
Linearity and LazinessDavid Wakeling and Colin RuncimanUniversity of York�
AbstractA criticism often levelled at functional languages is that they do not cope elegantly ore�ciently with problems involving changes of state. In a recent paper [26], Wadler hasproposed a new approach to these problems. His proposal involves the use of a typesystem based on the linear logic of Girard [7]. This allows the programmer to specifythe \natural" imperative operations without at the same time sacri�cing the crucialproperty of referential transparency.In this paper we investigate the practicality of Wadler's approach, describing the designand implementation of a variant of Lazy ML [2]. A small example program showshow imperative operations can be used in a referentially transparent way, and at thesame time it highlights some of the problems with the approach. Our implementation isbased on a variant of the G-machine [15, 1]. We give some benchmark �gures to comparethe performance of our machine with the original one. The results are disappointing:the cost of maintaining linearity in terms of lost optimisations at compile-time, andthe extra data structures that must be created at run-time more than cancels out thegains made by using linear types to reduce the amount of garbage collection. We alsoconsider how the language and the implementation can be extended to accommodateaggregates such as arrays. Here the results are more promising: linear arrays are usuallymore e�cient than trailered ones, but they are less e�cient than destructively-updatedones. We conclude that larger aggregates are the most promising area of application forWadler's type system.1 IntroductionFor many years researchers have advocated the use of functional programming lan-guages because of their mathematical tractability, their economy of expression andtheir suitability for programming parallel computers. But functional languages donot cope \naturally" with real world situations involving changes of state, such as�Authors' address: Department of Computer Science, University of York, Heslington, York Y01 5DD, UnitedKingdom. Electronic mail: dw@uk.ac.york.minster, colin@uk.ac.york.minster

altering a pixel on a bit-mapped display or updating a record in a database. Wherethe imperative solution to these problems is concise and e�cient, the functional oneis verbose and ine�cient. Any function altering a bit-mapped display, for example,must take the bit-map as one of its arguments and return a new bit-map as part ofits result. The verbosity of this solution is annoying, but even worse is its manifestine�ciency: the implementation cannot update the display directly without sacri-�cing referential transparency, and so it must copy the bit-map after each pixel hasbeen altered.In situations like these an optimising compiler is a double-edged sword. It mayimprove performance dramatically, for example by detecting that the bit-map canbe updated directly without the loss of referential transparency, but in doing so italso turns a program which is ine�cient into one which is ine�cient in unpredictableways : a small change to the program might (by fooling the compiler's analysis) leadto a large decrease in its e�ciency which is hard to trace. It is most unfortunate thatthe behaviour of a functional program should depend so heavily on the clevernessof the compiler. The functional programmer should not be expected to know thatit is better to write a program in one way rather than another just so that it can becompiled more e�ciently.In a recent paper [26], Wadler has proposed a new approach to problems involvingchanges of state. His approach does not try to reduce the verbosity of the functionalsolution to these problems, but it does try to increase its e�ciency and predictability.All implementations of lazy functional languages employ some notion of sharing,whether it is achieved indirectly by using an environment or directly by using point-ers. One view is that sharing is essential to an e�cient implementation, saving timeby avoiding the recomputation of values and saving space by having only one copyof each value. But another view is that sharing is a source of ine�ciency becausethe possibility of sharing prevents the implementation from re-using storage spaceimmediately. Instead, storage space which is no longer in use must eventually berecovered for re-use by an expensive process known as garbage collection. Wadlerhas developed a type system, based on the linear logic of Girard [7], that attempts toreconcile these two viewpoints by giving the programmer greater control over stor-age management. In Wadler's type system there are two distinct families of types,conventional types and linear types. A value of a conventional type may be shared,as in share x = (x,x) or it may be thrown away, as in throw x = (). A value ofa linear type, on the other hand, must obey the linearity constraint: it cannot beshared and it cannot be thrown away.At the implementation level, there may be many pointers to a conventional value(it may be duplicated), or there may be none at all (it may be discarded); thereis always exactly one pointer to a linear value. Conventional storage can only besafely recovered for re-use by garbage collection, but linear storage can be recovereddirectly as a result explicit instructions in the compiled code for the program.Wadler's idea is that the programmer should specify whether a new type is conven-tional or linear when it is declared | a trade-o� between
exibility and e�ciency.There are no restrictions on the use of values of a conventional type, but they can-

not be updated directly and they require garbage collection. Conversely, values ofa linear type must be used exactly once, but they can be updated directly and theyavoid the overhead of garbage collection.The rest of this paper is organised into six sections. Section 2 brie
y reviewsWadler'stype system, and Section 3 describes a functional programming language that makesuse of it. Section 4 gives a small example program. Section 5 is concerned withvarious aspects of the implementation of this language, and Section 6 describes howthe language and the implementation can be extended to incorporate aggregatestructures such as arrays. Finally, Section 7 reviews some closely related work, andSection 8 concludes.2 Wadler's Type SystemIn Wadler's type system two distinct families of types coexist. A conventional typecan be either a base type, a function type or a pair type:T; U; V ::= K j (U ! V) j (U � V)whereK ranges over conventional base types and T , U and V range over conventionaltypes. A linear type can also be either a base type, a function type or a pair type:P; Q; R ::= J j (Q R) j (Q
 R)and in this case, J ranges over linear base types and P , Q and R range over lineartypes. Wadler's nonlinear type system combines these two families of types:T; U; V ::= !K j (U ! V) j (U � V) j K j (U V) j (U
 V)Here !K ranges over conventional base types, K ranges over linear base types andT , U and V range over types.The nonlinear �-calculus is a variant of the �-calculus that combines the terms ofthe conventional �-calculus and the linear �-calculus (in which all bound variablesmust be used exactly once) in an analogous way�:t, u, v ::= xj (!�x : U :v)j (�x : U :v)j (!t u)j (t u)j (!C t1 : : : tn)j (C t1 : : : tn)j (case u of !C1 x11 : : : x1n ! v1 j : : : !Cm xm1 : : : xmn ! vm)j (case u of C1 x11 : : : x1n ! v1 j : : : Cm xm1 : : : xmn ! vm)j (�x t)�In his paper Wadler adopts an inverse \!" convention: terms from the linear �-calculus are annotated with thesymbol \<". Our notation follows the tradition of linear logic.

Here x ranges over variables and t, u and v range over terms. The novel feature ofthis calculus is that it allows algebraic type declarations of the formK = C1 T11 : : : T1p j � � � j Cn Tn1 : : : Tnqwhere K is a new base type name, the Ci are new constructor names, and the Tijare types.Figure 1 gives the typing rules for the nonlinear �-calculus in the usual style. Wadlerdiscusses these rules in detail, but for the purposes of this paper the important pointsto note are:� Each assumption in A about a linear variable must be used exactly once in thetyping (rule VAR). An assumption list is nonlinear if each assumption x : Tin it has nonlinear T . In other words, the type-checker enforces the linearityconstraint.� The closure of a conventional function may not incorporate a linear value (rule! I). This is because there are no restrictions on the use of conventionalfunctions. If the closure could bind a linear value there would be no restrictionon the use of this value either, and so this binding must be disallowed.� The two rules for applications (rule ! E and rule E) make it clear that nolinear variable may appear in both the function and argument portion of anapplication. Clearly, if each linear variable in t occurs exactly once in A andeach linear variable in u occurs exactly once in B then each linear variable inthe conjunction of the two lists, A:B occurs exactly once in (t u).� A conventional data structure may not have any linear components (rule !KI).This is because updating any component of a data structure updates the struc-ture itself, and the updating of conventional data structures must be disal-lowed.
3 A Functional LanguageAlthough the nonlinear �-calculus is both simple and elegant, the syntax is so Spar-tan that only a fanatic would advocate using it to program a computer. We havedeveloped a functional programming language with a more agreeable syntax whichis based on the nonlinear �-calculus and uses the nonlinear type system. This lan-guage is called Nonlinear Lazy ML (NLML), and it is a variant the language LazyML (LML) developed at Chalmers University by Augustsson and Johnsson [2]. Inthis section we shall be concerned mainly with the type system and type infer-ence, an area where there are signi�cant and interesting di�erences between the twolanguages.

VAR A:x : T ` x : T nonlinear A! I A; x : U ` v : VA ` (!�x : U :v) : U ! V x 62 A; nonlinear A I A; x : U ` v : VA ` (�x : U :v) : U V x 62 A! E A ` t : U ! V B ` u : UA ` (!t u) : V E A ` t : U V B ` u : UA;B ` (t u) : V!KI A1 ` t1 : T1 : : : An ` tn : TnA1; : : : An ` (!C t1 : : : tn) : K nonlinear Ti KI A1 ` t1 : T1 : : : An ` tn : TnA1; : : : An ` (C t1 : : : tn) : KFigure 1: Typing rules for the nonlinear �-calculus3.1 TypesIn NLML the conventional base types are Int, Bool and Char, and there are nolinear base types. One of the �rst decisions taken in the design of NLML was thatproviding linear versions of the basic types was not worthwhile. This decision waspartly the result of reading Lafont's work [16, 17], and partly the result of ourunsuccessful attempts to write useful functions using linear integers.Conventional type variables are written as !*a and linear type variables are writ-ten as *a. Conventional functions are constructed with the -> arrow and linearfunctions are constructed with the -o arrow. The requirement that the closure of aconventional function must not incorporate a linear value means that the functionsignature f: *a->(!*b->*a);f x y = xis type-incorrect because it allows a linear value to be used many times (everytime the conventional function (f v) is applied to a conventional argument, theimplementation duplicates the linear value v). There would be no problem, and thetype-checker could be more permissive, if it could guarantee that the function (fv) would be applied only once. This, of course, is what the -o arrow is used for,and the following de�nition is type-correct.signature g: *a->(!*b-o*a);g x y = xOn �rst acquaintance linear functions appear to be exotic beasts. Their role in

NLML, however, is a very minor one: they serve only to placate the type-checkerby restricting the use of partial applications, ensuring the integrity of linear values.In our experience, the programming style that results from a more ambitious use oflinear functions is not to be recommended. Lafont [17], for example, makes extensiveuse of them and his programs are rather di�cult to understand.NLML allows the programmer to declare algebraic data types. There are two dif-ferent kinds of type declaration, conventional ones and linear ones. For example,type Clist !*a = Cnil + Ccons !*a (Clist !*a)declares the type of a conventional list of conventional values. There are no restric-tions on lists of this type; they may be used any number of times. The declarationlinear type Llist !*a = Lnil + Lcons !*a (Llist !*a)declares the type of a linear list of conventional values. A list of this type must beused exactly once; it cannot be shared or thrown away. The use of the list items,though, is unrestricted. The linear type announces that the programmer is preparedto trade
exibility in exchange for a more e�cient implementation. Flexibility islost because the type system insists that linear lists should be used exactly once,but e�ciency is gained because the implementation can re-use the space occupiedby linear list cells explicitly, so avoiding the overhead of garbage collection.In NLML, the explicit recovery of storage is accomplished by destructive case-analysis. Consider the following de�nition of a concatenation function for linearlists: signature nconc: (Llist !*a)->(Llist !*a)-o(Llist !*a);nconc Lnil ys = ys|| nconc (Lcons x xs) ys = Lcons x (nconc xs ys)Here pattern-matching is being used to perform case-analysis of the �rst argument.When one of the two clauses has been chosen, the space occupied by the linear listcell that was examined can safely be recovered | the type system guarantees thatit is not referred to elsewhere. Thus, the nconc function destroys its �rst argumentin computing its result.3.2 Type-checkingIn NLML type-checking takes place after the program has been translated into thenonlinear �-calculus using techniques similar to those described in Peyton Jones'book [21]. During this translation, information from any type signatures in theprogram, along with information about the types of the primitive operations, isused to annotate the resulting terms. So, for example, the function

signature id: !*a->!*a;id x = xis translated intoid = ((�x:x :!X) :!X !!X)Type-checking is then performed in two stages. The �rst stage uses a simple variantof Milner's archetypal type-checking algorithm W [20] using information suppliedin the type signatures. At this stage, a function is considered to be type-incorrect ifit is ambiguous. For example, if its type signature is omitted, then id is ambiguousbecause it can have four possible types (X ! X, !X !!X, X X and !X !X).The programmer must often write type signatures to resolve ambiguities for thetype-checker.In the second stage, the type-checker ensures that all variables declared to have alinear type obey the linearity constraint. This is a simple syntactic check, performedby following each possible path through a function and counting the occurrences ofthe variables with linear types. Some additional checks ensure that linear valuesare never incorporated in cyclic structures created with let rec, that they cannotappear in the closures of conventional functions, and that they cannot appear as thecomponents of conventional data structures.This two stage implementation is largely a matter of convenience. A direct im-plementation of the typing rules given in Section 2 involves reference counting theassumption lists maintained by the type-checker, and this turns out to be ratherawkward.From the above description it might seem that type-checking is quite straightfor-ward. However, there are many pitfalls for the unwary. Consider, for example, thefollowing function which increments the nth element of a linear list.signature inc: Int->(Llist Int)->(Llist Int);inc n Lnil = Lnilinc 1 (Lcons x xs) = Lcons (x+1) xsinc n (Lcons x xs) = Lcons x (inc (n-1) xs)Using the pattern-matching transformation described by Wadler in Peyton Jones'book [21], this function is translated into the nonlinear �-calculus as follows (typeannotations have been omitted for the sake of clarity):

inc = �A1.�A2.case A2 inLnil : Lniljj Lcons x xs :case A1 in1 : case A2 inLnil : ERRORjj Lcons x xs : Lcons (x + 1) xsjj n : case A2 inLnil : ERRORjj Lcons x xs : Lcons (inc (n - 1)) xsThe problem here is the repeated case-analysis of A2. It must be a linear list, yet inthe translation it may be used twice, and this is a type-incorrect. As Wadler pointsout, it is straightforward to improve the translation of pattern-matching to avoidthe repeated case-analysis of a single variable. However, there are other more subtleproblems that cannot be solved in this way, as we shall now show.In NLML, as in LML, argument patterns are always matched strictly. (This di�ersfrom languages like Miranday where tuple patterns are matched lazily : the argumentis not evaluated unless one of its components is required during evaluation of theright-hand side.) But some form of lazy pattern-matching is essential, and in bothNLML and LML this is achieved using the binding mechanism of the let-expression.Consider an expression of the formlet p = q in rWhen this expression is evaluated, no check is made that q matches the pattern puntil the value of one of the variables in p is required in r. Now suppose we declaretwo linear types as follows.linear type Lpair *a *b = Lpr *a *blinear type Signal = S Bool SignalThe �rst is the type of pairs of linear values and the second is the type of in�nitesequences of booleans. There is nothing sinister about these two declarations, butnow we use them to de�ne the function divide which copies a Signal:signature divide: Signal->(Lpair Signal Signal);divide (S x xs) =let (Lpr xs1 xs2) = divide xs in Lpr (S x xs1) (S x xs2)yMiranda is a trademark of Research Software Limited

This function is translated into the nonlinear �-calculus so that the pattern-matchingin the let-expression is lazy (once again, type annotations have been omitted forthe sake of clarity):divide = �A1.case A1 inS x xs :let rec t = divide xsand xs1 = case t inLpr u v : ujj : ERRORand xs2 = case t inLpr u v : vjj : ERRORin Lpr (S x xs1) (S x xs2)jj : ERRORThis will not type-check either. Here the local variable t introduced during thepattern-matching transformation must be a linear pair, and yet it is used by twocase-expressions, each of which discards one of its linear components.Now, it is an entertaining, if somewhat futile, exercise to attempt to translatethe divide function into the nonlinear �-calculus | where, remember, there isno pattern-matching of any kind | while preserving both the linearity and the lazi-ness suggested by the original de�nition. It cannot be done: linearity demands thatthe result of (divide xs) must not be shared at all; laziness demands that it mustbe shared among the selectors for xs1 and xs2. The problem evinced by divide isin fact very serious: at one time, this simple function seemed to throw our wholeenterprise into jeopardy. We do have a solution of sorts, but since it depends ondetails of the implementation we shall postpone discussion of it until Section 5.Worrying as they are, these problems with type-checking have not prevented us fromwriting several interesting NLML programs. One of these is described below.4 An Example: Generating the Mandelbrot SetThe Mandelbrot set [19] is a set of complex numbers governed by the iterativeformula z z2+ k. If this formula converges for an initial z of (0,0) then the pointk is within the set, otherwise it is not. Unfortunately, it is impossible to �nd all andonly those points for which the iteration converges. However, it is possible to �ndan approximation to the set by making use of a simple and su�cient condition fordivergence: the sequence of iterations will diverge if the size of the complex numberz, written jzj, exceeds 2. Any point for which the iteration has not diverged aftera �xed �nite number of iterations is assumed to lie within the set. When enoughpoints have been computed they can be plotted in the complex plane (Figure 2).

Figure 2: An Approximation of the Mandelbrot setAt the heart of our program to generate the set is an implementation of the iterationz z2 + k. Trading
exibility for e�ciency, we shall make the type of complexnumbers a linear onelinear type Complex = C Float Floatallowing a true assignment to be used in the iterative loop, just as it would be in animperative programming language. We can now de�ne the central function insetwhich returns true if the point k is still with in the set after a certain prede�nednumber of iterations, and false otherwise.signature inset: Complex->Bool;inset k = inset1 0 (C 0.0 0.0) kThe inset function uses an auxiliary inset1 to compute its result. The threearguments that it gives to this function are an initial value for the iteration counter,an initial value for z and the point k. The iterations stop when either the iterationcount reaches the prede�ned maximum, NITER, or jzj exceeds 2. The �rst clause ofthe inset1 function tests the iteration counter:inset1 NITER z k = yes z kIf the number of iterations has reached NITER, then the point k is assumed to bewithin the set and the result is true. Unfortunately, it would not be type-correctsimply to return true immediately | that would involve discarding two linearvalues, z and k. Instead, an intermediate function yes is required:signature yes: Complex->Complex-oBool;yes (C r1 i1) (C r2 i2) = trueThis function returns true only after using up both of its arguments during de-structive case-analysis; the function no is similar. The second clause of the inset1function tests for jzj > 2 and it is rather more complicated:

inset1 n z k =let (Lpr z1 z2) = copy_complex z inif squared_size z1 >= 4.0 thenno z2 kelselet (Lpr k1 k2) = copy_complex k ininset1 (n+1) (add_complex (sqr_complex z2) k1) k2The size of a complex number is found by squaring each of its parts, adding themtogether and taking the square root of the sum. However, since we only want thesize of z in order to compare it with 2, we avoid the square root operation bycomparing with 4 instead. The function squared size returns the square of thesize of a complex number:signature squared_size: Complex->Float;squared_size (C r i) = (r .* r) .+ (i .* i)Complex numbers are represented by a linear type and so every operation on acomplex number, including squared size, consumes it by destructive case-analysis.Thus, we must take a copy of z before testing it so that we can use it again after-wards. Assuming that z fails the test, we can carry out another iteration, whichinvolves computing the value of z*z + k. To do this we must explicitly copy k inorder to satisfy the type-checker which insists that all linear values must be usedexactly once. We can avoid copying z by specialising the function mul complex oftwo arguments to a function sqr complex of one:signature sqr_complex: Complex->Complex;sqr_complex (C r i) =C ((r .* r) .- (i .* i)) ((r .* i) .+ (r .* i))The Mandelbrot set itself may now be obtained by mapping the inset function overa grid of complex numbers represented by a list.This program illustrates many of the problems that we have encountered whilewriting programs in NLML. The loss of
exibility that results from using linear typesis dramatic. Extra functions must often be written to copy or throw away linearvalues, and in order to avoid writing these arti�cial functions, one often resorts toprogramming in unnatural and devious ways.Having to supply type signatures can be irksome, especially for quite simple func-tions. More seriously, type signatures can lead to a creeping loss of polymorphism.A signature which is appropriate for a function in the context of the program be-ing developed can mask its true polymorphic nature, something which a systemperforming pure type inference would reveal.Our implementation has no built-in linear types or library functions to process them.In this particular example, the programmer has to de�ne linear pairs explicitly.

In time, of course, it is likely that some linear types would become built-in tothe implementation, and some functions for processing them would �nd their wayinto libraries. But many of these new library functions would just be imitationsof existing ones which process conventional types. This need to provide \two ofeverything" complicates life for both the programmer and the implementor.Overall, programming in NLML is quite laborious. The programs are more cumber-some and there is a signi�cant loss of
exibility when compared with a conventionallanguage like LML. The restrictive nature of the type-system means that the prodsthat one receives from the type-checker during program development are both fre-quent and sharp, and many of the problems that it �nds can be hard to correct.5 ImplementationThis section describes the implementation of NLML using an abstract machine calledthe nonlinear G-machine. The nonlinear G-machine is closely related to Johnssonand Augustsson's G-machine [15, 1], and in what follows we shall refer to their ma-chine as the conventional G-machine. Some familiarity with the idea of programmedgraph reduction and the conventional G-machine is assumed in this section; for thosewithout such familiarity an excellent tutorial description can be found Peyton Jones'book [21].5.1 The Nonlinear G-machineAfter type-checking and lambda-lifting [15], the NLML compiler compiles every func-tion into code for the nonlinear G-machine. This abstract machine has instructionsto construct and manipulate graphs representing expressions. It can be thought ofas a �nite-state machine with the following components:I, the instructions remaining to be executed;S, a stack of pointers;V, a stack of basic values;C, the conventional partition of the graph;L, the linear partition of the graph;E, a global environment;D, a dump stack.Together, these seven components specify the entire state of the abstract machine,written as

hI, S, V, C, L, E, DiThe e�ect of each abstract machine instruction is described by a state transitionrule. So, for example, the e�ect of the PUSH instruction is described by the rule:hPUSH m.I, n0 � � � nm:S, V, C, L, E, Di) hI, nm:n0 � � � nm.S, V, C, L, E, DiAn important di�erence between the nonlinear G-machine and the conventional oneis that the nonlinear G-machine partitions the graph with respect to the type ofthe vertices. The single graph, G, that appears in the state of the conventional G-machine is replaced by two graphs, C and L, in the state of the nonlinear G-machine.This partition is essential to support linear data structures. However, it is not theonly di�erence between the two machines.5.2 Destructive Case AnalysisCase analysis of both conventional and linear data structures is performed using asingle CASE instruction. Two further instructions are used for accessing the compo-nents of a data structure: LSPLIT pushes the components of a linear data structureonto the stack, and CSPLIT does the same for a conventional one. The only dif-ference between these two instructions is the e�ect that they have on the datastructure node. The LSPLIT instruction destroys it | although the components cansubsequently be accessed on the stack, the node itself has vanished from the graph.The understanding here is that its storage has also been recovered for re-use. TheCSPLIT instruction behaves in a similar manner, but the node that it operates onremains in the graph. A small example serves to illustrate the use of the CASE andLSPLIT instructions to implement destructive case analysis. We can de�ne the tailfunction on linear lists assignature tail: (Llist !*a)->(Llist !*a);tail (Lcons x xs) = xsThis function compiles into the following instructions:tail: PUSH 0EVALCASE (Lnil,L1) (Lcons,L2)L1: STOPL2: LSPLIT 2PUSH 1UPDATE 3POP 2UNWIND

The CASE instruction examines the value at the top of the stack and selects theappropriate label. If control reaches L2 then the LSPLIT instruction destroys theLcons node and pushes its components onto the stack.5.3 The Protection MechanismIn Section 3 we showed that the function divide is translated into a type-incorrectform in the nonlinear �-calculus, and we also noted that it is impossible to translatethis function into a form that exhibits both the linearity and the laziness suggestedby the original de�nition. Our solution to this problem allows the transformation oflazy pattern-matching to take place unhindered. A run-time protection mechanismis then used to delay the destruction of linear nodes until they are no longer shared.This works as follows:� when the linear node becomes shared, a protection count is attached to it. Thisprotection count is set to the number of pointers sharing the node;� every time the node is accessed by one of the selectors the protection count isdecremented;� when the node is accessed by one of the selectors and the protection count isone, it is destroyed.The compiler determines the protection count by examining the lazily matchedpattern. In the case of divide, for example, the protection count is two. Thissolution can easily be generalised to more complicated patterns than pairs. However,it only works properly when all of the variables in the pattern are used at least once.Otherwise it leads to a space leak because the protection count attached to the sharedlinear node is never reduced to one. This weakness means that lazy pattern-matchingmust be used with care. Nevertheless, we have found the protection mechanism tobe a workable solution to an extremely di�cult problem.To implement the protection mechanism another variant of the SPLIT instructionmust be added to the nonlinear G-machine. The PSPLIT instruction is like LSPLITexcept that it respects the protection count of the linear graph node that it operateson. If the protection count is greater than one the PSPLIT instruction causes it tobe decremented, but the node itself is still protected and so it remains in the graph.Otherwise, the node is destroyed. The compiler detects case-expressions that arebeing used to select components of shared linear values and it uses PSPLIT insteadof LSPLIT for them.Other run-time solutions to the problem of lazy pattern-matching are also possible.For example, the LSPLIT instruction could be modi�ed to update all references to thecomponents of the node that it destroys. There would then be no need for PSPLIT.Unfortunately, it is hard to implement such schemes using only the source-to-sourcetransformations employed by the NLML compiler.

5.4 Heap Organisation and Garbage CollectionThe nonlinear G-machine has two heaps: a conventional heap managed using theclassic scheme suggested by Fenichel and Yochelson [6], and a linear heap which isis divided into a number of free-lists, one for each possible linear graph node size.There is also a non-volatile storage area for graph nodes representing compile-timeconstants such as integers and strings. This avoids having to allocate space forthem on the heap whenever they are needed (see Figure 3). The conventional heap

non-volatile area used freefrom-space to-spaceconventional heap?Hp?� �?�
6 ?? ?Fp1 Fpn. . .linear heap

Figure 3: The conventional and linear heapssupports the implicit destruction of disused nodes by garbage collection, while thefree-list organisation of the linear heap supports the explicit destruction of disusednodes by destructive case-analysis.5.5 The Simulated Stack and Free-listOne of the most important optimisations performed by Augustsson and Johnsson'sLML compiler involves the use of a simulated stack. When an abstract machineinstruction such as PUSHINT 3 is encountered, no machine code is emitted; insteadthe value 3 is pushed onto a simulated stack maintained by the code generator. Dur-ing code generation, operands are taken from simulated stack if possible; otherwisesome machine code is emitted to take them from the real stack at run-time.The NLML compiler retains this optimisation and adds a simulated free-list. Whena node is destroyed by destructive case analysis, no machine code is emitted to linkit back onto the appropriate free-list; instead it is stored on a simulated free-listmaintained by the code generator. During code generation, space for new linearnodes is allocated by re-using nodes on the simulated free-list if possible; otherwisecode to acquire a new cell from the appropriate free-list must be emitted.Some care is required in managing the simulated stack and the simulated free-listin the presence of destructive operations. For example, the components of a linear

node that has been the subject of destructive case analysis must be saved in registersor on the real stack, bypassing the simulated stack. Disaster ensues if references tothem via the destroyed node appear on the simulated stack because this node mayhave been reallocated in the meantime. It is equally important to ensure that thesimulated free-list is \
ushed" to the real one to avoid space leaks.5.6 Updating and SharingApart from during type-checking, the nonlinear G-machine treats linear functionsand their applications in exactly the same way as conventional ones. This meansthat the graph nodes representing all functions and their applications are stored inthe C partition of the graph. But a problem arises when the result of a functionapplication is a linear value. The node representing the application must be updatedwith the node representing the value in order to ensure lazy evaluation. The con-ventional G-machine updates by copying the root node of the result over applicationnode. However, the nonlinear G-machine clearly cannot do this: that would makea nonsense of its attempts to keep graph nodes partitioned by type. Instead thecompiler must arrange to update using an indirection node.The instruction set of the nonlinear G-machine is largely borrowed from that ofthe conventional G-machine. This gives rise to an unexpected, but benign, form ofsharing of linear values. As we have seen, the PUSH instruction works by copyinga pointer to the top of the stack. If that pointer is to a linear value, then thelinear value becomes shared. Fortunately, the linear value will only ever be accessedvia this new pointer during execution. In fact, such sharing causes a problem onlyduring garbage collection, where the garbage collector must be prepared to encounterpointers to linear nodes that have already been destroyed.5.7 Benchmarks for List StructuresFour benchmark programs were written in NLML and compiled with our prototypecompiler. With minor alterations (omitting the extra functions required to main-tain linearity), the same four programs were written in LML and compiled withthe Chalmers LML compiler, version 0.95. The four benchmark programs were asfollows.� adder : a gate-level simulation of a four-bit ripple-carry performing 20,000additions.� mandelbrot : generates a crude view of the Mandelbrot set on an ordinaryterminal.� turtle: draws 20 Hilbert curves using simple turtle graphics.� qsort : a quicksort of a list of 4,000 random numbers.

The benchmark �gures given below were recorded on a lightly loaded SUN 3/280 �le-server with 16M bytes of memory running version 3.5 of the SUN UNIX operatingsystem. For both implementations the total heap space was limited to 1Mbyte inorder to force a signi�cant number of garbage collections. The NLML compiler wasinstructed to generate code for a version of the nonlinear G-machine in which 20% ofthe total heap space was reserved for the linear heap, and the remainder was dividedinto two semispaces for the conventional heap. The LML compiler was similarlyinstructed to generate code for a version of the conventional G-machine in whichthe total heap space was divided into two semispaces for the single conventional heap.For each of the benchmarks we measured the total execution time, the amount oftime spent garbage collecting, the number of garbage collections, and the amountof storage allocated from the heap(s). Execution time was measured in seconds,and the storage allocated was measured in bytes. Table 1 gives the results for theprograms produced by the NLML compiler, and Table 2 gives the results for theprograms produced by the LML compiler.execution time GCs heap storage allocatedtotal GC conventional linearadder 44.34 0.27 89 34,003,380 13,120,876mandelbrot 29.73 0.08 36 14,553,948 3,098,952turtle 44.32 0.70 68 10,806,240 1,931,280qsort 17.98 3.17 23 7,026,112 5,037,568Table 1: Results for NLML programs using linear listsexecution time GCs heap storage allocatedtotal GC conventionaladder 21.16 0.08 48 22,482,252mandelbrot 20.18 0.03 22 11,116,536turtle 40.24 0.59 54 10,754,160qsort 15.30 5.19 34 8,915,200Table 2: Results for LML programs using conventional listsThese benchmark �gures are very disappointing. The performance of the NLMLprograms is generally much worse than that of the LML ones. There are severalreasons for this.The �rst is the need to apply extra functions to share linear values (by explicitcopying) and to throw them away (by explicit case analysis). These functions arecostly in terms of both space and time. The graphs representing their applicationsmust be built in the heap and later garbage collected. This is a particular problemin both the adder and mandelbrot programs, and in both cases it is exacerbatedby the fact that the extra functions are in the \inner loop" of the entire program.Notice the increase in the number of garbage collections in both cases.

One of the advantages of the conventional G-machine's semispace heap organisationis that only a single test for heap exhaustion has to be made before a sequenceof allocations. The free-list organisation of the linear heap means that a test forfree-list exhaustion must be made before every allocation. However, the cost of thistest is actually quite low: omitting it produces only a 4% speed up at most. Thereason is that the simulated free-list optimisation is quite e�ective: the speed upfrom using it can be as much as 11%.Programming in NLML often involves passing around tuples instead of single valuesin order to maintain linearity. These tuples are expensive for two reasons. Firstly,there is the obvious cost of creating and destroying them. This cost should notbe underestimated: in the mandelbrot program 12% of the storage allocated in thelinear heap is for tuples whose sole purpose is to maintain linearity; in the adderprogram, the �gure rises to 39%. Secondly, and more insidiously, these tuples exacta signi�cant cost in terms of lost opportunities for compile-time optimisation. Theupshot of this is that the nonlinear G-machine builds many graphs at run-time thatwere optimised away for the conventional G-machine at compile-time.6 Aggregate StructuresProblems involving large aggregates, such as arrays and �le systems, have alwaysbeen something of a bête noir for function languages. It is di�cult for the imple-mentation to allow the aggregate to be updated while maintaining both referentialtransparency and acceptable e�ciency. In the past, a number of solutions to thisaggregate update problem have been proposed including run-time checks [10], syn-tactic restrictions [23], and abstract interpretation [13, 3]. In this section we shallgive yet another solution by showing how the nonlinear type system can be used inthe implementation of arrays.6.1 ImplementationThe literature describes two implementation techniques for conventional arrays,trailered arrays and destructively-updated arrays. Trailered arrays require run-timechecks to maintain referential transparency when they are updated; destructively-updated arrays require compile-time checks. Bloss describes both techniques in [3].She shows that trailered arrays are very expensive at run-time and that destructively-updated arrays are very expensive at compile-time.Linear arrays o�er a solution to this dilemma. If an array is declared to have a lineartype then the single-threaded use of that array will be veri�ed at compile-time by thetype-checker; at run-time all updates to the array can then be done destructively.A linear array is created in much the same way as conventional one. In NLML theoperation

array: (List !*a)->(Array !*a)allocates space for a linear array whose elements are drawn from a list. The updateoperation update: (Array !*a)->Int-o!*a-o(Array !*a)is similar to that for conventional arrays, but the index operationindex: (Array !*a)->Int-o(Xpair !*a (Array !*a))is rather di�erent. The nonlinear type system prevents a linear array from beingthrown away, and so the index operation must return the array as part of its result.The type Xpair simply pairs a conventional value with a linear one.linear type Xpair !*a *b = Xpr !*a *bIf an array really is to be disposed of, then this must be done explicitly. Theoperation yarra: (Array !*a)->(List !*a)destroys an array and returns a list of its elements.From this brief description of the linear array primitives it is not obvious how thedestructive update operations are sequenced so that the program remains \safe".Consider the function swap which swaps two elements in a linear array.swap: (Array !*a)->Int-oInt-o(Array !*a);swap a i j =let (Xpr x a) = index a i inlet (Xpr y a) = index a j inupdate (update a i y) j xHere, the data dependencies are all that is required to ensure that the indexingoperations are performed prior to the updates. No extra machinery, such as thesequential let! of [26] or the sequential let* of [9] is necessary.Although the most obvious place to store linear arrays would be in the linear heap,our implementation actually stores them in the conventional heap and garbage col-lects them because of the complexities of managing a free-list for objects whose sizecannot be determined at compile-time.

6.2 Benchmarks for ArraysFour benchmark programs were written in NLML and compiled with our prototypecompiler. With minor alterations (no result tuples were used to maintain linearity),the same four programs were written in LML and compiled with two modi�ed ver-sions of the Chalmers LML compiler, the �rst with trailered arrays and the secondwith destructively-updated arrays. In all cases, a strict let was used to sequencethe update operations correctly.The four benchmark programs were as follows.� histogram: counts occurrences in a list of 40,000 random decimal digits.� warshall: �nds the transitive closure of 18 identical 26-node graphs.� life: charts the evolution of 20 generations of a small colony of cells on a 32�32board.� qsort: an in-place quicksort of an array of 4,000 random numbers.The benchmarks were recorded in the same conditions as those described in Sec-tion 4, except that the total heap size was raised to 2M bytes. Table 3 gives theresults for the programs produced by the NLML compiler using linear arrays, Table 4gives the results for the programs produced by the LML compiler using trailered ar-rays and Table 5 gives the results for the programs produced by the LML compilerusing destructively-updated arrays.execution time GCs heap storage allocatedtotal GC conventional linearhistogram 11.43 6.39 17 4,960,544 640,000life 44.23 18.13 29 18,937,568 3,605,440warshall 14.94 0.24 13 10,421,928 2,905,344qsort 9.40 0.48 7 4,303,620 2,280,928Table 3: Results for NLML programs using linear arraysexecution time GCs heap storage allocatedtotal GC conventionalhistogram 13.35 7.93 21 5,920,544life 24.83 1.11 24 17,895,280warshall 15.23 0.26 15 11,816,424qsort 9.27 0.61 8 4,632,828Table 4: Results for LML programs using trailered arrays

execution time GCs heap storage allocatedtotal GC conventionalhistogram 11.01 6.34 17 4,960,544life 23.81 0.98 23 17,428,336warshall 13.52 0.20 13 10,421,928qsort 8.22 0.52 7 4,303,620Table 5: Results for LML programs using destructively-updated arraysWe found that linear arrays are usually faster than trailered arrays, but slower thandestructively-updated ones. They fare particularly badly in programs like qsort andlife | both of these programs perform an order of magnitude more indexing thanupdating operations. The reason for this, of course, is the need to pass tuples aroundin order to maintain linearity. As was the case with �ne-grained data structures,these tuples exact a high cost in terms of lost optimisations at compile-time andextra work that must be performed at run-time.7 Related WorkOne of the things that prompted Wadler to develop the nonlinear �-calculus andthe nonlinear type system was the observation that languages based on the linear �-calculus have several shortcomings. We know of two such languages, one developedby Lafont and the other by Holmstr�om.In his thesis [17], Lafont describes the implementation of a small functional program-ming language based on the linear �-calculus. However, instead of attempting toapply what he calls the \brutish" compilation scheme of his published papers [8, 16]to an ordinary functional language, he designs his own linear functional language,called LIVE. This language exposes the programmer to the full rigours of the linear�-calculus, and only a few \small" types (such as integers) are permitted to escapethe linearity constraint. LIVE is implemented using a linear variant of the Categori-cal Abstract Machine [4] called the Linear Abstract Machine. The advantage of thismachine is that it does not require garbage collection. However, there are also twoobvious disadvantages: the grain of reduction is very small (similar to that of the SKreduction machine [24]), and the results of computations are never shared becausethe machine was designed to implement a linear language without any sharing atall. This can be very ine�cient.Holmstr�om [11] has described another functional programming language based onthe linear �-calculus. In his language all functions and data types inherit the linearityconstraint from the linear �-calculus. However, Holmstr�om considers this constraintto be unacceptable in general, and so he provides a way to lift it which works forall types, not just those with a propitious machine representation. Unfortunately,

Holmstr�om has found that his language still exhibits the same fundamental lackof
exibility that Lafont's does [12]. Holmstr�om sketched an implementation ofhis language using a linear variant of Landin's SECD machine [18]. This machineperforms direct interpretation of the program source code. It is of interest because itallows a restricted form of sharing, and thus requires garbage collection. However,there is still no mechanism for sharing the result of a computation and, as weremarked before, this can be very ine�cient.Guzm�an and Hudak [9] have developed a variant of the �-calculus capable of ex-pressing destructive operations, together with a type system which ensures thatthese operations do not compromise referential transparency. In their paper, theyreject an approach based purely on linear logic, such as the one described here, asbeing too constraining. Instead, their type system captures the notion of state byannotating the type of each function in one of seven possible ways to indicate howit uses its argument. The resulting type system is more complex than the non-linear one, but it controls destructive operations with considerably more precision,allowing non-destructive operations in contexts where destructive ones are permit-ted (but not vice versa). Guzm�an and Hudak [9] plan to implement an extension ofHaskell [14] based on their ideas.Wadler has proposed a let!-expression based on the observation that it is perfectlysafe to have more than one reference to a linear value temporarily, so long as onlyone reference exists when it is updated. The expressionlet! (x) y = u in vis used to grant \read-only" access to a linear value x within u. Unfortunately, thisconstruction comes with a number of extremely ad-hoc restrictions: for example,the evaluation of u should be hyperstrict, and it must not be possible for u (orany component of u) to evaluate to x (or any component of x). Wadler formalisesthese requirements [26], but he is still unsure of how they relate to any existingtheory [27]. We have avoided this construction on the grounds of its complexity,its poor interaction with lazy evaluation, and its dubious theoretical foundation.Wadler is currently trying to bridge the gap between theory and practice; his latestpaper [25] attempts to establish the connection between the theoretically-based workof Lafont and Holmstr�om and the more practically-based work of Guzm�an andHudak.A more detailed account of our own work can be found in the �rst author's DPhilthesis [28].8 Conclusions and Future WorkIn this paper we have described the design and implementation of a functionallanguage based on Wadler's approach to problems involving changes of state. Our

work has revealed a number of drawbacks of the approach. Broadly, these are asfollows.The right to use destructive operations is accompanied by the onerous responsibilityto maintain linearity. This leads to a signi�cant loss of
exibility, and programmingin NLML is rather di�cult. What is needed is some extension of the underlying non-linear �-calculus such as the read-only access granted by Wadler's let!-expression.Unfortunately, the logical foundation of this expression is unclear and so there is aneed for further research to �nd either a logical justi�cation of the let!-expression,or some similar construction with such a justi�cation. Another possible approachwould be to follow Guzm�an and Hudak [9] by adopting a more sophisticated typesystem whose connection with linear logic is of a looser kind.The nonlinear G-machine is an attempt to implement NLML using the graph re-duction technique that is used so successfully in the implementation of LML. Itsperformance is disappointing. More research is needed into abstract machine archi-tectures suitable for implementing languages like NLML. We particularly favour anapproach based on a machine that can make better use of sharing information, suchas the TIM [5] or the Spineless Tagless G-machine [22].It has been suggested to us that it might be better to dispense with the run-timemachinery for dealing with linear values. Instead, all values would be stored in asingle garbage-collected heap. Destructive operations on linear values would then berestricted to those which could be detected at compile-time using the simulated free-list. With this restriction, it would be pointless to pass tuples around to maintainlinearity, and so there would be no lost optimisations at compile-time or extra datastructures created at run-time. This suggestion amounts to a weakening of thelinearity constraint: linear values still cannot be shared, but they can now be thrownaway. In other words, they are single-threaded [23]. Single-threaded type systems area promising area for future research, but they represent a departure from Wadler'soriginal proposal which we have not investigated yet.Our linear array implementation shows some promise. Linear arrays are usually moree�cient than trailered ones, but they are less e�cient than destructively-updatedones. We are �rmly convinced that larger aggregates are the most promising areaof application for the nonlinear type system, and we intend to continue our work onarrays and �le systems.AcknowledgementsWe have bene�tted greatly from correspondence with Lennart Augustsson and ThomasJohnsson, whose work on the LML compiler and the G-machine served as the basisfor much of our own, and from correspondence with Yves Lafont, S�oren Holmstr�omand Phil Wadler, whose papers �rst introduced us to linear logic. We are alsograteful for the comments of Neil Jones, Paul Hudak and Simon Peyton Jones.

Wakeling was funded by a research studentship from the Science and EngineeringResearch Council of Great Britain.References[1] L. Augustsson. Compiling Lazy Functional Languages, Part II. PhD thesis,Chalmers University of Technology, S-412 96 G�oteborg, November 1987.[2] L. Augustsson and T. Johnsson. Lazy ML Users Manual, July 1989. (Dis-tributed with the LML compiler, version 0.95).[3] A. Bloss. Update analysis and the e�cient implementation of functional ag-gregates. In Proceedings of the 1989 Conference on Functional ProgrammingLanguages and Computer Architecture, pages 26{38. ACM Press, September1989.[4] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine.Science of Computer Programming, 8:173{202, 1987.[5] J. Fairbairn and S. Wray. TIM: A simple, lazy abstract machine to executesupercombinators. In Proceedings of the 1987 Conference on Functional Pro-gramming Languages and Computer Architecture, pages 34{45. Springer-Verlag,September 1987. LNCS 274.[6] R. R. Fenichel and J. C. Yochelson. A LISP garbage-collector for virtual-memory computer systems. CACM, 12(11):611{612, November 1969.[7] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1{101, 1987.[8] J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In Proceedingsof the International Joint Conference on Theory and Practice of Software De-velopment (TAPSOFT'87), pages 52{66. Springer-Verlag, March 1987. LNCS250.[9] J. C. Guzm�an and P. Hudak. Single-threaded polymorphic lambda calculus.In Proceedings of the Fifth Annual IEEE Symposium on Logic In ComputerScience, pages 333{343, June 1990.[10] S. Holmstr�om. A simple and e�cient way to handle large data structures in ap-plicative languages. In Proceedings of the SERC/Chalmers Workshop on Declar-ative Programming, pages 185{187. University College London, April 1983.[11] S. Holmstr�om. A linear functional language. In Proceedings of the Workshopon the Implementation of Lazy Functional Languages, Aspen�aes, pages 13{32,September 1988. Report 53, Programming Methodology Group, Chalmers Uni-versity of Technology, S-412 96 G�oteborg.[12] S. Holmstr�om. Quicksort in a linear functional language. PMG Memo. 65,Chalmers University of Technology, S-412 96 G�oteborg, January 1989.

[13] P. Hudak. A semantic model of reference counting and its abstraction. InS. Abramsky and C. Hankin, editors, Abstract Interpretation of DeclarativeLanguages, pages 45{62. Ellis Horwood, 1987.[14] P. Hudak and P. Wadler (editors). Report on the programming languageHaskell, a non-strict purely functional language (Version 1.0). Technical re-port, University of Glasgow, Department of Computer Science, April 1990.[15] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis, ChalmersUniversity of Technology, S-412 96 G�oteborg, February 1987.[16] Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157{180, 1988.[17] Y. Lafont. Logiques, Cat�egories et machines. PhD thesis, Universit�e de Paris7, 1988.[18] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,6(4):308{320, 1964.[19] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1983.[20] R. Milner. A theory of type polymorphism in programming. Journal of Com-puter and System Sciences, 17(3):348{375, 1978.[21] S. L. Peyton Jones. The Implementation of Functional Programming Languages.Prentice-Hall, 1987.[22] S. L. Peyton Jones and J. Salkild. The Spineless Tagless G-machine. In Pro-ceedings of the 1989 Conference on Functional Programming Languages andComputer Architecture, pages 184{201. ACM Press, September 1989.[23] D. A. Schmidt. Detecting global variables in denotational speci�cations. ACMTransactions on Programming Languages and Systems, 7(2):299{310, April1985.[24] D. A. Turner. A new implementation technique for applicative languages.SOFTWARE | Practice and Experience, 9(1):31{50, January 1979.[25] P. Wadler. Is there a use for linear logic? Technical report, Department ofComputing Science, University of Glasgow, December 1990.[26] P. Wadler. Linear types can change the world! In IFIP Working Conferenceon Programming Concepts and Methods, Sea of Gallilee, Israel, April 1990.[27] P. Wadler. Private communication, February 1990.[28] D. Wakeling. Linearity and laziness. DPhil thesis, Department of ComputerScience, University of York, November 1990. Technical Report YCST 90/07.

