but the battery_level:int event. Whenever the battery level 
b is too low, verified via CheckBattery(b), the robot returns to the 
docking station and begins charging, via the processes Return and 
Dock, before starting over. This is under the assumption that the 
selected battery constant is large enough for the robot to be able to 
return to the docking station before running out of battery. This is 
reasonable as the constant can be calculated based on experimental 
results. If we deduce an average constant battery level required for the 
robot to move sideways on a panel a certain distance, and we know 
the length of a cleaning cycle, then we can combine this information 
into a function that can be maximised under constraints to determine 
an appropriate constant. 

Having verified that the robot returns to charge when low on battery, 
we also check that it returns to its previous cleaning position 
afterwards (requirement 10.b). This is by far the most complex 
assertion, as it requires us to model cleaning cycles and keep track of 
their number. We define CycleStart(n, MAX) and CycleEnd(n, MAX) 
for this purpose, splitting the cycle in halves. The first moves up, then 
right, and the second moves down, then right. This split is necessary 
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because the end of a panel may be reached halfway through a cycle. 
The first argument is the current number of completed cycles. The 
second is the maximum allowed number of cycles—this is a restriction 
we impose on the process to prevent it from having infinite states, in 
which case FDR would not be able to reason about it. Before entering 
the start of a new cleaning cycle we verify via CheckEnd(n, MAX) that 
n is smaller than MAX.  Depending on the ultrasonic and displacement 
input, these processes either recurse, or return to the docking station 
via ReturnToDock(n, MAX). Within these processes, we abstract 
away from specific conditions for returning or moving forward, such as 
checking against the cliff constant. We are not interested in the specific 
behaviour by which the robot performs the cleaning cycle, only that it 
accurately keeps track of the cycle number. 

The processes ExitDock(n, MAX) and Resume(n, MAX) capture 
the behaviour we are actually interested in here—leaving the docking 
station and returning to our previous position, as deduced in our 
equation in section 4.1. This is verified via synchronisation with 
WaitForCycles and Measure(x), two processes that continuously 
capture the displacement and, when trying to return to cleaning, verify 
the value against our equation. WaitForCycles continuously receives 
and ignores the robot’s displacement, until it receives a value via 
cyclecount from Resume(n, MAX), and progresses to Measure(x), 
which reads the displacement value and compares it to the robot’s 
previous cleaning position. It is only when this value is reached that 
Measure(x) sends Resume(n, MAX) the signal event such that it can 
begin a new cleaning cycle. These parallel processes communicate 
over cyclecount and signal. Finally, ReturnAfterCharging is defined 
as this parallel composition, hiding cyclecount and signal, and we 
check that PathPlanningSM trace refines this process. 

We argue that the CSP processes described thus far capture the 
intended properties by abstracting away all but the relevant behaviour. 
NoFall and ReturnToCharge are much simpler than the robot itself in 
definition, but allow a wider range of behaviour. For example, the 
former allows any sequence of events, except for moving forward after 
encountering a cliff. Similarly, the latter allows anything to occur when 
the battery is high enough, but enforces a sequence of events 
equivalent to the robot returning to the docking station whenever the 
battery is low. Trace refinement of these processes therefore reveals 
the presence of the properties they represent. While 
ReturnAfterCharging is more complicated, it still abstracts away the 
actual structure of cleaning cycles and returning to dock, being specific 
only about the counting of cycles and resuming cleaning. All of these 
processes are also examined using FDR’s probe feature, which allows 
us to explore their possible execution traces, to further verify they 
accurately depict the properties required, and discard any information 
that is not relevant to these properties. 
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We divide requirement 10.c – that the robot completely covers the 
panels – into two assertions: the robot must move in the shape 
depicted in diagram 4, and it must reach the end of the panels. 

The first is simple to prove. We reason about a version of 
PathPlanningSM that hides all but the events of 
MovementCommands. We then use only these events to define 
Cycle, the first half of a cycle, Continue, the second half, GoBack, 
and ResumeCycling, processes which capture only the movements 
the robot performs. We then assert that the version of 
PathPlanningSM that abstracts everything but movement trace 
refines MovementShape, defined as ResumeCycling, representing 
the first state of PathPlanningSM, in parallel with RUN({tock}). 

The second assertion we can prove in two ways. We can expose the 
internal events signifying entry to the states Go_right_again and 
Return in PathPlanningSM, and write a process ReachEnd which 
transitions from the former to the latter when encountering an 
ultrasonic value above the cliff threshold. Here we have to begin using 
failure refinement rather than trace refinement—not only must the 
possible execution traces of PathPlanningSM be a subset of those 
belonging to this process, but the possible failures must be contained 
as well. Within the context of CSP, a failure is a pair containing a trace 
and a set of events which may be refused after the execution of that 
trace. Failure refinement enforces that both the ways a process can 
and cannot behave are contained in the ways the other process can 
and cannot behave. In our context this is important to ensure that not 
only does PathPlanningSM behave as we expect it to when 
encountering a cliff while going right, but it is also possible for it to 
encounter the cliff. This assertion is considerably simpler than our 
previous ones, but requires knowledge of how PathPlanningSM is 
modelled. An option which avoids this problem is to instead create a 
set of processes as described in CleanAllPanels, which keep track of 
the robot’s orientation, and always accept any value of ultrasonic. By 
using failures refinement again we ensure that the robot is able to 
accept an ultrasonic value above the threshold when moving right, so 
it is possible for it to reach the end of the panels. This coupled with our 
previous proof that the robot moves in the expected pattern is sufficient 
to demonstrate that it covers all of its assigned panels. 

As seen before, MovementShape and CleanAllPanels are valid 
because they abstract all but the behaviour required to have a 
particular property.  We check this by probing the processes. 
ReachEnd is simpler to validate, as we know from the definition of the 
model that the end of all the solar panels has been reached if and only 
if a transition is triggered from Go_right_again to Return. 

Having described both the model and the processes used to verify it, 
we proceed to evaluate it against our requirements in the next chapter. 
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5 Evaluation 

In this section we evaluate the model and assertion results against 
our requirements, and discuss the contributions of our work. 

Our model depicts the functionality of the robot, as described by the 
paper, using consistent syntax throughout (requirement 1). Due to the 
ambiguity of some of the original descriptions and the omission of 
certain details we cannot be sure of its accuracy, but it conforms to all 
specifications provided, and we clearly specify additional assumptions. 

We model both the components and their interactions (requirement 
2) within the controller, otherwise the model would be invalid. 

Whether the model is unambiguous, clear, and readable 
(requirement 3) is a subjective matter. The syntax of RoboChart does 
not permit us to be ambiguous in our model. However, the latter two 
properties are up to the reader. The SM descriptions are more verbose 
than [7]’s diagrams, because they specify the behaviour in a more 
complete manner. We argue that this does not detract from the 
model’s readability, with the exception of MiddleLevelSM, which is 
complex enough for its transition labels to be difficult to distinguish. 
We note that in RoboTool this is not a problem, as selecting a transition 
highlights its label, but in the exported diagrams this is not possible, 
and the purpose of each transition is not immediately clear. Currently, 
RoboTool allows us to mitigate this by changing the formatting of the 
figure, which we have used to colour code the diagram. Additionally, 
we could select shorter names for our variables, functions and 
constants, at the cost of these being less intuitive. We can also present 
the textual version of the diagram to clarify, but this means losing the 
benefits of a graphical representation. This issue would be mitigated if 
RoboTool allowed the user to change the orientation of transition 
labels—the use of vertical labels attached to the vertical lines in figure 
9 would make much clearer what each label corresponds to. 
Additionally, automatically generating shorter labels is in discussion 
for future version of RoboTool in order to improve on this issue. 

RoboChart requires us to define our variables, constants, operations, 
parameters and non-primitive datatypes as part of our model, fulfilling 
requirements 4, 5, and 6. The constants and variables are defined 
within interfaces, while all used operations and datatypes are defined 
at the model-level. All of these can be found in Appendix A. 

Requirement 7 is for the model to state all assumptions about its 
platform. The controller explicitly declares all of its assumptions about 
the hardware’s provided operations within its required interfaces. 
These operations are outputting to the motors, the vacuum and the 
brush. Moreover, assumptions about the sensors provided by the 
hardware and the types of data they return are stated within the 
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controller’s events—ultrasonic:int, battery_level:int, charging, 
acc_r:int, and acc_l:int. We note that some assumptions are not 
captured within the model, but rather in our description. For example, 
our implementation of AngularSpeedSM relies on a property of the 
hardware used in [7]—the sensors return negative values for certain 
accelerations. Additionally, some assumptions arise from abstracting 
away part of the hardware’s functionality. Take for example Avarind et 
al.’s two safety measures for charging the robot, which we have not 
modelled, but assumed to be provided as part of the docking station. 

Requirement 8 is for the model to state all assumptions made on the 
environment. Some of these assumptions, such as the presence of 
connecting rails, are provided by Avarind et al. and reinstated within 
our description of the model. However, it is not possible to state them 
within RoboChart. RoboTool allows for the annotation of a model, thus 
we could attach these assumptions as notes to the SM they regard, 
but they would have no semantic meaning. 

We model all of the robot’s interaction with hardware as either calls 
to operations, such as output_left_motor(x), or events provided by the 
platform, such as ultrasonic:int, thereby fulfilling requirement 9. 

Our final requirement is to prove certain properties for the robot. First 
we must reason about the correctness of our model in terms of some 
basic properties. RoboTool defines a set of core assertions—it 
generates the assertions necessary to verify essential properties of all 
SMs, controllers, and the entire module, in both timed and untimed 
(ignoring timed constructs) semantics. The first assertion is a lack of 
deadlocks. This includes termination—if the element does not 
deadlock, but terminates, this assertion still fails. In this case, a second 
assertion verifies that the only deadlock is successful termination. 
Finally, two assertions verify that the element is deterministic and 
divergence-free. In table 3 we compile the results for every SM’s lack 
of termination (Term.), deadlock (Dead.), determinism (Det.) and lack 
of divergence (Div.). 

SM Term. Dead. Det. Div. 

InputDuplicationSM   ✓ ✓ ✓ ✓ 

SpeedSM ✓ ✓ ✓ ✓ 

AngularSpeedSM ✓ ✓ ✓ ✓ 

LinearSpeedSM ✓ ✓ ✓ ✓ 

DisplacementSM ✓ ✓ ✓ ✓ 

CleanSM ✓ ✓ ✓ ✓ 

PID ✓ ✓ ✓ ✓ 

MidLevelSM ✓ ✓ ✗ ✓ 

PathPlanningSM ✓ ✓ ✓ ✓ 
Table 3: Core assertion results for state machines 
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The only failing assertion is the determinism of MidLevelSM. 
Debugging this in FDR we find that this is, as expected, the looping 
transitions. Not only does the counterexample provided by FDR 
confirm this, but removing the transitions and rerunning this assertion 
leads to a deterministic version of MidLevelSM. This nondeterminism 
is part of the behaviour we expected and therefore acceptable. 

Some of these assertions did not pass at first, highlighting issues 
both in our model and in the language itself. The controller assertions 
initially failed due to RoboChart generating incorrect semantics for the 
multiple references to the state machine definitions. The three 
InputDuplicationSM references acted as one object, introducing 
unintended synchronisation between other state machines. We have 
raised this issue and it has been resolved. Debugging these assertion 
failures was particularly difficult as the generated semantics use 
internal events that are not documented and, in the case of multiple 
references to the same definition, share the same name despite being 
different entities. We argue that it may be useful for a future version of 
RoboChart to change its naming convention in these specific cases, 
or to make possible the translation from CSP trace counterexamples 
back to a format more clearly tied to the state machines defined. 
Currently, while the use of RoboChart does not require domain 
knowledge of robotics or CSP, it is not possible to debug any failed 
assertions without a deeper understanding of the generated CSP 
semantics. A translation back to RoboChart would erase this barrier. 

While RoboTool defines these same assertions for the controller and 
module as a whole, these require reasoning about all the above SMs 
synchronised in parallel. This CSP process is so complex that we are 
unable to verify the assertions, even with the resources of the 
University’s high performance computing cluster. Specifically, 
RoboTool performs a compression operation to optimise these 
assertions. This requires the enumeration of the SMs in parallel. It is 
during this enumeration that the executing cluster runs out of memory. 
Therefore with the current version of RoboTool it is not possible to 
verify that the robot’s components, assembled together, are deadlock-
free. While this is concerning and a great impediment towards using 
RoboTool to model and verify applications in industry, research is 
currently in progress on how to address these problems and improve 
the tool’s optimisation strategy to handle larger examples. 

The CSP processes we defined in 4.2 allow us to mathematically 
model the robot’s properties set out in requirement 10. Our assertions 
about the refinement of these processes all pass, proving that, on the 
planning layer, the robot’s decisions respect the imposed constraints. 
This is not complete proof that the robot as a whole has these 
properties, but as previously discussed it is currently impossible to 
reason about the entire module due to memory constraints. We 
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believe the planning layer proof is sufficient for the required properties, 
since they all relate to the robot’s movement decisions, and these are 
only calculated at this layer. This could, in future, be supplemented by 
additional proofs on the middle and executive layers that the 
respective SMs execute movement commands as expected. Our 
modified model (swapping the Go_right_again transitions) described 
in section 4.2 fails NoFall, proving our claim about the incorrectness 
of figure 5 in the original paper—the branches of the second to last 
conditional must be swapped, else the robot may fall of the panels. 

Requirement  Outcome 

1 Model conforms to provided specification 

2 All components and interactions modelled 

3 Unambiguous, other properties subjective 

4 All variables and constants defined 

5 Operations and parameters defined 

6 Datatypes declared in unified manner 

7 Assumptions captured in model where possible 

8 Not possible in RoboChart 

9 All interactions modelled 

10.a Proved using returnToCharge 

10.b Proved using returnAfterCharging 

10.c Proved using movementShape and cleanAllPanels 
Table 4: Summary of requirement outcomes 

Additionally to these requirements, we aimed to test RoboChart’s 
ability to model this expressive platform, and to represent multiple 
layers of abstraction, as well as provide the first model of a PID 
controller in the language. We have found RoboChart to be perfectly 
suitable for these three tasks, and in the process have contributed a 
number of bug reports and improvement suggestions for the language: 

1. We have raised the issue of multi-synchronisation and 
whether this is a useful feature for the language. 

2. In using multiple references to the same state SM definition in 
a controller we have discovered a bug in the generated 
semantics for SM references that has since been fixed. 

3. As part of discovering the above bug we highlighted the 
difficulties of reading the FDR traces generated from the 
model’s semantics, leading to a discussion on the potential of 
translating these traces back to RoboChart. 

4. Our model has proved that RoboChart’s current optimisations 
technique are not suitable for all of its applications 

Finally, our model has provided further evidence that RoboChart is 
suitable for modelling real-world applications. It has proved the 
correctness of the algorithms described in Avarind et al.’s paper and 
formalised the requirements of a hardware platform for the robot. 
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6 Conclusion 

In conclusion, this project provides a case study of using RoboChart 
to model a pre-existing, real-world application. Upon comparison of the 
available robotic domain-specific languages for modelling, RoboChart 
has been selected as the most appropriate for the task. We highlight 
the issues we found in Avarind et al.’s documentation and argue the 
benefits of constructing a model of the robot to describe its functionality 
more clearly and reason about its properties. 

We have built our model relying on all available information about the 
application and its hardware as well as our documented assumptions. 
We have used CSP to define a set of processes capturing the desired 
properties of the robot, and RoboTool along with FDR to prove that 
these properties are satisfied. Our model respects the original 
specification, and defines all the robot’s components and their 
interactions unambiguously. We have defined a set of requirements 
for the quality, accuracy, and readability of our model, as well as for 
using the model to demonstrate that the robot conforms to a set of 
properties defined in the original paper. Our work fully satisfies nine of 
the twelve requirements, and provides suggestions for future 
improvements on the three requirements that were not fully met. 

Our result is a model that fulfils our requirements in terms of accuracy 
and completeness of its definition, with the exception of some 
hardware and environment assumptions that we document but cannot 
capture in RoboChart. The model is unambiguous by definition, but 
more verbose and thus potentially more difficult to understand in some 
places. However, it allows us to reason about its mathematical 
properties. We prove the non-termination, determinism, as well as 
absence of deadlocks and divergences of all components of the robot, 
but not the components linked together, as this is impossible to do for 
a model of our complexity in the current version of RoboTool. We also 
demonstrate that the planning layer fulfils all the required properties. 

Our work contributes bug reports and future enhancement requests 
to RoboChart and RoboTool. It demonstrates the ability of the former 
to capture a very expressive platform, and includes the first definition 
of PID in the language, a common control scheme in robotics, 
particularly valuable in the application itself, where it performs the 
critical task of preventing the robot from falling and damaging itself. 

Future work should focus on simplifying the existing component 
definitions in order to make them easier to read, and providing further 
proof at lower layers of the model that the required properties are met. 
Our project provides further evidence of RoboChart’s advantages as 
a robotic DSL. Currently, code generation is not a feature of RoboTool. 
However, the ability to formally verify models implies that in the future, 
we could generate controllers that are correct by construction. 
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Appendix A 

In this appendix we include diagrams of all components of the model 
mentioned in section 4 that were not depicted within the chapter. 

Figure 12 depicts the datatype and enumeration definitions. Figure 
13 defines the operations used throughout the state machines. The 
mathematical functions defined for the model are presented in figure 
14. The function used to calculate linear speed in LinearSpeedSM is 
defined in figure 15. The functions used by MidLevelSM to adjust the 
orientation variable can be seen in figure 16. 

 

Figure 12: Datatypes and enumerations 

 

Figure 13: Operation definitions for cleaning (top) and moving (bottom) 

 

Figure 14: Mathematical functions 

 

Figure 15: Linear speed function used in LinearSpeedSM 



Appendix A 
 

37 
 

 

Figure 16: Turn functions used in MidLevelSM 

Figures 17, 18, and 19 depict the interfaces defined, required and 
provided within the module. 

 

Figure 17: Interfaces declaring variables and constants 

 

Figure 18: Interfaces defining events 
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Figure 19: Interfaces defining operations 

Figure 20 shows the robotic platform that provides the interfaces and 
events required by the controller. The full module is depicted in figure 
21. 

 

Figure 20: Robotic platform 
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Figure 21: Overview of module 



Appendix A 
 

40 
 

The linear and angular speeds required by PID are provided by 
LinearSpeedSM and AngularSpeedSM, shown in figures 22 and 23. 

 

Figure 22: LinearSpeedSM definition 

 

Figure 23: AngularSpeedSM definition 

The speed required by these state machines is provided by two 
different SpeedSMs—one for the left speed and one for the right, both 
references to the definition in figure 24. 
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Figure 24: SpeedSM definition 

Using a similar formula, the displacement required by 
PathPlanningSM is calculated in DisplacementSM, as seen in figure 
25. 

 

Figure 25: DisplacementSM definition 

The cleaning commands sent out by PathPlanningSM are executed 
by CleanSM – figure 26 – using the cleaning operations defined in 
figure 19. 

 

Figure 26: CleanSM definition 
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Wherever multisynchronisation of events is needed, 
InputDuplicationSM is used to duplicate an event. This simple state 
machine can be seen in figure 27. 

 

Figure 27: InputDuplicationSM definition 

Due to the complexity of MidLevelSM, we include the definitions that 
were omitted in figure 9 using RoboChart’s textual language. These 
are automatically generated by RoboTool from the diagram we 
produced using the graphical editor. Figure 28 contains the full state 
definitions, including the entry actions omitted in figure 9. The 
sinceEntry conditional loops that were also removed are presented in 
figure 29. 

 

Figure 28: State definitions of MidLevelSM with actions 
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Figure 29: Looping sinceEntry transitions of MidLevelSM 

Finally, we present MidLevelSM as two separate diagrams: figure 
30 hiding all turn transitions, and figure 31 hiding all move_forward and 
stop transitions. Hiding these transitions serves to present less 
information at once such that it is easier to follow along with the 
descriptions provided in 4.1.2. 
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Figure 30: MidLevelSM definition hiding  turn transitions 



Appendix A 
 

45 
 

 

Figure 31: MidLevelSM definition hiding move_forward and stop transitions 
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Appendix B 

In this section we include the full definitions of all CSP processes 
used for assertions. 

We define the processes Recurse(S, P) and NRecurse(S, P), where 
S is a set of events and P is a process. Recurse(S, P) accepts any 
event in S and proceeds as P. We use this in the following definitions 
in order to accept events but effectively discard them—for example, 
the way Wait from NoFall recurses when offered any event other than 
an ultrasonic input. NRecurse(S, P) provides the same behaviour, 
except it uses internal choice of the events in S, rather than external, 
like Recurse(S, P). In other words, NRecurse(S, P) is 
nondeterministic, while Recurse(S, P) is deterministic. 

The full explanations of how each process works are provided in 
chapter 4. In this appendix we merely provide the CSP specifications 
along with a very brief summary of the points in 4.2. 

The definitions of Recurse(S, P), NRecurse(S,P), and NoFall can 
be seen in figure 32. The process Wait recurses until it receives an 
ultrasonic input, at which point CheckCliff(u) verifies whether a cliff 
has been encountered. TurnedLeft, TurnedRight, and TurnedBack 
enforce the behaviour of turning before continuing to move, if a cliff 
lies forward. 

 

Figure 32: Recurse(S, P), NRecurse(S, P) and NoFall definitions 

Figure 33 depicts the definition of ReturnToCharge, the CSP 
specification of the property of returning to the docking station when 
the battery runs low. WaitBattery waits for input of the battery level, 
which is checked using CheckBattery(b). If the level is low, Return 
and Dock move back to the docking station. 
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Figure 33: ReturnToCharge definition 

The more complicated ReturnAfterCharging captures the property 
of resuming cleaning from the spot the robot reached before running 
low on battery. The processes CycleStart(n, MAX), CycleEnd(n, 
MAX), ReturnToDock(n, MAX) and CheckEnd(n, MAX) model 
cleaning and returning to the docking station, while storing the number 
of completed cleaning cycles, as seen in figure 34. 

 

Figure 34: ReturnAfterCharging: performing normal cleaning task and returning to the 
docking station 

The processes ExitDock(n, MAX) and Resume(n, MAX) model the 
robot’s return to its position prior to docking. This position is measured 
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by the processes WaitForCycles and Measure(x), depicted in figure 
35. 

 

Figure 35: ReturnAfterCharging: resuming cleaning after charging 

Figure 36 contains the definition of MovementShape—the sequence 
of movement commands performed in a cleaning cycle and in 
returning to dock and resuming cleaning. 
PathPlanningSMMovements, illustrated in figure 37, abstracts away 
all but the movement commands of PathPlanningSM, such that we 
can assert that it refines MovementShape. 

 

Figure 36: MovementShape: definition of what a cleaning cycle should look like in terms of 
movement commands 

 

Figure 37: PathPlanningSMMovements: PathPlanningSM definition abstracting away all 
but the movement commands 
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Similarly, ReachEnd, seen in figure 38, depicts the property of the 
robot reaching the end of all its panels, by exposing the state 
machine’s state information and modelling a cliff being reached while 
moving right at the end of a cleaning cycle. 
PathPlanningSMEndState is a definition of PathPlanningSM that 
shows only those events relevant to ReachEnd. This can be seen in 
figure 39. 

 

Figure 38: ReachEnd definition 

 

Figure 39: PathPlanningSMEndState definition: PathPlanningSM abstracting all but the 
ultrasonic event, and the events signaling the entering of states Go_Right_Again and Return 
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Figure 40: CleanAllPanels: possible behaviours while moving up, left, or down 

The definition of CleanAllPanels is captured in figures 40 and 41. 
This describes the expected behaviours of the robot when facing up, 
down, left, and right. It enforces the possibility of encountering a cliff 
when moving to the right. Failure refinement allows us to use this 
process to ensure that the robot can in fact reach the end of all panels 
by encountering a cliff at the end of a cleaning cycle. If this were not 
the case, the failure refinement assertion would fail. 

 

 

Figure 41 CleanAllPanels: possible behaviours while moving right, checking whether a cliff 
has been reached 
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Finally, figure 42 contains the definitions of all the assertions using 
these processes. All assertions are executed in both the timed and 
untimed semantics, and use the same constant definitions. All 
assertions pass. 

 

Figure 42: Assertion definitions 
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