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Abstract. GP (for Graph Programs) is a rule-based, nondeterminis-
tic programming language for solving graph problems at a high level
of abstraction, freeing programmers from handling low-level data struc-
tures. The core of GP consists of four constructs: single-step application
of a set of conditional graph-transformation rules, sequential composi-
tion, branching and iteration. This paper gives an overview on the GP
project. We introduce the language by discussing a sequence of small
programming case studies, formally explain conditional rule schemata
which are the building blocks of programs, and present a semantics for
GP in the style of structural operational semantics. A special feature of
the semantics is how it uses the notion of finitely failing programs to de-
fine powerful branching and iteration commands. We also describe GP’s
prototype implementation.

1 Introduction

This paper gives an overview on GP, an experimental nondeterministic pro-
gramming language for high-level problem solving in the domain of graphs. The
language is based on conditional rule schemata for graph transformation (in-
troduced in [19]) and thereby frees programmers from handling low-level data
structures for graphs. The prototype implementation of GP compiles graph pro-
grams into bytecode for an abstract machine, and comes with a graphical editor
for programs and graphs.

GP has a simple syntax as its core contains only four commands: single-step
application of a set of rule schemata, sequential composition, branching and as-
long-as-possible iteration. Despite its simplicity, GP is computationally complete
in that every computable function on graphs can be programmed [9]. A major
goal for the development of GP is to obtain a practical graph-transformation
language that comes with a concise formal semantics, to facilitate program ver-
ification and other formal reasoning on programs.

There exist a number of graph-transformation languages and tools, such as
PROGRES [24], AGG [6], Fujaba [15], GROOVE [21] and GrGen [8]. But to
the best of our knowledge, PROGRES has been the only graph-transformation
language with a complete formal semantics so far. The semantics given by Schürr
in his dissertation [23], however, reflects the complexity of PROGRES and is in
our opinion too complicated to be used for formal reasoning.

For GP, we adopt Plotkin’s method of structural operational semantics [18] to
define the meaning of programs. This approach is well established for imperative

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 99–122, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



100 D. Plump

programming languages [16] but is novel in the field of graph transformation.
In brief, the method consists in devising inference rules which inductively define
the effect of commands on program states. Whereas a classic state consists of
the values of all program variables at a certain point in time, the analogue for
graph transformation is the graph on which the rules of a program operate.

As GP is nondeterministic, our semantics assigns to a program P and an in-
put graph G all graphs that can result from executing P on G. A special feature
of the semantics is the use of failing computations to define powerful branching
and iteration constructs. (Failure occurs when a set of rule schemata to be exe-
cuted is not applicable to the current graph.) While the conditions of branching
commands in traditional programming languages are boolean expressions, GP
uses arbitrary programs as conditions. The evaluation of a condition C succeeds
if there exists an execution of C on the current graph that produces a graph. On
the other hand, the evaluation of C is unsuccessful if all executions of C on the
current graph result in failure. In this case C finitely fails on the current graph.

In logic programming, finite failure (of SLD resolution) is used to define nega-
tion [3]. In the case of GP, it allows to “hide” destructive executions of the
condition C of a statement if C then P else Q. This is because after evalu-
ating C, the resulting graph is discarded and either P or Q is executed on the
graph with which the branching statement was entered. Finite failure also allows
to elegantly lift the application of as-long-as-possible iteration from sets of rule
schemata (as in [19]) to arbitrary programs: the body of a loop can no longer be
applied if it finitely fails on the current graph.

The prototype implementation of GP is faithful to the semantics in that it
uses backtracking to compute results for input graphs. Hence, for terminating
programs a result will be found whenever one exists. In contrast, most other
graph-transformation languages (except PROGRES) lack this completeness be-
cause their implementations have no backtracking mechanism. The GP system
even provides users with the option to generate all possible results of a termi-
nating program.

The rest of this paper is structured as follows. The next section is a brief
summary of the graph-transformation formalism underlying GP, the so-called
double-pushout approach with relabelling. Section 3 introduces conditional rule
schemata and explains their use by interpreting them as sets of conditional rules.
In Section 4, graph programs are gently introduced by discussing seven small
case studies of problem solving with GP. The section also defines an abstract
syntax for graph programs. Section 5 presents a formal semantics for GP in the
style of structural operational semantics and discusses some consequences of the
semantics. A brief description of the current implementation of GP is given in
Section 6. In Section 7, we conclude and mention some topics for future work.
Finally, the Appendix defines the natural pushouts on which the double-pushout
approach with relabelling is based.

This overview paper is in parts based on the papers [19,20,13].
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2 Graph Transformation

We briefly review the model of graph transformation underlying GP, the double-
pushout approach with relabelling [10]. Our presentation is tailored to GP in
that we consider graphs over a fixed label alphabet and rules in which only the
interface graph may contain unlabelled nodes.

GP programs operate on graphs labelled with sequences of integers and strings
(the reason for using sequences will be explained in Section 4). Let Z be the set
of integers and Char be a finite set which represents the characters that can
be typed on a keyboard. We fix the label alphabet L = (Z ∪ Char∗)+ of all
nonempty sequences over integers and character strings.

A partially labelled graph (or graph for short) is a system G = (VG, EG, sG, tG,
lG, mG), where VG and EG are finite sets of nodes (or vertices) and edges,
sG, tG : EG → VG are the source and target functions for edges, lG : VG → L
is the partial node labelling function and mG : EG → L is the (total) edge la-
belling function. Given a node v, we write lG(v) =⊥ if lG(v) is undefined. Graph
G is totally labelled if lG is a total function. The set of all totally labelled graphs
is denoted by G.

A graph morphism g : G → H between graphs G and H consists of two
functions gV : VG → VH and gE : EG → EH that preserve sources, targets
and labels. More precisely, we have sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG,
mH ◦ gE = mG, and lH(g(v)) = lG(v) for all v such that lG(v) �=⊥. Mor-
phism g is an inclusion if g(x) = x for all nodes and edges x. It is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it is
injective, surjective and satisfies lH(gV (v)) = ⊥ for all nodes v with lV (v) = ⊥.
In this case G and H are isomorphic, denoted by G ∼= H . The composition
h ◦ g : G → M of two morphisms g : G → H and h : H → M is defined compo-
nentwise: h ◦ g = 〈hV ◦ gV , hE ◦ gE〉.

A rule r = (L ← K → R) consists of two inclusions K → L and K → R
where L and R are totally labelled graphs. We call L the left-hand side, R the
right-hand side and K the interface of r. Intuitively, an application of r to a
graph will remove the items in L−K, preserve K, add the items in R−K, and
relabel the nodes that are unlabelled in K.

Given graphs G, H in G, a rule r = (L ← K → R), and an injective graph
morphism g : L→ G, a direct derivation from G to H by r and g consists of two
natural pushouts as in Figure 1. (See the appendix for the definition of natural
pushouts.) We write G ⇒r,g H or just G ⇒r H if there exists such a direct
derivation, and G⇒R H , where R is a set of rules, if there is some r ∈ R such
that G⇒r H .

L K R

G D H

g

Fig. 1. A double-pushout
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In [10] it is shown that, given r, G and g as above, there exists a direct
derivation as in Figure 1 if and only if g satisfies the dangling condition: no
node in g(L) − g(K) is incident to an edge in G − g(L). In this case D and H
are determined uniquely up to isomorphism and can be constructed from G as
follows:

1. Remove all nodes and edges in g(L)−g(K). For each v ∈ VK with lK(v) = ⊥,
define lD(gV (v)) = ⊥. The resulting graph is D.

2. Add disjointly to D all nodes and edges from R − K, while keeping their
labels. For e ∈ ER − EK , sH(e) is sR(e) if sR(e) ∈ VR − VK , otherwise
gV (sR(e)). Targets are defined analogously.

3. For each v ∈ VK with lK(v) = ⊥, define lH(gV (v)) = lR(v). The resulting
graph is H .

To define conditional rules, we follow [5] and equip rules with predicates that
constrain the morphisms by which rules can be applied. A conditional rule q =
(r, P ) consists of a rule r and a predicate P on graph morphisms. We require
that P is invariant under isomorphic codomains: for a morphism g : L→ G and
an isomorphism i : G→ G′, we have P (g) if and only if P (i ◦ g). Given a direct
derivation G ⇒r,g H such that P (g), we write G ⇒q,g H or just G ⇒q H . For
a set of conditional rules R, we write G⇒R H if there is some q ∈ R such that
G⇒q H .

3 Conditional Rule Schemata

Conditional rule schemata are the “building blocks” of GP, as programs are
essentially declarations of such schemata together with a command sequence for
controlling their application. Rule schemata generalise rules in that labels may
be expressions with parameters of type integer or string. In this section, we give
an abstract syntax for the textual components of conditional rule schemata and
interpret them as sets of conditional rules.

Figure 2 shows an example for the declaration of a conditional rule schema. It
consists of the identifier bridge followed by the declaration of formal parameters,
the left and right graphs of the schema which are labelled with expressions over
the parameters, the node identifiers 1, 2, 3 determining the interface of the
schema, and the keyword where followed by the condition.

In the GP programming system [13], conditional rule schemata are constructed
with a graphical editor. We give grammars in Extended Backus-Naur Form for the
textual components of such schemata. Figure 3 shows the grammar for node and
edge labels in the left and right graph of a rule schema (categories LeftLabel and
RightLabel), Figure 4 shows the grammar for conditions (category BoolExp).1

Labels can be sequences of expressions separated by underscores, as is demon-
strated by examples in Section 4. We require that labels in the left graph must

1 The grammars are ambiguous, we use parentheses to disambiguate expressions where
necessary.
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bridge(a, b, x, y, z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a + b

a b

where a >= 0 and b >= 0 and not edge(1, 3)

Fig. 2. A conditional rule schema

be simple expressions because their values at execution time are determined by
graph matching. All variable identifiers in the right graph must also occur in
the left graph. Every expression in category Exp has type int or string, where
the type of a variable identifier is determined by its declaration and arithmetical
operators expect arguments of type int.

LeftLabel ::= SimpleExp [’ ’ LeftLabel]

RightLabel ::= Exp [’ ’ RightLabel]

SimpleExp ::= [’-’] Num | String | VarId

Exp ::= SimpleExp | Exp ArithOp Exp

ArithOp ::= ’+’ | ’-’ | ’∗’ | ’/’

Num ::= Digit {Digit}
String ::= ’ ” ’ {Char} ’ ” ’

Fig. 3. Syntax of node and edge labels

BoolExp ::= edge ’(’ Node ’,’ Node ’)’ | Exp RelOp Exp

| not BoolExp | BoolExp BoolOp BoolExp

Node ::= Digit {Digit}
RelOp ::= ’=’ | ’\=’ | ’>’ | ’<’ | ’>=’ | ’<=’

BoolOp ::= and | or

Fig. 4. Syntax of conditions

The condition of a rule schema is a Boolean expression built from expressions
of category Exp and the special predicate edge, where relational operators have
arguments of type int. Again, all variable identifiers occurring in the condition
must also occur in the left graph of the schema. The predicate edge demands
the (non-)existence of an edge between two nodes in the graph to which the rule
schema is applied. For example, the expression not edge(1, 3) in the condition of
Figure 2 forbids an edge from node 1 to node 3 when the left graph is matched.

We interpret a conditional rule schema as the (possibly infinite) set of con-
ditional rules that is obtained by instantiating variables with any values and
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evaluating expressions. To define this, consider a declaration D of a conditional
rule-schema. Let L and R be the left and right graphs of D, and c the condition.
We write Var(D) for the set of variable identifiers occurring in D. Given x in
Var(D), type(x) denotes the type associated with x. An assignment is a map-
ping α : Var(D) → (Z ∪ Char∗) such that for each x in Var(D), type(x) = int
implies α(x) ∈ Z, and type(x) = string implies α(x) ∈ Char∗.

Given a label l of category RightLabel occuring in D and an assignment α, the
value lα ∈ L is inductively defined. If l is a numeral or a sequence of characters,
then lα is the integer or character string represented by l (which is independent of
α). If l is a variable identifier, then lα = α(l). Otherwise, lα is obtained from the
values of l’s components. If l has the form e1 ⊕ e2 with ⊕ in ArithOp and e1, e2

in Exp, then lα = eα
1 ⊕Z eα

2 where ⊕Z is the integer operation represented by ⊕.2

If l has the form e m with e in Exp and m in RightLabel, then lα = eαmα. Note
that our definition of lα covers all labels in D since LeftLabel is a subcategory
of RightLabel.

The value of the condition c in D not only depends on an assignment but
also on a graph morphism. For, if c contains the predicate edge, then we need to
consider the structure of the graph to which we want to apply the rule schema.
Consider an assignment α and let Lα be obtained from L by replacing each label l
with lα. Let g : Lα → G be a graph morphism with G ∈ G. Then for each Boolean
subexpression b of c, the value bα,g in B = {tt, ff} is inductively defined. If b has
the form e1 �� e2 with �� in RelOp and e1, e2 in Exp, then bα,g = tt if and only
if eα

1 ��Z eα
2 where ��Z is the relation on integers represented by ��. If b has the

form not b1 with b1 in BoolExp, then bα,g = tt if and only if bα,g
1 = ff. If b has

the form b1⊕b2 with ⊕ in BoolOp and b1, b2 in BoolExp, then bα,g = bα,g
1 ⊕B bα,g

2

where ⊕B is the Boolean operation on B represented by ⊕. A special case is given
if b has the form edge(v, w) where v, w are identifiers of interface nodes in D.
We then have

bα,g =
{
tt if there is an edge from g(v) to g(w),
ff otherwise.

Let now r be the rule-schema identifier associated with declaration D. For
every assignment α, let rα = (Lα ← K → Rα, Pα) be the conditional rule given
as follows:

– Lα and Rα are obtained from L and R by replacing each label l with lα.
– K is the discrete subgraph of L and R determined by the node identifiers

for the interface, where all nodes are unlabelled.
– Pα is defined by: Pα(g) if and only if g is a graph morphism Lα → G such

that G ∈ G and cα,g = tt.

Now the interpretation of r is the rule set I(r) = {rα | α is an assignment}. For
notational convenience, we sometimes denote the relation ⇒I(r) by ⇒r.

2 For simplicity, we consider division by zero as an implementation-level issue.
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4 Graph Programs

We discuss a number of example programs to familiarize the reader with the
features of GP and their use in solving graph problems. At the end of the section,
we define the abstract syntax of GP programs.

Example 1 (Transitive closure)
A transitive closure of a graph is obtained by inserting an edge between all
distinct nodes v and w such that there is a directed path from v to w but no
edge. The program trans closure in Figure 5 generates a transitive closure of an
integer-labelled input graph by applying the rule schema link as long as possible,
using the iteration operator ’!’. In general, arbitrary command sequences can
be iterated.

main = link!

link(a, b, x, y, z : int)

x

1

y

2

z

3

a b ⇒ x

1

y

2 3

z

3

a + b

a b

where not edge(1, 3)

Fig. 5. The program trans closure

The keyword main starts the main command sequence of a program to dis-
tinguish it from macros (see Example 5). Note that the condition not edge(1, 3)
of link prevents the creation of edges between nodes that are already linked.
Without this condition, trans closure could generate parallel edges between
nodes 1 and 3 ad infinitum.

By our definition of transitive closure, we can choose any label for the edge
created by link. Using a + b implies that trans closure may produce different
results for a given input graph if there are different paths between two nodes.
If we want to generate a unique transitive closure, we can replace a + b with a
constant such as 0.

Example 2 (Inverse)
The inverse of a graph is obtained by reversing the directions of all edges. The
program inverse in Figure 6 computes the inverse of an integer-labelled input
graph in two stages, using the sequential composition of the loops reverse!
and unmark!. The first loop reverses each edge and replaces its label x with the
tagged label x 0, then the second loop removes all tags. In general, arbitrary
subprograms can be joined by the semicolon operator.

The underscore operator allows to add a tag to a label, used here to mark
an edge as having been reversed. In general, a tagged label is a sequence of
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main = reverse!; unmark!

reverse(a, x, y : int) unmark(a, x, y : int)

x

1

y

2

a ⇒ x

1

y

2

a 0
x

1

y

2

a 0 ⇒ x

1

y

2

a

Fig. 6. The program inverse

expressions joined by underscores. Here, we need to mark reversed edges as
otherwise the loop reverse! would not terminate. Note that the rule schema
reverse can only be applied to edges with untagged labels.

Example 3 (Shortest distances). Given a graph G whose edge labels are integers,
the distance of a directed path from a node v to a node w is the sum of the edge
labels on that path. If all edge labels in G are nonnegative, then the shortest
distance from v to w is the minimum of the distances of all paths from v to w.

The program distances in Figure 7 expects an integer-labelled input graph
where exactly one node v has a tagged label of the form x 0 and where all edge
labels are nonnegative. It adds to each node w that is distinct and reachable
from v a tag with the shortest distance from v to w.

main = {add, reduce}!

add(a, b, x, y : int)

x a y

1 2

b ⇒ x a y a+b

1
2

b

reduce(a, b, c, x, y : int)

x a y c

1 2

b ⇒ x a y a+b

1
2

b

where a + b < c

Fig. 7. The program distances

In each iteration of the program’s loop, one of the rule schemata add and reduce
is applied to the current graph. If both rule schemata are applicable, one of them
is chosen nondeterministically. An equivalent, slightly more deterministic solu-
tion is to separate the phases of addition and reduction: main = add!; reduce!. A
refined version of the program distances which implements Dijkstra’s shortest-
path algorithm can be found in [19].
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Example 4 (Colouring). A colouring for a graph is an assignment of colours
(integers) to nodes such that the source and target of each edge have different
colours. The program colouring in Figure 8 produces a colouring for every
integer-labelled input graph without loops, recording colours as tags. (Checking
for loops would be a straightforward extension which we omit for simplicity.)

main = init!; {inc1, inc2}!

init(x : int) inc1(a, i, x, y : int)

1

x ⇒
1

x 0 x i y i

1 2

a ⇒ x i y i+1

1
2

a

inc2(a, i, x, y : int)

x i y i

1 2

a ⇒ x i+1 y i

1
2

a

1

1

1

1

2 2

22

∗⇐=
∗=⇒

1 0

1 1

1 0

1 1

2 2

22

1 0

1 1

1 3

1 2

2 2

22

Fig. 8. The program colouring and two of its derivations

The program initially colours each node with zero and then repeatedly incre-
ments either the source or the target colour of an edge with the same colour at
both ends. Note that this process is highly nondeterministic: Figure 8 shows two
different colourings produced for the same input graph, where one is optimal in
that it uses only two colours while the other uses four colours. (The problem to
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generate a colouring with a minimal number of colours is NP-complete [7] and
requires a more involved program.)

It is easy to see that whenever colouring terminates, the resulting graph is
a correctly coloured version of the input graph. For, the output cannot contain
an edge with the same colour at both nodes as then inc1 or inc2 would have
been applied at least one more time. It is less obvious though that the program
does terminate for every input graph.

To see that colouring always terminates, consider graphs whose node labels
are of the form n i, with n, i ∈ Z. Given a node v, we denote the tag of its label
by tag(v). Now observe that if G is a graph with tag(v) = 0 for each node v,
then for every derivation G ⇒∗

{inc1,inc2} H there is some 0 ≤ k < VH such that
tag(VH) = {0, 1, . . . , k} (where some tags may occur repeatedly in H). Thus, by
assigning to every graph M the integer #M =

∑
v∈VM

tag(v), we obtain

#H < 1 + 2 + · · ·+ |VH | = 1 + 2 + · · ·+ |VG|.
Since #H equals the number of rule schema applications in G⇒∗ H , it follows
that every derivation with inc1 and inc2 starting from G must eventually ter-
minate. Moreover, as the upper bound for #H is quadratic in |VG|, colouring
always performs at most a quadratic number of rule schema applications.

Example 5 (2-Colouring). A graph is 2-colourable (or bipartite) if it possesses
a colouring with at most two colours. The program 2-colouring in Figure 9
generates a 2-colouring for a nonempty and connected input graph if such a
colouring exists—otherwise the input graph is returned. The program uses the
macro colour to represent the rule-schema set {colour1, colour2}.

Given an integer-labelled input graph, first the rule schema choose colours
an arbitrary node by replacing its label x with x 0. Then the loop colour!
applies the rule schemata colour1 and colour2 as long as possible to colour all
remaining nodes. In each iteration of the loop, an uncoloured node adjacent to
an already coloured node v gets the colour in {0, 1} that is complementary to
v’s colour. If the input graph is connected, the graph resulting from colour! is
correctly coloured if and only if the rule schema illegal is not applicable. The
latter is checked by the if-statement. If illegal is applicable, then the input
must contain an undirected cycle of odd length and hence is not 2-colourable
(see for example [12]). In this case the loop undo! removes all tags to return
the input graph unmodified. Note that the number of rule-schema applications
performed by 2-colouring is linear in the number of input nodes.

We can extend 2-colouring’s applicability to graphs that are possibly empty
or disconnected by inserting a nested loop:

main = (choose; colour!)!; if illegal then undo!.

Now if the input graph is empty, choose fails which causes the outer loop to
terminate and return the current (empty) graph. On the other hand, if the
input consists of several connected components, the body of the outer loop is
repeatedly called to colour each component.
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main = choose; colour!; if illegal then undo!

colour = {colour1, colour2}

choose(x : int) illegal(a, i, x, y : int)

1

x ⇒
1

x 0 x i y i

1 2

a ⇒ x i y i

1 2

a

colour1(a, i, x, y : int) undo(i, x : int)

x i y

1 2

a ⇒ x i y 1−i

1
2

a

1

x i ⇒
1

x

colour2(a, i, x, y : int)

x i y

1 2

a ⇒ x i y 1−i

1
2

a

Fig. 9. The program 2-colouring

Example 6 (Series-parallel graphs)
The class of series-parallel graphs is inductively defined as follows. Every graph
G consisting of two nodes connected by an edge is series-parallel, where the
edge’s source and target are called source and target of G. Given series-parallel
graphs G and H , the graphs obtained from the disjoint union G + H by the
following two operations are also series-parallel. Serial composition: merge the
target of G with the source of H ; the source of G becomes the new source and
the target of H becomes the new target. Parallel composition: merge the source
of G with the source of H , and the target of G with the target of H ; sources
and targets are preserved.

It is known [2,4] that a graph is series-parallel if and only if it reduces to a
graph consisting of two nodes connected by an edge by repeated application of
the following operations: (a) Given a node with one incoming edge i and one
outgoing edge o such that s(i) �= t(o), replace i, o and the node by an edge from
s(i) to t(o). (b) Replace a pair of parallel edges by an edge from their source to
their target.

Suppose that we want to check whether a connected, integer-labelled graph
G is series-parallel and, depending on the result, execute either a program P or
a program Q on G. We can do this with the program

main = if reduce!; base then P else Q
reduce = {serial, parallel}

whose rule schemata serial, parallel and base are shown in Figure 10.
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serial(a, b, x, y, z : int)

x y z

1 2

a b ⇒ x z

1 2

0

parallel(a, b, x, y : int)

x y

1 2

a

b

⇒ x y

1 2

0

base(a, x, y : int)

x y
a ⇒ ∅

Fig. 10. Rule schemata for recognizing series-parallel graphs

The subprogram reduce! applies as long as possible the operations (a) and (b)
to the input graph G, then the rule schema base checks if the resulting graph
consists of two nodes connected by an edge. Graph G is series-parallel if and
only if base is applicable to the reduced graph. (Note that reduce! preserves
connectedness and that, by the dangling condition, base is applicable only if
the images of its left-hand nodes have degree one.) If base is applicable, then
program P is executed, otherwise program Q. It is important to note that P or
Q is executed on the input graph G whereas the graph resulting from the test is
discarded. The precise semantics of the branching command is given in the next
section.

To make the above program usable for possibly disconnected graphs, we can
add an if-statement which checks whether the application of base has resulted
in a nonempty graph:

main = if (reduce!; base; if nonempty then fail) then P else Q.

Here nonempty is a rule schema whose left-hand side is a single interface node,
labelled with an integer variable. If nonempty is applicable, then the graph re-
sulting from reduce! is disconnected and hence the input graph is not series-
parallel. In this case fail causes the test of the outer if-statement to fail, with
the consequence that program Q is executed on the input graph.

Example 7 (Sierpinski triangles). A Sierpinski triangle is a self-similar geomet-
ric structure which can be recursively defined [17]. Figure 11 shows a Sierpinski
triangle of generation three, composed of three second-generation triangles, each
of which consists of three triangles of generation one. The triangle and its geo-
metric layout have been generated with the GP programming system [26,13].

The program in Figure 12 expects as input a graph consisting of a single node
labelled with the generation number of the Sierpinski triangle to be produced.
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Fig. 11. A Sierpinski triangle (third generation)

The rule schema init creates the Sierpinski triangle of generation 0 and turns
the input node into a unique “control node” with the tagged label x 0 in order
to hold the required generation number x together with the current generation
number.

After initialisation, the nested loop (inc; expand!)! is executed. In each it-
eration of the outer loop, inc increases the current generation number if it is
smaller than the required number. The latter is checked by the condition where
x > y. If the test is successful, the inner loop expand! performs a Sierpinski step
on each triangle whose top node is labelled with the current generation number:
the triangle is replaced by four triangles such that the top nodes of the three
outer triangles are labelled with the next higher generation number. The test
x > y fails when the required generation number has been reached. In this case
the application of inc fails, causing the outer loop to terminate and return the
current graph which is the Sierpinski triangle of the requested generation.

Figure 13 shows the abstract syntax of GP programs.3 A program consists of
a number of declarations of conditional rule schemata and macros, and exactly
one declaration of a main command sequence. The rule-schema identifiers (cat-
egory RuleId) occurring in a call of category RuleSetCall refer to declarations
of conditional rule schemata in category RuleDecl (see Section 3). Semantically,

3 Where necessary we use parentheses to disambiguate programs.
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main = init; (inc; expand!)!

init(x : int) inc(x, y : int)

x

1

⇒ 1

x 0 1

0 0

0 1

2

x y

1

⇒ x y+1

1

where x > y

expand(u, v, x, y : int)

1 2

3 4

x y y

u v

0 1

2

⇒

1 2

3 4

x y y+1

u v

y+1 y+1

0

0

0 0

1

1 1

2

2 2

Fig. 12. The program sierpinski

Prog ::= Decl {Decl}
Decl ::= RuleDecl | MacroDecl | MainDecl

MacroDecl ::= MacroId ’=’ ComSeq

MainDecl ::= main ’=’ ComSeq

ComSeq ::= Com {’;’ Com}
Com ::= RuleSetCall | MacroCall

| if ComSeq then ComSeq [else ComSeq]

| ComSeq ’ !’

| skip | fail
RuleSetCall ::= RuleId | ’{’ [RuleId {’,’ RuleId}] ’}’
MacroCall ::= MacroId

Fig. 13. Abstract syntax of GP

each rule-schema identifier r stands for the set I(r) of conditional rules induced
by that identifier. A call of the form {r1, . . . , rn} stands for the union

⋃n
i=1 I(ri).

Macros are a simple means to structure programs and thereby to make them
more readable. Every program can be transformed into an equivalent macro-free
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program by replacing macro calls with their associated command sequences (re-
cursive macros are not allowed). In the next section we use the terms “program”
and “command sequence” synonymously, assuming that all macro calls have been
replaced.

The commands skip and fail can be expressed through the other commands
(see next section), hence the core of GP includes only the call of a set of condi-
tional rule schemata (RuleSetCall), sequential composition (’;’), the if-then-else
statement and as-long-as-possible iteration (’ !’).

5 Semantics of Graph Programs

This section presents a formal semantics of GP in the style of Plotkin’s structural
operational semantics [18]. As usual for this approach, inference rules inductively
define a small-step transition relation → on configurations. In our setting, a
configuration is either a command sequence together with a graph, just a graph
or the special element fail:

→ ⊆ (ComSeq× G)× ((ComSeq× G) ∪ G ∪ {fail}).

Configurations in ComSeq × G represent unfinished computations, given by a
rest program and a state in the form of a graph, while graphs in G are proper
results of computations. In addition, the element fail represents a failure state.
A configuration γ is terminal if there is no configuration δ such that γ → δ.

Each inference rule in Figure 14 consists of a premise and a conclusion sep-
arated by a horizontal bar. Both parts contain meta-variables for command se-
quences and graphs, where R stands for a call in category RuleSetCall, C, P, P ′, Q
stand for command sequences in category ComSeq and G, H stand for graphs in
G. Given a rule-set call R, let I(R) =

⋃{I(r) | r is a rule-schema identifier in R}
(see Section 3 for the definition of I(r)). The domain of ⇒I(R), denoted by
Dom(⇒I(R)), is the set of all graphs G in G such that G⇒I(R) H for some graph
H . Meta-variables are considered to be universally quantified. For example, the
rule [Call1] should be read as: “For all R in RuleSetCall and all G, H in G,
G⇒I(R) H implies 〈R, G〉 → H .”

Figure 14 shows the inference rules for the core constructs of GP. We write
→+ and→∗ for the transitive and reflexive-transitive closures of→. A command
sequence C finitely fails on a graph G ∈ G if (1) there does not exist an infinite
sequence 〈C, G〉 → 〈C1, G1〉 → . . . and (2) for each terminal configuration γ
such that 〈C, G〉 →∗ γ, γ = fail. In other words, C finitely fails on G if all
computations starting from (C, G) eventually end in the configuration fail.

The concept of finite failure stems from logic programming where it is used
to define negation as failure [3]. In the case of GP, we use it to define powerful
branching and iteration constructs. In particular, our definition of the if-then-else
command allows to “hide” destructive tests. This is demonstrated by Example 6
in the previous section, where the test of the if-then-else command reduces input
graphs as much as possible by the rule schemata serial and parallel, followed
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[Call1]
G ⇒I(R) H
〈R, G〉 → H

[Call2]
G �∈ Dom(⇒I(R))
〈R, G〉 → fail

[Seq1]
〈P, G〉 → 〈P ′, H〉

〈P ; Q, G〉 → 〈P ′; Q, H〉 [Seq2]
〈P, G〉 → H

〈P ;Q, G〉 → 〈Q, H〉

[Seq3]
〈P, G〉 → fail

〈P ; Q, G〉 → fail

[If1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉 [If2]
C finitely fails on G

〈if C then P else Q, G〉 → 〈Q, G〉

[Alap1]
〈P, G〉 →+ H

〈P !, G〉 → 〈P !, H〉 [Alap2]
P finitely fails on G

〈P !, G〉 → G

Fig. 14. Inference rules for core commands

by an application of base. By the inference rules [If1] and [If2], the resulting
graph is discarded and program P or Q is executed on the input graph.

The meaning of the remaining GP commands is defined in terms of the mean-
ing of the core commands, see Figure 15. We refer to these commands as derived
commands.

[Skip] 〈skip, G〉 → 〈r∅, G〉
where r∅ is an identifier for the rule schema ∅ ⇒ ∅

[[Fail] 〈fail, G〉 → 〈{}, G〉
[If3] 〈if C then P, G〉 → 〈if C then P else skip, G〉

Fig. 15. Inference rules for derived commands

Figure 16 shows a simple example of program evaluation by the transition
relation →. It demonstrates that for the same input graph, a program may
compute an output graph, reach the failure state or diverge.

We now summarise the meaning of GP programs by a semantic function � �
which assigns to each program P the function �P � mapping an input graph G
to the set of all possible results of running P on G. The result set may contain,
besides proper results in the form of graphs, the special value ⊥ which indicates
a nonterminating or stuck computation. To this end, let the semantic function
� � : ComSeq→ (G → 2G∪{⊥}) be defined by4

�P �G = {H ∈ G | 〈P, G〉 +→H} ∪ {⊥ | P can diverge or get stuck from G}
where P can diverge from G if there is an infinite sequence 〈P, G〉 → 〈P1, G1〉 →
〈P2, G2〉 → . . . , and P can get stuck from G if there is a terminal configuration
〈Q, H〉 such that 〈P, G〉 →∗ 〈Q, H〉.
4 We write �P �G for the application of �P � to a graph G.
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main = {r1, r2}; {r1, r2}; r1!
r1 r2

1 ⇒ 1 1 ⇒ 2

〈main, 1 〉 → 〈P, 2 〉 → fail

↓
〈P, 1 〉 → 〈r1!, 1 〉 → 〈r1!, 1 〉 → . . .

↓
〈r1!, 2 〉

↓
2

where P = {r1, r2}; r1!

Fig. 16. Nondeterminism in program evaluation

The element fail is not considered as a result of running a program and hence
does not occur in result sets. In the current implementation of GP, reaching the
failure state triggers backtracking which attempts to find a proper result (see
next section). Note that a program P finitely fails on a graph G if and only if
�P �G = ∅. In Example 6, for instance, we have �reduce!; base�G = ∅ for every
connected graph G containing a cycle. This is because the graph resulting from
reduce! is still connected and cyclic, so the rule schema base is not applicable.

A program can get stuck only in two situations: either it contains a subpro-
gram if C then P else Q where C both can diverge from some graph and
cannot produce a proper result from that graph, or it contains a subprogram
B! where the loop’s body B possesses the said property of C. The evaluation
of such subprograms gets stuck because the inference rules for branching resp.
iteration are not applicable.

Next we consider programs that produce infinitely many (non-isomorphic)
results for some input. A simple example for such a program is given in Figure 17.
GP programs showing this behaviour on some input can necessarily diverge from
that input. This property is known as bounded nondeterminism [22].

Proposition (Bounded nondeterminism). Let P be a program and G a
graph in G. If P cannot diverge from G, then �P �G is finite up to isomorphism.

The reason is that for every configuration γ, the set {δ | γ → δ} is finite up to
isomorphism of the graphs in configurations. In particular, the constraints on
the syntax of conditional rule schemata ensure that for every rule schema r and
every graph G in G, there are up to isomorphism only finitely many graphs H
such that G⇒I(r) H .
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main = {stop, continue}!
stop continue

1 ⇒ ∅ 1 ⇒ 1 2

�main� 1 = {⊥, ∅, 2 , 2 2 , 2 2 2 , . . . }

Fig. 17. Infinitely many results for the same input

An important role of a formal semantics is to provide a rigorous notion of
program equivalence. We call two programs P and Q semantically equivalent,
denoted by P ≡ Q, if �P � = �Q�. For example, the following equivalences hold
for arbitrary programs C, P , P1, P2 and Q:

(1) P ; skip ≡ P ≡ skip;P
(2) fail;P ≡ fail
(3) if C then (P1; Q) else (P2; Q) ≡ (if C then P1 else P2); Q
(4) P ! ≡ if P then (P ; P !)

On the other hand, there are programs P such that

P ; fail �≡ fail.

For, if P can diverge from some graph G, then �P ; fail�G contains ⊥ whereas
�fail�G is empty.

6 Implementation

This section briefly describes the current implementation of GP, consisting of
a graphical editor for programs and graphs, a compiler, and the York Abstract
Machine (YAM). Figure 18 shows how these components interact, where GXL
is the Graph Exchange Language [27] and YAMG is an internal graph format.

The graphical editor allows graph and program loading, editing and saving,
and program execution on a given graph. Figure 19 shows a screenshot of the
graphical editor, where the rule schema expand of the program sierpinski
from Example 7 is being edited. The editor is implemented in Java and uses the
prefuse data visualisation library [11], which provides automatic graph layout
by a force-directed algorithm. The Sierpinski triangle of Figure 11, for example,
was generated by this algorithm.

The York abstract machine (YAM) manages the graph on which a GP pro-
gram operates, by executing low-level graph operations in bytecode format. The
current graph is stored in a complex data structure which is designed to make
graph interrogation very quick (at the cost of slightly slower graph updates).
Typical query operations are “provide a list of all edges whose target is node
n” and “provide a list of all nodes whose (possibly tagged) label has value 0 at
position 1”.
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Compiler

YAM
Graphical 

Editor
GXL to 
YAMG

GP

(textual)

GXL YAMG

Bytecode

GXL

Fig. 18. Components of the GP system

Fig. 19. A screenshot of the graphical editor

The YAM is similar to Warren’s abstract machine for Prolog [1] in that it
handles GP’s nondeterminism by backtracking, using a mixed stack of choice
points and environment frames. Choice points consist of a record of the number
of graph changes at their creation time, a program position to jump to if failure
occurs when the choice point is the highest on the stack, and pointers to the
previous choice and containing environment. The number of graph changes is
recorded so that they can be undone during backtracking: using the stack of
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graph changes, the graph is recreated as it was at the choice point. Environment
frames have a set of registers to store label elements or graph item identities, and
an associated function and program position in the bytecode. They also show
which environment and program position to return to.

The YAM provides instructions for handling nondeterminism by which the
compiler constructs helper functions to implement backtracking. Nondetermin-
istic choice between a set of rule schemata is handled by trying them in textual
order until one succeeds. Before each is tried, the failure behaviour is configured
to try the next. Nondeterministic choice between graph-item candidates for a
match is handled by choosing and saving the first element, and on failure, using
the saved previous answer to return and save the next element.

For efficiency reasons, the YAM is implemented in C. See also [14], where
a more detailed description of (a slightly older version of) the YAM and its
bytecode instructions is given.

The GP compiler is written in Haskell. It converts textually represented GP
programs into YAM bytecode by translating each individual rule schema into a
sequence of instructions for graph matching and transformation. These sequences
are then composed by YAM function calls according to the meaning of GP’s
control constructs.

The compiler generates code for graph matching by decomposing each rule
schema into a searchplan of node lookups, edge lookups (find an edge whose
source and target have not been found yet) and extensions (find an edge whose
source or target has been found). The choice and order of these search operations
is determined by a list of priorities. For example, finding source or target of an
edge that has already been found has higher priority (because it is cheaper)
than finding an edge between nodes that have already been found. Searchplan
generation is a common technique for graph matching and is also used in the
implementations of PROGRES [28], Fujaba [15] and GrGen [8].

The semantics of GP assigns to an input graph of a program all possible
output graphs. This is taken seriously by the implementation in that it provides
users with the option to generate all results of a terminating program. (There is
no guarantee of completeness for programs that can diverge, because the search
for results uses a depth-first strategy.) In contrast, other graph-transformation
languages do not fully exploit the nondeterministic nature of graph transforma-
tion. For example, AGG [6] makes its nondeterministic choices randomly, with
no backtracking. Similarly, Fujaba has no backtracking. PROGRES [24] seems
to be the only other graph-transformation language that provides backtracking.

7 Conclusion

We have demonstrated that GP is a rule-based language for high-level problem
solving in the domain of graphs, freeing programmers from handling low-level
data structures. The hallmark of GP is syntactic and semantic simplicity. Con-
ditional rule schemata for graph transformation allow to express application
conditions and computations on labels, in addition to structural changes.
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The operational semantics describes the effect of GP’s control constructs in
a natural way and captures the nondeterminism of the language. In particular,
powerful branching and iteration commands have been defined using the con-
cept of finite failure. Destructive tests on the current graph can be hidden in
the condition of the branching command, and nested loops can be coded since
arbitrary subprograms can be iterated as long as possible.

The prototype implementation of GP is faithful to the semantics and computes
a result for a (terminating) program whenever possible. It even provides the
option to generate all possible results.

Future extensions of GP may include recursive procedures for writing com-
plicated algorithms (see [25]) and a type concept for restricting the shape of
graphs. A major goal is to support formal reasoning on graph programs. We
plan to develop static analyses for properties such as termination and confluence
(uniqueness of results), and a calculus and tool support for program verification.

Acknowledgements. I am grateful to Sandra Steinert and Greg Manning for
their contributions to the design and implementation of GP [19,25,14,13,20].
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24. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and en-
vironment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Hand-
book of Graph Grammars and Computing by Graph Transformation, vol. 2, ch. 13,
pp. 487–550. World Scientific, Singapore (1999)

25. Steinert, S.: The Graph Programming Language GP. PhD thesis, The University
of York (2007)

26. Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat, A.,
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Appendix: Natural Pushouts

This appendix defines the natural pushouts on which direct derivations are based
(see Section 2) and characterises them in terms of ordinary pushouts. Further
properties can be found in [10].

K R

D H

b

d

Fig. 20. A pushout diagram

1 1

1 1

1 1

1 1 1

Fig. 21. A natural and a non-natural double-pushout

A diagram of morphisms between partially labelled graphs as in Figure 20 is
a pushout if the following conditions are satisfied:5

– Commutativity: K → R→ H = K → D → H .
– Universal property: For every pair of graph morphisms 〈R → H ′, D → H ′〉

such that K → R → H ′ = K → D → H ′, there is a unique morphism
H → H ′ such that R→ H ′ = R→ H → H ′ and D → H ′ = D → H → H ′.

The diagram is a pullback if commutativity holds and the following universal
property:

– For every pair of graph morphisms 〈K ′ → R, K ′ → D〉 such that K ′ →
R → H = K ′ → D → H , there is a unique morphism K ′ → K such that
K ′ → R = K ′ → K → R and K ′ → D = K ′ → K → D.

A pushout is natural if it is simultaneously a pullback.

5 Given graph morphisms f : A → B and g : B → C, we write A → B → C for the
composition g ◦ f : A → C.
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Proposition (Characterisation of natural pushouts [10]). If b is injective,
then the pushout in Figure 20 is natural if and only if for all v ∈ VK ,

lK(v) = ⊥ implies lR(bV (v)) = ⊥ or lD(dV (v)) = ⊥.

For example, the double-pushout on the left of Figure 21 consists of natural
pushouts, the double-pushout on the right consists of non-natural pushouts.
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