1

For many years researchers have advocated the use of functional programming lan-
guages because of their mathematical tractability, their economy of expression and
their suitability for programming parallel computers. But functional languages do
not cope “naturally” with real world situations involving changes of state, such as

Linearity and Laziness

David Wakeling and Colin Runciman
University of York*

Abstract

A criticism often levelled at functional languages is that they do not cope elegantly or
efficiently with problems involving changes of state. In a recent paper [26], Wadler has
proposed a new approach to these problems. His proposal involves the use of a type
system based on the linear logic of Girard [7]. This allows the programmer to specify
the “natural” imperative operations without at the same time sacrificing the crucial
property of referential transparency.

In this paper we investigate the practicality of Wadler’s approach, describing the design
and implementation of a variant of Lazy ML [2]. A small example program shows
how imperative operations can be used in a referentially transparent way, and at the
same time it highlights some of the problems with the approach. Our implementation is
based on a variant of the G-machine [15, 1]. We give some benchmark figures to compare
the performance of our machine with the original one. The results are disappointing:
the cost of maintaining linearity in terms of lost optimisations at compile-time, and
the extra data structures that must be created at run-time more than cancels out the
gains made by using linear types to reduce the amount of garbage collection. We also
consider how the language and the implementation can be extended to accommodate
aggregates such as arrays. Here the results are more promising: linear arrays are usually
more efficient than trailered ones, but they are less efficient than destructively-updated
ones. We conclude that larger aggregates are the most promising area of application for
Wadler’s type system.

Introduction

*Authors’ address: Department of Computer Science, University of York, Heslington, York Y01 5DD, United

Kingdom. Electronic mail: dw@uk.ac.york.minster, colin@uk.ac.york.minster

altering a pixel on a bit-mapped display or updating a record in a database. Where
the imperative solution to these problems is concise and efficient, the functional one
is verbose and inefficient. Any function altering a bit-mapped display, for example,
must take the bit-map as one of its arguments and return a new bit-map as part of
its result. The verbosity of this solution is annoying, but even worse is its manifest
inefficiency: the implementation cannot update the display directly without sacri-
ficing referential transparency, and so it must copy the bit-map after each pixel has
been altered.

In situations like these an optimising compiler is a double-edged sword. It may
improve performance dramatically, for example by detecting that the bit-map can
be updated directly without the loss of referential transparency, but in doing so it
also turns a program which is inefficient into one which is inefficient in unpredictable
ways : a small change to the program might (by fooling the compiler’s analysis) lead
to a large decrease in its efficiency which is hard to trace. It is most unfortunate that
the behaviour of a functional program should depend so heavily on the cleverness
of the compiler. The functional programmer should not be expected to know that
it is better to write a program in one way rather than another just so that it can be
compiled more efficiently.

In a recent paper [26], Wadler has proposed a new approach to problems involving
changes of state. His approach does not try to reduce the verbosity of the functional
solution to these problems, but it does try to increase its efficiency and predictability.

All implementations of lazy functional languages employ some notion of sharing,
whether it is achieved indirectly by using an environment or directly by using point-
ers. One view is that sharing is essential to an efficient implementation, saving time
by avoiding the recomputation of values and saving space by having only one copy
of each value. But another view is that sharing is a source of inefficiency because
the possibility of sharing prevents the implementation from re-using storage space
immediately. Instead, storage space which is no longer in use must eventually be
recovered for re-use by an expensive process known as garbage collection. Wadler
has developed a type system, based on the linear logic of Girard [7], that attempts to
reconcile these two viewpoints by giving the programmer greater control over stor-
age management. In Wadler’s type system there are two distinct families of types,
conventional types and linear types. A value of a conventional type may be shared,
as in share x = (x,x) or it may be thrown away, as in throw x = (). A value of
a linear type, on the other hand, must obey the linearity constraint: it cannot be
shared and it cannot be thrown away.

At the implementation level, there may be many pointers to a conventional value
(it may be duplicated), or there may be none at all (it may be discarded); there
is always exactly one pointer to a linear value. Conventional storage can only be
safely recovered for re-use by garbage collection, but linear storage can be recovered
directly as a result explicit instructions in the compiled code for the program.

Wadler’s idea is that the programmer should specify whether a new type is conven-
tional or linear when it is declared — a trade-off between flexibility and efficiency.
There are no restrictions on the use of values of a conventional type, but they can-

not be updated directly and they require garbage collection. Conversely, values of
a linear type must be used exactly once, but they can be updated directly and they
avoid the overhead of garbage collection.

The rest of this paper is organised into six sections. Section 2 briefly reviews Wadler’s
type system, and Section 3 describes a functional programming language that makes
use of it. Section 4 gives a small example program. Section 5 is concerned with
various aspects of the implementation of this language, and Section 6 describes how
the language and the implementation can be extended to incorporate aggregate
structures such as arrays. Finally, Section 7 reviews some closely related work, and
Section 8 concludes.

2 Wadler’s Type System

In Wadler’s type system two distinct families of types coexist. A conventional type
can be either a base type, a function type or a pair type:

T, U, Vu=K|(U—=V)|(UxV)

where K ranges over conventional base types and T', U and V range over conventional
types. A linear type can also be either a base type, a function type or a pair type:

P Q, R==J|(Q R)|(Q®R)

and in this case, J ranges over linear base types and P, () and R range over linear
types. Wadler’s nonlinear type system combines these two families of types:

T, U V= IK|(U=V)|(UxV)|K|U V)| (UeV)

Here !K ranges over conventional base types, K ranges over linear base types and
T, U and V range over types.

The nonlinear A-calculus is a variant of the A-calculus that combines the terms of
the conventional \-calculus and the linear \-calculus (in which all bound variables
must be used exactly once) in an analogous way*:

8

t, u, v ::
Nz : U)
Az U)
It u)

t u)
IC ty...t)

Cty...t,)

case u of 1Cy x11...21, = v1 | ... 1O Tt o Ty — V)
case u of Cy z11...Z1, = v1 | .. Cp Tigd « - Ty — Vi)
fix t)

NN NN\ TN NN

(('7’

*In his paper Wadler adopts an inverse convention: terms from the linear A-calculus are annotated with the
symbol “i”. Our notation follows the tradition of linear logic.

Here x ranges over variables and ¢, u and v range over terms. The novel feature of
this calculus is that it allows algebraic type declarations of the form

KZClTH Tlp‘ |OnTn1 an

where K is a new base type name, the C; are new constructor names, and the T;;
are types.

Figure 1 gives the typing rules for the nonlinear A-calculus in the usual style. Wadler
discusses these rules in detail, but for the purposes of this paper the important points
to note are:

e Each assumption in A about a linear variable must be used exactly once in the
typing (rule VAR). An assumption list is nonlinear if each assumption z : T
in it has nonlinear T'. In other words, the type-checker enforces the linearity
constraint.

e The closure of a conventional function may not incorporate a linear value (rule
— 7). This is because there are no restrictions on the use of conventional
functions. If the closure could bind a linear value there would be no restriction
on the use of this value either, and so this binding must be disallowed.

e The two rules for applications (rule — £ and rule £) make it clear that no
linear variable may appear in both the function and argument portion of an
application. Clearly, if each linear variable in ¢ occurs exactly once in A and
each linear variable in v occurs exactly once in B then each linear variable in
the conjunction of the two lists, A.B occurs exactly once in (¢ u).

e A conventional data structure may not have any linear components (rule !K7).
This is because updating any component of a data structure updates the struc-
ture itself, and the updating of conventional data structures must be disal-
lowed.

3 A Functional Language

Although the nonlinear A-calculus is both simple and elegant, the syntax is so Spar-
tan that only a fanatic would advocate using it to program a computer. We have
developed a functional programming language with a more agreeable syntax which
is based on the nonlinear A-calculus and uses the nonlinear type system. This lan-
guage is called Nonlinear Lazy ML (NLML), and it is a variant the language Lazy
ML (LML) developed at Chalmers University by Augustsson and Johnsson [2]. In
this section we shall be concerned mainly with the type system and type infer-
ence, an area where there are significant and interesting differences between the two
languages.

A li A
VRA.x:Tl_x:Tnonmear
A z:UkFv:V . A x:UkFuv:V
T ’ A 1 A T ’ A
I A w0 .U 5 v ¢ A noniinear A 0w U0 vE?
AFt:U—-V Bru:U AFt: UV Bru:U
— &
AF (tu):V ABF (tu):V
All_tliTl Anl_tnT’I’L . All_tlTl Anl_tnTTL
'KT 1 T; KT
A A F(C L) K onneat A, A F(Ch 1)K
Figure 1: Typing rules for the nonlinear A-calculus
3.1 Types

In NLML the conventional base types are Int, Bool and Char, and there are no
linear base types. One of the first decisions taken in the design of NLML was that
providing linear versions of the basic types was not worthwhile. This decision was
partly the result of reading Lafont’s work [16, 17], and partly the result of our
unsuccessful attempts to write useful functions using linear integers.

Conventional type variables are written as !*a and linear type variables are writ-
ten as *a. Conventional functions are constructed with the -> arrow and linear
functions are constructed with the -o arrow. The requirement that the closure of a
conventional function must not incorporate a linear value means that the function

signature f: xa->(!*b->*a);
fxy=x

is type-incorrect because it allows a linear value to be used many times (every
time the conventional function (f v) is applied to a conventional argument, the
implementation duplicates the linear value v). There would be no problem, and the
type-checker could be more permissive, if it could guarantee that the function (f
v) would be applied only once. This, of course, is what the —o arrow is used for,
and the following definition is type-correct.

signature g: *a->(!*b-o%*a);
gxy=x

On first acquaintance linear functions appear to be exotic beasts. Their role in

NLML, however, is a very minor one: they serve only to placate the type-checker
by restricting the use of partial applications, ensuring the integrity of linear values.
In our experience, the programming style that results from a more ambitious use of
linear functions is not to be recommended. Lafont [17], for example, makes extensive
use of them and his programs are rather difficult to understand.

NLML allows the programmer to declare algebraic data types. There are two dif-
ferent kinds of type declaration, conventional ones and linear ones. For example,

type Clist !*a = Cnil + Ccons !*a (Clist !*a)

declares the type of a conventional list of conventional values. There are no restric-
tions on lists of this type; they may be used any number of times. The declaration

linear type Llist !*a = Lnil + Lcons !*a (Llist !*a)

declares the type of a linear list of conventional values. A list of this type must be
used exactly once; it cannot be shared or thrown away. The use of the list items,
though, is unrestricted. The linear type announces that the programmer is prepared
to trade flexibility in exchange for a more efficient implementation. Flexibility is
lost because the type system insists that linear lists should be used exactly once,
but efficiency is gained because the implementation can re-use the space occupied
by linear list cells explicitly, so avoiding the overhead of garbage collection.

In NLML, the explicit recovery of storage is accomplished by destructive case-
analysis. Consider the following definition of a concatenation function for linear
lists:

signature nconc: (Llist !*a)->(Llist !*a)-o(Llist !*a);
nconc Lnil ys = ys
|| nconc (Lcons x xs) ys = Lcons x (nconc xs ys)

Here pattern-matching is being used to perform case-analysis of the first argument.
When one of the two clauses has been chosen, the space occupied by the linear list
cell that was examined can safely be recovered — the type system guarantees that
it is not referred to elsewhere. Thus, the nconc function destroys its first argument
in computing its result.

3.2 Type-checking

In NLML type-checking takes place after the program has been translated into the
nonlinear A-calculus using techniques similar to those described in Peyton Jones’
book [21]. During this translation, information from any type signatures in the
program, along with information about the types of the primitive operations, is
used to annotate the resulting terms. So, for example, the function

signature id: !*a->!x*a;
id x = x

is translated into
id = ((Az.z:1X) 1X —=!X)

Type-checking is then performed in two stages. The first stage uses a simple variant
of Milner’s archetypal type-checking algorithm W [20] using information supplied
in the type signatures. At this stage, a function is considered to be type-incorrect if
it is ambiguous. For example, if its type signature is omitted, then id is ambiguous
because it can have four possible types (X — X, !X —=!X, X X and !X !X).
The programmer must often write type signatures to resolve ambiguities for the
type-checker.

In the second stage, the type-checker ensures that all variables declared to have a
linear type obey the linearity constraint. This is a simple syntactic check, performed
by following each possible path through a function and counting the occurrences of
the variables with linear types. Some additional checks ensure that linear values
are never incorporated in cyclic structures created with let rec, that they cannot
appear in the closures of conventional functions, and that they cannot appear as the
components of conventional data structures.

This two stage implementation is largely a matter of convenience. A direct im-
plementation of the typing rules given in Section 2 involves reference counting the
assumption lists maintained by the type-checker, and this turns out to be rather
awkward.

From the above description it might seem that type-checking is quite straightfor-
ward. However, there are many pitfalls for the unwary. Consider, for example, the
following function which increments the nth element of a linear list.

signature inc: Int->(Llist Int)->(Llist Int);
inc n Lnil = Lnil

inc 1 (Lcons x xs) = Lcons (x+1) xs

inc n (Lcons x xs) Lcons x (inc (n-1) xs)

Using the pattern-matching transformation described by Wadler in Peyton Jones’
book [21], this function is translated into the nonlinear A-calculus as follows (type
annotations have been omitted for the sake of clarity):

me = NA1.\A2.

case A2 in
Lnil : Lnil
| Lcons x zs :
case Al in
1 : case A2 in

Lnil : ERROR
| Leons z zs : Lcons (z + 1) zs
|| n:case A2 in
Lnil : ERROR

| Lcons x zs : Lcons (inc (n - 1)) xs

The problem here is the repeated case-analysis of A2. It must be a linear list, yet in
the translation it may be used twice, and this is a type-incorrect. As Wadler points
out, it is straightforward to improve the translation of pattern-matching to avoid
the repeated case-analysis of a single variable. However, there are other more subtle
problems that cannot be solved in this way, as we shall now show.

In NLML, as in LML, argument patterns are always matched strictly. (This differs
from languages like Miranda! where tuple patterns are matched lazily: the argument
is not evaluated unless one of its components is required during evaluation of the
right-hand side.) But some form of lazy pattern-matching is essential, and in both
NLML and LML this is achieved using the binding mechanism of the let-expression.
Consider an expression of the form

letp=qginr

When this expression is evaluated, no check is made that ¢ matches the pattern p
until the value of one of the variables in p is required in r. Now suppose we declare
two linear types as follows.

linear type Lpair *a *b = Lpr *a *b

linear type Signal = S Bool Signal

The first is the type of pairs of linear values and the second is the type of infinite
sequences of booleans. There is nothing sinister about these two declarations, but
now we use them to define the function divide which copies a Signal:

signature divide: Signal->(Lpair Signal Signal);
divide (S x xs) =
let (Lpr xsl xs2) = divide xs in Lpr (S x xs1) (S x xs2)

tMiranda is a trademark of Research Software Limited

This function is translated into the nonlinear A-calculus so that the pattern-matching
in the let-expression is lazy (once again, type annotations have been omitted for
the sake of clarity):

divide = \A 1.
case A1 in
Sxas:

let rec t = dwide xs
and sl = case t in
Lpruov: u
| - : FRROR
and zs2 = case t in
Lpruwv: v
| - : FRROR
in Lpr (S x xs1) (S © xs2)
| - : FRROR

This will not type-check either. Here the local variable ¢ introduced during the
pattern-matching transformation must be a linear pair, and yet it is used by two
case-expressions, each of which discards one of its linear components.

Now, it is an entertaining, if somewhat futile, exercise to attempt to translate
the divide function into the nonlinear A-calculus — where, remember, there is
no pattern-matching of any kind — while preserving both the linearity and the lazi-
ness suggested by the original definition. It cannot be done: linearity demands that
the result of (divide rs) must not be shared at all; laziness demands that it must
be shared among the selectors for zs! and zs2. The problem evinced by divide is
in fact very serious: at one time, this simple function seemed to throw our whole
enterprise into jeopardy. We do have a solution of sorts, but since it depends on
details of the implementation we shall postpone discussion of it until Section 5.

Worrying as they are, these problems with type-checking have not prevented us from
writing several interesting NLML programs. One of these is described below.

4 An Example: Generating the Mandelbrot Set

The Mandelbrot set [19] is a set of complex numbers governed by the iterative
formula z < 2% + k. If this formula converges for an initial z of (0,0) then the point
k is within the set, otherwise it is not. Unfortunately, it is impossible to find all and
only those points for which the iteration converges. However, it is possible to find
an approrimation to the set by making use of a simple and sufficient condition for
divergence: the sequence of iterations will diverge if the size of the complex number
z, written |z|, exceeds 2. Any point for which the iteration has not diverged after
a fixed finite number of iterations is assumed to lie within the set. When enough
points have been computed they can be plotted in the complex plane (Figure 2).

4_-*

Figure 2: An Approximation of the Mandelbrot set

At the heart of our program to generate the set is an implementation of the iteration
z + 22 + k. Trading flexibility for efficiency, we shall make the type of complex
numbers a linear one

linear type Complex = C Float Float

allowing a true assignment to be used in the iterative loop, just as it would be in an
imperative programming language. We can now define the central function inset
which returns true if the point k is still with in the set after a certain predefined
number of iterations, and false otherwise.

signature inset: Complex->Bool;
inset k = insetl 0 (C 0.0 0.0) k

The inset function uses an auxiliary insetl to compute its result. The three
arguments that it gives to this function are an initial value for the iteration counter,
an initial value for z and the point k. The iterations stop when either the iteration
count reaches the predefined maximum, NITER, or |z| exceeds 2. The first clause of
the inset1 function tests the iteration counter:

insetl NITER z k = yes z k

If the number of iterations has reached NITER, then the point k is assumed to be
within the set and the result is true. Unfortunately, it would not be type-correct
simply to return true immediately — that would involve discarding two linear
values, z and k. Instead, an intermediate function yes is required:

signature yes: Complex->Complex-oBool;
yes (C r1 i1) (C r2 i2) = true

This function returns true only after using up both of its arguments during de-
structive case-analysis; the function no is similar. The second clause of the inset1
function tests for |z| > 2 and it is rather more complicated:

insetl n z k =
let (Lpr zl z2) = copy_complex z in
if squared_size zl1 >= 4.0 then
no z2 k
else
let (Lpr ki1 k2) = copy_complex k in
insetl (n+1) (add_complex (sqr_complex z2) k1) k2

The size of a complex number is found by squaring each of its parts, adding them
together and taking the square root of the sum. However, since we only want the
size of z in order to compare it with 2, we avoid the square root operation by
comparing with 4 instead. The function squared_size returns the square of the
size of a complex number:

signature squared_size: Complex->Float;
squared_size (Cr i) = (r .x r) .+ (1L .* i)

Complex numbers are represented by a linear type and so every operation on a
complex number, including squared_size, consumes it by destructive case-analysis.
Thus, we must take a copy of z before testing it so that we can use it again after-
wards. Assuming that z fails the test, we can carry out another iteration, which
involves computing the value of z¥z + k. To do this we must explicitly copy k in
order to satisfy the type-checker which insists that all linear values must be used
exactly once. We can avoid copying z by specialising the function mul _complex of
two arguments to a function sqr_complex of one:

signature sqr_complex: Complex->Complex;
sqr_complex (C r i) =
C ((r .xr) .- (1 .x1)) ((xr .x i) .+ (r .x i))

The Mandelbrot set itself may now be obtained by mapping the inset function over
a grid of complex numbers represented by a list.

This program illustrates many of the problems that we have encountered while
writing programs in NLML. The loss of flexibility that results from using linear types
is dramatic. Extra functions must often be written to copy or throw away linear
values, and in order to avoid writing these artificial functions, one often resorts to
programming in unnatural and devious ways.

Having to supply type signatures can be irksome, especially for quite simple func-
tions. More seriously, type signatures can lead to a creeping loss of polymorphism.
A signature which is appropriate for a function in the context of the program be-
ing developed can mask its true polymorphic nature, something which a system
performing pure type inference would reveal.

Our implementation has no built-in linear types or library functions to process them.
In this particular example, the programmer has to define linear pairs explicitly.

In time, of course, it is likely that some linear types would become built-in to
the implementation, and some functions for processing them would find their way
into libraries. But many of these new library functions would just be imitations
of existing ones which process conventional types. This need to provide “two of
everything” complicates life for both the programmer and the implementor.

Overall, programming in NLML is quite laborious. The programs are more cumber-
some and there is a significant loss of flexibility when compared with a conventional
language like LML. The restrictive nature of the type-system means that the prods
that one receives from the type-checker during program development are both fre-
quent and sharp, and many of the problems that it finds can be hard to correct.

5 Implementation

This section describes the implementation of NLML using an abstract machine called
the nonlinear G-machine. The nonlinear G-machine is closely related to Johnsson
and Augustsson’s G-machine [15, 1], and in what follows we shall refer to their ma-
chine as the conventional G-machine. Some familiarity with the idea of programmed
graph reduction and the conventional G-machine is assumed in this section; for those
without such familiarity an excellent tutorial description can be found Peyton Jones’
book [21].

5.1 The Nonlinear G-machine

After type-checking and lambda-lifting [15], the NLML compiler compiles every func-
tion into code for the nonlinear G-machine. This abstract machine has instructions
to construct and manipulate graphs representing expressions. It can be thought of
as a finite-state machine with the following components:

I, the instructions remaining to be executed;
, a stack of pointers;

, a stack of basic values;

the conventional partition of the graph;
the linear partition of the graph;

)

a global environment;

O O -0 Q < w

, a dump stack.

Together, these seven components specify the entire state of the abstract machine,
written as

(I, S, V,C, L, E, D)

The effect of each abstract machine instruction is described by a state transition
rule. So, for example, the effect of the PUSH instruction is described by the rule:

(PUSH m.I, ng--- ny,.S, V, C, L, E, D) = (I, n;y.no--- ny.S, V, C, L, E, D)

An important difference between the nonlinear G-machine and the conventional one
is that the nonlinear G-machine partitions the graph with respect to the type of
the vertices. The single graph, G, that appears in the state of the conventional G-
machine is replaced by two graphs, C and L, in the state of the nonlinear G-machine.
This partition is essential to support linear data structures. However, it is not the
only difference between the two machines.

5.2 Destructive Case Analysis

Case analysis of both conventional and linear data structures is performed using a
single CASE instruction. Two further instructions are used for accessing the compo-
nents of a data structure: LSPLIT pushes the components of a linear data structure
onto the stack, and CSPLIT does the same for a conventional one. The only dif-
ference between these two instructions is the effect that they have on the data
structure node. The LSPLIT instruction destroys it — although the components can
subsequently be accessed on the stack, the node itself has vanished from the graph.
The understanding here is that its storage has also been recovered for re-use. The
CSPLIT instruction behaves in a similar manner, but the node that it operates on
remains in the graph. A small example serves to illustrate the use of the CASE and
LSPLIT instructions to implement destructive case analysis. We can define the tail
function on linear lists as

signature tail: (Llist !xa)->(Llist !*a);
tail (Lcons x xs) = xs

This function compiles into the following instructions:

tail: PUSH 0

EVAL

CASE (Lnil,L1) (Lcons,L2)
L1: STOP
L2: LSPLIT 2

PUSH 1

UPDATE 3

POP 2

UNWIND

The CASE instruction examines the value at the top of the stack and selects the
appropriate label. If control reaches L2 then the LSPLIT instruction destroys the
Lcons node and pushes its components onto the stack.

5.3 The Protection Mechanism

In Section 3 we showed that the function divide is translated into a type-incorrect
form in the nonlinear A-calculus, and we also noted that it is impossible to translate
this function into a form that exhibits both the linearity and the laziness suggested
by the original definition. Our solution to this problem allows the transformation of
lazy pattern-matching to take place unhindered. A run-time protection mechanism
is then used to delay the destruction of linear nodes until they are no longer shared.
This works as follows:

e when the linear node becomes shared, a protection count is attached to it. This
protection count is set to the number of pointers sharing the node;

e every time the node is accessed by one of the selectors the protection count is
decremented;

e when the node is accessed by one of the selectors and the protection count is
one, it is destroyed.

The compiler determines the protection count by examining the lazily matched
pattern. In the case of divide, for example, the protection count is two. This
solution can easily be generalised to more complicated patterns than pairs. However,
it only works properly when all of the variables in the pattern are used at least once.
Otherwise it leads to a space leak because the protection count attached to the shared
linear node is never reduced to one. This weakness means that lazy pattern-matching
must be used with care. Nevertheless, we have found the protection mechanism to
be a workable solution to an extremely difficult problem.

To implement the protection mechanism another variant of the SPLIT instruction
must be added to the nonlinear G-machine. The PSPLIT instruction is like LSPLIT
except that it respects the protection count of the linear graph node that it operates
on. If the protection count is greater than one the PSPLIT instruction causes it to
be decremented, but the node itself is still protected and so it remains in the graph.
Otherwise, the node is destroyed. The compiler detects case-expressions that are

being used to select components of shared linear values and it uses PSPLIT instead
of LSPLIT for them.

Other run-time solutions to the problem of lazy pattern-matching are also possible.
For example, the LSPLIT instruction could be modified to update all references to the
components of the node that it destroys. There would then be no need for PSPLIT.
Unfortunately, it is hard to implement such schemes using only the source-to-source
transformations employed by the NLML compiler.

5.4 Heap Organisation and Garbage Collection

The nonlinear G-machine has two heaps: a conventional heap managed using the
classic scheme suggested by Fenichel and Yochelson [6], and a linear heap which is
is divided into a number of free-lists, one for each possible linear graph node size.
There is also a non-volatile storage area for graph nodes representing compile-time
constants such as integers and strings. This avoids having to allocate space for
them on the heap whenever they are needed (see Figure 3). The conventional heap

linear heap

Fp, - Fp,
| l l |
)
[— T
___________________ ,
| | |_used free | !
non-volatile area from-space to-space

conventional heap

Figure 3: The conventional and linear heaps

supports the implicit destruction of disused nodes by garbage collection, while the
free-list organisation of the linear heap supports the explicit destruction of disused
nodes by destructive case-analysis.

5.5 The Simulated Stack and Free-list

One of the most important optimisations performed by Augustsson and Johnsson’s
LML compiler involves the use of a simulated stack. When an abstract machine
instruction such as PUSHINT 3 is encountered, no machine code is emitted; instead
the value 3 is pushed onto a simulated stack maintained by the code generator. Dur-
ing code generation, operands are taken from simulated stack if possible; otherwise
some machine code is emitted to take them from the real stack at run-time.

The NLML compiler retains this optimisation and adds a simulated free-list. When
a node is destroyed by destructive case analysis, no machine code is emitted to link
it back onto the appropriate free-list; instead it is stored on a simulated free-list
maintained by the code generator. During code generation, space for new linear
nodes is allocated by re-using nodes on the simulated free-list if possible; otherwise
code to acquire a new cell from the appropriate free-list must be emitted.

Some care is required in managing the simulated stack and the simulated free-list
in the presence of destructive operations. For example, the components of a linear

node that has been the subject of destructive case analysis must be saved in registers
or on the real stack, bypassing the simulated stack. Disaster ensues if references to
them via the destroyed node appear on the simulated stack because this node may
have been reallocated in the meantime. It is equally important to ensure that the
simulated free-list is “flushed” to the real one to avoid space leaks.

5.6 Updating and Sharing

Apart from during type-checking, the nonlinear G-machine treats linear functions
and their applications in exactly the same way as conventional ones. This means
that the graph nodes representing all functions and their applications are stored in
the C partition of the graph. But a problem arises when the result of a function
application is a linear value. The node representing the application must be updated
with the node representing the value in order to ensure lazy evaluation. The con-
ventional G-machine updates by copying the root node of the result over application
node. However, the nonlinear G-machine clearly cannot do this: that would make
a nonsense of its attempts to keep graph nodes partitioned by type. Instead the
compiler must arrange to update using an indirection node.

The instruction set of the nonlinear G-machine is largely borrowed from that of
the conventional G-machine. This gives rise to an unexpected, but benign, form of
sharing of linear values. As we have seen, the PUSH instruction works by copying
a pointer to the top of the stack. If that pointer is to a linear value, then the
linear value becomes shared. Fortunately, the linear value will only ever be accessed
via this new pointer during execution. In fact, such sharing causes a problem only
during garbage collection, where the garbage collector must be prepared to encounter
pointers to linear nodes that have already been destroyed.

5.7 Benchmarks for List Structures

Four benchmark programs were written in NLML and compiled with our prototype
compiler. With minor alterations (omitting the extra functions required to main-
tain linearity), the same four programs were written in LML and compiled with
the Chalmers LML compiler, version 0.95. The four benchmark programs were as
follows.

e adder: a gate-level simulation of a four-bit ripple-carry performing 20,000
additions.

e mandelbrot: generates a crude view of the Mandelbrot set on an ordinary
terminal.

o turtle: draws 20 Hilbert curves using simple turtle graphics.

e gsort: a quicksort of a list of 4,000 random numbers.

The benchmark figures given below were recorded on a lightly loaded SUN 3/280 file-
server with 16M bytes of memory running version 3.5 of the SUN UNIX operating
system. For both implementations the total heap space was limited to 1Mbyte in
order to force a significant number of garbage collections. The NLML compiler was
instructed to generate code for a version of the nonlinear G-machine in which 20% of
the total heap space was reserved for the linear heap, and the remainder was divided
into two semispaces for the conventional heap. The LML compiler was similarly
instructed to generate code for a version of the conventional G-machine in which
the total heap space was divided into two semispaces for the single conventional heap.
For each of the benchmarks we measured the total execution time, the amount of
time spent garbage collecting, the number of garbage collections, and the amount
of storage allocated from the heap(s). Execution time was measured in seconds,
and the storage allocated was measured in bytes. Table 1 gives the results for the
programs produced by the NLML compiler, and Table 2 gives the results for the
programs produced by the LML compiler.

execution time | GCs | heap storage allocated

total GC conventional linear
adder 44.34 0.27 89 34,003,380 | 13,120,876
mandelbrot | 29.73 0.08 36 14,553,948 | 3,098,952
turtle 44.32 0.70 68 10,806,240 | 1,931,280
gsort 17.98 3.17 23 7,026,112 | 5,037,568

Table 1: Results for NLML programs using linear lists

execution time | GCs | heap storage allocated

total GC conventional
adder 21.16 | 0.08| 48 99,482,252
mandelbrot | 20.18 0.03 22 11,116,536
turtle 40.24 0.59 54 10,754,160
gsort 15.30 5.19 34 8,915,200

Table 2: Results for LML programs using conventional lists

These benchmark figures are very disappointing. The performance of the NLML
programs is generally much worse than that of the LML ones. There are several
reasons for this.

The first is the need to apply extra functions to share linear values (by explicit
copying) and to throw them away (by explicit case analysis). These functions are
costly in terms of both space and time. The graphs representing their applications
must be built in the heap and later garbage collected. This is a particular problem
in both the adder and mandelbrot programs, and in both cases it is exacerbated
by the fact that the extra functions are in the “inner loop” of the entire program.
Notice the increase in the number of garbage collections in both cases.

One of the advantages of the conventional G-machine’s semispace heap organisation
is that only a single test for heap exhaustion has to be made before a sequence
of allocations. The free-list organisation of the linear heap means that a test for
free-list exhaustion must be made before every allocation. However, the cost of this
test is actually quite low: omitting it produces only a 4% speed up at most. The
reason is that the simulated free-list optimisation is quite effective: the speed up
from using it can be as much as 11%.

Programming in NLML often involves passing around tuples instead of single values
in order to maintain linearity. These tuples are expensive for two reasons. Firstly,
there is the obvious cost of creating and destroying them. This cost should not
be underestimated: in the mandelbrot program 12% of the storage allocated in the
linear heap is for tuples whose sole purpose is to maintain linearity; in the adder
program, the figure rises to 39%. Secondly, and more insidiously, these tuples exact
a significant cost in terms of lost opportunities for compile-time optimisation. The
upshot of this is that the nonlinear G-machine builds many graphs at run-time that
were optimised away for the conventional G-machine at compile-time.

6 Aggregate Structures

Problems involving large aggregates, such as arrays and file systems, have always
been something of a béte noir for function languages. It is difficult for the imple-
mentation to allow the aggregate to be updated while maintaining both referential
transparency and acceptable efficiency. In the past, a number of solutions to this
aggregate update problem have been proposed including run-time checks [10], syn-
tactic restrictions [23], and abstract interpretation [13, 3]. In this section we shall
give yet another solution by showing how the nonlinear type system can be used in
the implementation of arrays.

6.1 Implementation

The literature describes two implementation techniques for conventional arrays,
trailered arrays and destructively-updated arrays. Trailered arrays require run-time
checks to maintain referential transparency when they are updated; destructively-
updated arrays require compile-time checks. Bloss describes both techniques in [3].
She shows that trailered arrays are very expensive at run-time and that destructively-
updated arrays are very expensive at compile-time.

Linear arrays offer a solution to this dilemma. If an array is declared to have a linear
type then the single-threaded use of that array will be verified at compile-time by the
type-checker; at run-time all updates to the array can then be done destructively.

A linear array is created in much the same way as conventional one. In NLML the
operation

array: (List !*a)->(Array !*a)

allocates space for a linear array whose elements are drawn from a list. The update
operation

update: (Array !*a)->Int-o!*a-o(Array !*a)
is similar to that for conventional arrays, but the index operation
index: (Array !*a)->Int-o(Xpair !*a (Array !*a))

is rather different. The nonlinear type system prevents a linear array from being
thrown away, and so the index operation must return the array as part of its result.
The type Xpair simply pairs a conventional value with a linear one.

linear type Xpair !*a *b = Xpr !*a *b

If an array really is to be disposed of, then this must be done explicitly. The
operation

yarra: (Array !*a)->(List !xa)

destroys an array and returns a list of its elements.

From this brief description of the linear array primitives it is not obvious how the
destructive update operations are sequenced so that the program remains “safe”.
Consider the function swap which swaps two elements in a linear array.

swap: (Array !*a)->Int-oInt-o(Array !*a);
swap a i j =

let (Xpr x a) = index a i in

let (Xpr y a) = index a j 1in

update (update a i y) j x

Here, the data dependencies are all that is required to ensure that the indexing
operations are performed prior to the updates. No extra machinery, such as the
sequential let! of [26] or the sequential let* of [9] is necessary.

Although the most obvious place to store linear arrays would be in the linear heap,
our implementation actually stores them in the conventional heap and garbage col-
lects them because of the complexities of managing a free-list for objects whose size
cannot be determined at compile-time.

6.2 Benchmarks for Arrays

Four benchmark programs were written in NLML and compiled with our prototype
compiler. With minor alterations (no result tuples were used to maintain linearity),
the same four programs were written in LML and compiled with two modified ver-
sions of the Chalmers LML compiler, the first with trailered arrays and the second
with destructively-updated arrays. In all cases, a strict 1let was used to sequence
the update operations correctly.

The four benchmark programs were as follows.

e histogram: counts occurrences in a list of 40,000 random decimal digits.
e warshall: finds the transitive closure of 18 identical 26-node graphs.

e [ife: charts the evolution of 20 generations of a small colony of cells on a 32 x 32
board.

e ¢sort: an in-place quicksort of an array of 4,000 random numbers.

The benchmarks were recorded in the same conditions as those described in Sec-
tion 4, except that the total heap size was raised to 2M bytes. Table 3 gives the
results for the programs produced by the NLML compiler using linear arrays, Table 4
gives the results for the programs produced by the LML compiler using trailered ar-
rays and Table 5 gives the results for the programs produced by the LML compiler
using destructively-updated arrays.

execution time | GCs | heap storage allocated

total GC conventional | linear
histogram | 11.43 6.39 17 4,960,544 | 640,000
life 44.23 18.13 29 18,937,568 | 3,605,440
warshall | 14.94 0.24 13 10,421,928 | 2,905,344
gsort 9.40 0.48 7 4,303,620 | 2,280,928

Table 3: Results for NLML programs using linear arrays

execution time | GCs | heap storage allocated

total GC conventional
histogram | 13.35 7.93 21 5,920,544
life 24.83 1.11 24 17,895,280
warshall | 15.23 0.26 15 11,816,424
gsort 9.27 0.61 8 4,632,828

Table 4: Results for LML programs using trailered arrays

execution time | GCs | heap storage allocated

total GC conventional
histogram | 11.01 6.34 17 4,960,544
life 23.81 0.98 23 17,428,336
warshall | 13.52 0.20 13 10,421,928
gsort 8.22 0.52 7 4,303,620

Table 5: Results for LML programs using destructively-updated arrays

We found that linear arrays are usually faster than trailered arrays, but slower than
destructively-updated ones. They fare particularly badly in programs like ¢sort and
life — both of these programs perform an order of magnitude more indexing than
updating operations. The reason for this, of course, is the need to pass tuples around
in order to maintain linearity. As was the case with fine-grained data structures,
these tuples exact a high cost in terms of lost optimisations at compile-time and
extra work that must be performed at run-time.

7 Related Work

One of the things that prompted Wadler to develop the nonlinear A-calculus and
the nonlinear type system was the observation that languages based on the linear A-
calculus have several shortcomings. We know of two such languages, one developed
by Lafont and the other by Holmstrom.

In his thesis [17], Lafont describes the implementation of a small functional program-
ming language based on the linear A-calculus. However, instead of attempting to
apply what he calls the “brutish” compilation scheme of his published papers [8, 16]
to an ordinary functional language, he designs his own linear functional language,
called LIVE. This language exposes the programmer to the full rigours of the linear
A-calculus, and only a few “small” types (such as integers) are permitted to escape
the linearity constraint. LIVE is implemented using a linear variant of the Categori-
cal Abstract Machine [4] called the Linear Abstract Machine. The advantage of this
machine is that it does not require garbage collection. However, there are also two
obvious disadvantages: the grain of reduction is very small (similar to that of the SK
reduction machine [24]), and the results of computations are never shared because
the machine was designed to implement a linear language without any sharing at
all. This can be very inefficient.

Holmstrom [11] has described another functional programming language based on
the linear A-calculus. In his language all functions and data types inherit the linearity
constraint from the linear A-calculus. However, Holmstrom considers this constraint
to be unacceptable in general, and so he provides a way to lift it which works for
all types, not just those with a propitious machine representation. Unfortunately,

Holmstrom has found that his language still exhibits the same fundamental lack
of flexibility that Lafont’s does [12]. Holmstrom sketched an implementation of
his language using a linear variant of Landin’s SECD machine [18]. This machine
performs direct interpretation of the program source code. It is of interest because it
allows a restricted form of sharing, and thus requires garbage collection. However,
there is still no mechanism for sharing the result of a computation and, as we
remarked before, this can be very inefficient.

Guzmén and Hudak [9] have developed a variant of the A-calculus capable of ex-
pressing destructive operations, together with a type system which ensures that
these operations do not compromise referential transparency. In their paper, they
reject an approach based purely on linear logic, such as the one described here, as
being too constraining. Instead, their type system captures the notion of state by
annotating the type of each function in one of seven possible ways to indicate how
it uses its argument. The resulting type system is more complex than the non-
linear one, but it controls destructive operations with considerably more precision,
allowing non-destructive operations in contexts where destructive ones are permit-
ted (but not vice versa). Guzman and Hudak [9] plan to implement an extension of
Haskell [14] based on their ideas.

Wadler has proposed a let!-expression based on the observation that it is perfectly
safe to have more than one reference to a linear value temporarily, so long as only
one reference exists when it is updated. The expression

let! (x) y=uin v

is used to grant “read-only” access to a linear value x within u. Unfortunately, this
construction comes with a number of extremely ad-hoc restrictions: for example,
the evaluation of u should be hyperstrict, and it must not be possible for u (or
any component of u) to evaluate to x (or any component of x). Wadler formalises
these requirements [26], but he is still unsure of how they relate to any existing
theory [27]. We have avoided this construction on the grounds of its complexity,
its poor interaction with lazy evaluation, and its dubious theoretical foundation.
Wadler is currently trying to bridge the gap between theory and practice; his latest
paper [25] attempts to establish the connection between the theoretically-based work
of Lafont and Holmstrom and the more practically-based work of Guzman and
Hudak.

A more detailed account of our own work can be found in the first author’s DPhil
thesis [28].

8 Conclusions and Future Work

In this paper we have described the design and implementation of a functional
language based on Wadler’s approach to problems involving changes of state. Our

work has revealed a number of drawbacks of the approach. Broadly, these are as
follows.

The right to use destructive operations is accompanied by the onerous responsibility
to maintain linearity. This leads to a significant loss of flexibility, and programming
in NLML is rather difficult. What is needed is some extension of the underlying non-
linear A-calculus such as the read-only access granted by Wadler’s let!-expression.
Unfortunately, the logical foundation of this expression is unclear and so there is a
need for further research to find either a logical justification of the let!-expression,
or some similar construction with such a justification. Another possible approach
would be to follow Guzméan and Hudak [9] by adopting a more sophisticated type
system whose connection with linear logic is of a looser kind.

The nonlinear G-machine is an attempt to implement NLML using the graph re-
duction technique that is used so successfully in the implementation of LML. Its
performance is disappointing. More research is needed into abstract machine archi-
tectures suitable for implementing languages like NLML. We particularly favour an
approach based on a machine that can make better use of sharing information, such
as the TIM [5] or the Spineless Tagless G-machine [22].

It has been suggested to us that it might be better to dispense with the run-time
machinery for dealing with linear values. Instead, all values would be stored in a
single garbage-collected heap. Destructive operations on linear values would then be
restricted to those which could be detected at compile-time using the simulated free-
list. With this restriction, it would be pointless to pass tuples around to maintain
linearity, and so there would be no lost optimisations at compile-time or extra data
structures created at run-time. This suggestion amounts to a weakening of the
linearity constraint: linear values still cannot be shared, but they can now be thrown
away. In other words, they are single-threaded [23]. Single-threaded type systems are
a promising area for future research, but they represent a departure from Wadler’s
original proposal which we have not investigated yet.

Our linear array implementation shows some promise. Linear arrays are usually more
efficient than trailered ones, but they are less efficient than destructively-updated
ones. We are firmly convinced that larger aggregates are the most promising area
of application for the nonlinear type system, and we intend to continue our work on
arrays and file systems.

Acknowledgements

We have benefitted greatly from correspondence with Lennart Augustsson and Thomas
Johnsson, whose work on the LML compiler and the G-machine served as the basis
for much of our own, and from correspondence with Yves Lafont, Soren Holmstrom
and Phil Wadler, whose papers first introduced us to linear logic. We are also
grateful for the comments of Neil Jones, Paul Hudak and Simon Peyton Jones.

Wakeling was funded by a research studentship from the Science and Engineering
Research Council of Great Britain.

References

1]
2]
3]

(6]

7]
8]

L. Augustsson. Compiling Lazy Functional Languages, Part II. PhD thesis,
Chalmers University of Technology, S-412 96 Goteborg, November 1987.

L. Augustsson and T. Johnsson. Lazy ML Users Manual, July 1989. (Dis-
tributed with the LML compiler, version 0.95).

A. Bloss. Update analysis and the efficient implementation of functional ag-
gregates. In Proceedings of the 1989 Conference on Functional Programming
Languages and Computer Architecture, pages 26—38. ACM Press, September
1989.

G. Cousineau, P.-L.. Curien, and M. Mauny. The categorical abstract machine.
Science of Computer Programming, 8:173-202, 1987.

J. Fairbairn and S. Wray. TIM: A simple, lazy abstract machine to execute
supercombinators. In Proceedings of the 1987 Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 34—45. Springer-Verlag,
September 1987. LNCS 274.

R. R. Fenichel and J. C. Yochelson. A LISP garbage-collector for virtual-
memory computer systems. CACM, 12(11):611-612, November 1969.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1-101, 1987.

J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In Proceedings
of the International Joint Conference on Theory and Practice of Software De-
velopment (TAPSOFT’87), pages 52—66. Springer-Verlag, March 1987. LNCS
250.

J. C. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus.
In Proceedings of the Fifth Annual IEEE Symposium on Logic In Computer
Science, pages 333—-343, June 1990.

S. Holmstrom. A simple and efficient way to handle large data structures in ap-
plicative languages. In Proceedings of the SERC/Chalmers Workshop on Declar-
ative Programming, pages 185—187. University College London, April 1983.

S. Holmstrom. A linear functional language. In Proceedings of the Workshop
on the Implementation of Lazy Functional Languages, Aspenaes, pages 13-32,
September 1988. Report 53, Programming Methodology Group, Chalmers Uni-
versity of Technology, S-412 96 Goteborg.

S. Holmstrom. Quicksort in a linear functional language. PMG Memo. 65,
Chalmers University of Technology, S-412 96 Goteborg, January 1989.

[13] P. Hudak. A semantic model of reference counting and its abstraction. In
S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative
Languages, pages 45-62. Ellis Horwood, 1987.

[14] P. Hudak and P. Wadler (editors). Report on the programming language
Haskell, a non-strict purely functional language (Version 1.0). Technical re-
port, University of Glasgow, Department of Computer Science, April 1990.

[15] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis, Chalmers
University of Technology, S-412 96 Goteborg, February 1987.

[16] Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157—
180, 1988.

[17] Y. Lafont. Logiques, Catégories et machines. PhD thesis, Université de Paris
7. 1988.

[18] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308-320, 1964.

[19] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1983.

[20] R. Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348-375, 1978.

[21] S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

[22] S. L. Peyton Jones and J. Salkild. The Spineless Tagless G-machine. In Pro-
ceedings of the 1989 Conference on Functional Programming Languages and
Computer Architecture, pages 184—201. ACM Press, September 1989.

[23] D. A. Schmidt. Detecting global variables in denotational specifications. ACM

Transactions on Programming Languages and Systems, 7(2):299-310, April
1985.

[24] D. A. Turner. A new implementation technique for applicative languages.
SOFTWARE — Practice and Ezxperience, 9(1):31-50, January 1979.

[25] P. Wadler. Is there a use for linear logic? Technical report, Department of
Computing Science, University of Glasgow, December 1990.

[26] P. Wadler. Linear types can change the world! In IFIP Working Conference
on Programming Concepts and Methods, Sea of Gallilee, Israel, April 1990.

[27] P. Wadler. Private communication, February 1990.

[28] D. Wakeling. Linearity and laziness. DPhil thesis, Department of Computer
Science, University of York, November 1990. Technical Report YCST 90/07.

