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Abstract
We describe an automated analysis of Haskell 98 programs to
check statically that, despite the possible use of partial (or non-
exhaustive) pattern matching, no pattern-match failure can occur.
Our method is an iterative backward analysis using a novel form
of pattern-constraint to represent sets of data values. The analysis
is defined for a core first-order language to which Haskell 98
programs are reduced. Our analysis tool has been successfully
applied to a range of programs, and our techniques seem to scale
well. Throughout the paper, methods are represented much as we
have implemented them in practice, again in Haskell.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms languages, verification

Keywords Haskell, automatic verification, functional program-
ming, pattern-match errors, preconditions

1. Introduction
Many functional languages support case-by-case definition of func-
tions over algebraic data types, matching arguments against alterna-
tive constructor patterns. In the most widely used languages, such
as Haskell and ML, alternative patterns need not exhaust all possi-
ble values of the relevant datatype; it is often more convenient for
pattern matching to be partial. Common simple examples include
functions that select components from specific constructions — in
Haskell tail applies to (:)-constructed lists and fromJust to Just-
constructed values of a Maybe-type.

Partial matching does have a disadvantage. Programs may fail
at run-time because a case arises that matches none of the available
alternatives. Such pattern-match failures are clearly undesirable,
and the motivation for this paper is to avoid them without denying
the convenience of partial matching. Our goal is an automated
analysis of Haskell 98 programs to check statically that, despite the
possible use of partial pattern matching, no pattern-match failure
can occur.

The problem of pattern-match failures is a serious one. The
darcs project (Roundy 2005) is one of the most successful large
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scale programs written in Haskell. Taking a look at the darcs bug
tracker, 13 problems are errors related to the selector function
fromJust and 19 are pattern-match failures in darcs functions.

Consider the following example taken from Mitchell and Runci-
man (2007):

risers :: Ord α ⇒ [α ] → [[α ] ]
risers [ ] = [ ]
risers [x] = [[x]]
risers (x : y : etc) = if x 6 y then (x : s) : ss else [x ] : (s : ss)

where (s : ss) = risers (y : etc)

A sample application of this function is:

> risers [1, 2, 3, 1, 2]
[[1, 2, 3], [1, 2]]

In the last line of the definition, (s : ss) is matched against the result
of risers (y : etc). If the result is in fact an empty list, a pattern-
match error will occur. It takes a few moments to check manually
that no pattern-match failure is possible – and a few more to be sure
one has not made a mistake! Turning the risers function over to our
analysis tool (which we call Catch), the output is:

Checking “Incomplete pattern on line 5”
Program is Safe

In other examples, where Catch cannot verify pattern-match
safety, it can provide information such as sufficient conditions on
arguments for safe application of a function.

We have implemented all the techniques reported here. We
encourage readers to download the Catch tool and try it out. It
can be obtained from the website at http://www.cs.york.ac.
uk/~ndm/catch/. A copy of the tool has also been released, and
is available on Hackage1. We have also given an argument for
the soundness of our method in (Mitchell 2008), showing that if
Catch declares a program free from pattern-match errors then that
program is guaranteed not to crash with a pattern-match error.

1.1 Contributions
The contributions of this paper include:

• A method for reasoning about pattern-match failures, in terms
of a parameterisable constraint language. The method calcu-
lates preconditions of functions.

• Two separate constraint languages that can be used with our
method.

• Details of the Catch implementation which supports the full
Haskell 98 language (Peyton Jones 2003), by transforming
Haskell 98 programs to a first-order language.

1 http://hackage.haskell.org/
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risers x = case x of
[ ] → [ ]
(y : ys) → case ys of

[ ] → (y : [ ]) : [ ]
(z : zs) → risers2 (risers3 z zs) (y 6 z) y

risers2 x y z = case y of
True → (z : snd x) : (fst x)
False → (z : [ ]) : (snd x : fst x)

risers3 x y = risers4 (risers (x : y))

risers4 x = case x of
(y : ys) → (ys, y)
[ ] → error "Pattern Match Failure, 11:12."

Figure 1. risers in the Core language.

• Results showing success on a number of small examples drawn
from the Nofib suite (Partain et al. 2008), and for three larger
examples, investigating the scalability of the checker.

This paper has similar aims to our previous work (Mitchell and
Runciman 2007), which we will refer to as Catch052. For Catch05
risers is towards the limit of what is possible, for Catch08 it is
trivial. Catch05 can only deal with small examples that use a few
restricted forms of recursion. Catch08 uses substantially improved
algorithms, along with radically different constraint mechanisms,
to deal with real Haskell programs.

1.2 Road map
§2 gives an overview of the checking process for the risers func-
tion. §3 introduces a small core functional language and a mecha-
nism for reasoning about this language, §4 describes two constraint
languages. §5 evaluates Catch08 on programs from the Nofib suite,
on a widely-used library and on a larger application program. §6 of-
fers comparisons with related work before §7 presents concluding
remarks.

2. Overview of the Risers Example
This section sketches the process of checking that the risers func-
tion in the Introduction does not crash with a pattern-match error.

2.1 Conversion to a Core Language
Rather than analyse full Haskell, Catch analyses a first-order Core
language, without lambda expressions, partial application or let
bindings. A convertor is provided from the full Haskell 98 language
to this restricted language – see §3.1.2. The result of converting the
risers program to Core Haskell, with identifiers renamed for ease
of human reading, is shown in Figure 1.

The type of risers is polymorphic over types in the Ord class.
Catch can check risers assuming that Ord methods do not raise
pattern-match errors, and may return any value. Or a type instance
such as Int can be specified with a type signature. To keep the
example simple, we have chosen the latter.

2.2 Analysis of risers – a brief sketch
In the Core language every pattern match covers all possible con-
structors of the appropriate type. The alternatives for constructor
cases not originally given are calls to error. The analysis starts by

2 Although the paper was completed in 2005, publication was delayed

type CtorName = String
type FuncName = String
type VarName = String
type Selector = (CtorName, Int)

data Func = Func FuncName [VarName ] Expr

data Expr = Var VarName
| Make CtorName [Expr ]
| Call FuncName [Expr ]
| Case Expr [Alt ]

data Alt = Alt CtorName [VarName ] Expr

Figure 2. Core Data Type.

finding calls to error, then tries to prove that these calls will not be
reached. The one error call in risers4 is avoided under the precon-
dition (see §3.4):

risers4, x<−(:)

That is, all callers of risers4 must supply an argument x which is
a (:)-constructed value. For the proof that this precondition holds,
two entailments are required (see §3.5):

x<−(:) ⇒ (risers x )<−(:)
True ⇒ (risers2 x y z)<−(:)

The first line says that if the argument to risers is a (:)-constructed
value, the result will be. The second states that the result from
risers2 is always (:)-constructed.

3. Pattern Match Analysis
This section describes the method used to calculate preconditions
for functions. We first give the Core language for our tool in §3.1,
then some essential operations on constraints and propositions in
§3.2. We then introduce a simple constraint language in §3.3, which
we use to illustrate our method. First we define three terms:

• A constraint describes a (possibly infinite) set of values. We
say a value satisfies a constraint if the value is within the set.

• A precondition is a proposition combining constraints on the
arguments to a function, to ensure that if no part of any argu-
ment is ⊥ then no part of the result is ⊥. For example, the pre-
condition on tail xs is that xs is (:)-constructed.

• An entailment is a proposition combining constraints on the
arguments to a function, to ensure the result satisfies a further
constraint. For example, xs is (:)-constructed ensures null xs
evaluates to False.

3.1 Reduced expression language
The syntax for our Core language is given in Figure 2. Our Core
language is more restrictive than the core languages typically used
in compilers (Tolmach 2001). It is first order, has only simple case
statements, and only algebraic data types. All case statements have
alternatives for all constructors, with error calls being introduced
where a pattern-match error would otherwise occur.

The evaluation strategy is lazy. A semantics is outlined in Figure
3, as an evaluator from expressions to values, written in Haskell.
The hnf function evaluates an expression to head normal form. The
subst function substitutes free variables that are the result of a case
expression.
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data Value = Bottom | Value CtorName [Value ]

eval :: Expr → Value
eval x = case hnf x of

Nothing → Bottom
Just (c, cs) → Value c (map eval cs)

hnf :: Expr → Maybe (CtorName, [Expr ])
hnf (Make c xs ) = Just (c, xs)
hnf (Call f xs )
| f ≡ "error" = Nothing
| otherwise = hnf (subst (zip (args f) xs) (body f))

hnf (Case on alts ) = listToMaybe [res
| Just (c, xs) ← [hnf on ], Alt n vs e ← alts, c ≡ n
, Just res ← [hnf (subst (zip vs xs) e)]]

subst :: [(VarName, Expr)] → Expr → Expr
subst r (Var x ) = fromMaybe (Var x) (lookup x r)
subst r (Make x xs) = Make x (map (subst r) xs)
subst r (Call x xs) = Call x (map (subst r) xs)
subst r (Case x xs) = Case (subst r x)

[Alt n vs (subst r′ e) | Alt n vs e ← xs
, let r′ = filter ((/∈ vs) ◦ fst) r ]

Figure 3. Semantics for Core expressions.

ctors :: CtorName → [CtorName ]
arity :: CtorName → Int
var :: VarName → Maybe (Expr, Selector)
body :: FuncName → Expr
args :: FuncName → [VarName ]
isRec :: Selector → Bool

Figure 4. Operations on Core.

3.1.1 Operations on Core
Figure 4 gives the signatures for helper functions over the core data
types. In our implementation, these operations are monadic to allow
the checking process to be traced – a detail we have omitted here.
Every constructor has an arity, which can be obtained with the arity
function. To determine alternative constructors the ctors function
can be used; for example ctors "True" = ["False", "True" ]
and ctors "[]" = ["[]", ":" ]. The var function returns Nothing
for a variable bound as the argument of a top-level function, and
Just (e, (c, i)) for a variable bound as the ith component in the
c-constructed alternative of a case-expression whose scrutinee is
e. The functions body and args obtain the body and argument
names of a function. The isRec (c, i) function returns true if the
constructor c has a recursive ith component; for example, let hd =
(":", 0) and tl = (":", 1) then isRec hd = False but isRec tl =
True.

3.1.2 Transformation From Haskell to Core
To generate core representations of programs, we start with Yhc,
the York Haskell Compiler (Golubovsky et al. 2007). Yhc can
transform a Haskell program into a single Yhc Core file, containing
all necessary libraries. Yhc Core is higher-order and has let expres-
sions, neither of which are permitted in our Core language. The
let expressions can be removed using simple transformations pro-
vided by the Yhc Core library. The standard way to make a program

data Prop α

(∧), (∨) :: Prop α → Prop α → Prop α
andP, orP :: [Prop α ] → Prop α
mapP :: (α → Prop β) → Prop α → Prop β
true, false :: Prop α
bool :: Bool → Prop α
lit :: α → Prop α

Figure 5. Proposition data type.

first-order is Reynolds style defunctionalisation (Reynolds 1972).
This method embeds a mini-interpreter into the resultant program,
which would complicate our analysis method considerably. Instead,
we use an alternative defunctionalisation method (Mitchell 2008,
Chapter 5), which removes most higher-order functions without
complicating the analysis. If any higher-order functions remain we
then use Reynolds method. Using these steps, we are able to con-
vert the full Haskell 98 language into our Core language.

3.1.3 Algebraic Abstractions of Primitive Types
Our Core language only has algebraic data types. Catch allows for
primitive types such as characters and integers by abstracting them
into algebraic types. Two abstractions used in Catch are:

data Int = Neg | Zero | One | Pos
data Char = Char

Knowledge about values is encoded as a set of possible con-
structions. In our experience, integers are most often constrained to
be a natural, or to be non-zero. Addition or subtraction of one is
the most common operation. Though very simple, the Int abstrac-
tion models the common properties and operations quite well. For
characters, we have found little benefit in any refinement other than
considering all characters to be abstracted to the same value.

The final issue of abstraction relates to primitive functions in
the IO monad, such as getArgs (which returns the command-line
arguments), or readFile (which reads from the file-system). In most
cases an IO function is modelled as returning any value of the
correct type, using a function primitive to the checker.

3.2 Constraint Essentials and Notation
We write Sat x c to assert that the value of expression x must
be a member of the set described by the constraint c, i.e. that x
satisfies c. If any component of x evaluates to ⊥, the constraint
is automatically satisfied: in our method, for a component of x to
evaluate to ⊥, some other constraint must have been violated, so
an error is still reported. Atomic constraints can be combined into
propositions, using the proposition data type in Figure 5.

Several underlying constraint models are possible. To keep the
introduction of the algorithms simple we first use basic pattern
constraints (§3.3), which are unsuitable for reasons given in §3.7.
We then describe regular expression constraints in §4.1 – a variant
of the constraints used in Catch05. Finally we present multi-pattern
constraints in §4.2 – used in Catch08 to enable scaling to much
larger problems.

Three operations must be provided by every constraint model,
whose signatures are given in Figure 6. The lifting and splitting op-
erators (B) and (C) are discussed in §3.5. The expression x<−cs
generates a proposition ensuring that the value x must be con-
structed by one of the constructors in cs.

The type signatures for the functions calculating preconditions
and entailments are given in Figure 7. The precond function (see
§3.4) takes a function name, and gives a proposition imposing
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data Sat α = Sat α Constraint

(<−) :: α → [CtorName ] → Prop (Sat α)
(B) :: Selector → Constraint → Constraint
(C) :: CtorName → Constraint → Prop (Sat Int)

Figure 6. Constraint operations.

precond :: FuncName → Prop (Sat VarName)
prePost :: FuncName → Constraint → Prop (Sat VarName)
reduce :: Prop (Sat Expr) → Prop (Sat VarName)

substP :: Eq α ⇒ [(α, β)] → Prop (Sat α) → Prop (Sat β)
substP xs = mapP (λ(Sat i k) → lit $ Sat (f i) k)

where f i = fromJust $ lookup i xs

Figure 7. Operations to generate preconditions and entailments.

data Constraint = Any | Con CtorName [Constraint ]

Figure 8. Basic pattern constraints.

constraints on the arguments to that function. The prePost function
(see §3.5) takes a function name and a postcondition, and gives
a precondition sufficient to ensure the postcondition. During the
manipulation of constraints, we often need to talk about constraints
on expressions, rather than argument variables: the reduce function
(see §3.5) converts propositions of constraints on expressions to
equivalent propositions of constraints on arguments. The substP
function performs substitution, by argument name or position, over
propositions of constraints.

3.3 Basic Pattern (BP) Constraints
For simplicity, our analysis framework will be introduced using
basic pattern constraints (BP-constraints). BP-constraints are de-
fined in Figure 8, and correspond to Haskell pattern matching,
where Any represents an unrestricted match. A data structure sat-
isfies a BP-constraint if it matches the pattern. For example, the
requirement for a value to be (:)-constructed would be expressed
as (Con ":" [Any, Any ]). The BP-constraint language is limited
in expressivity, for example it is impossible to state that all the ele-
ments of a boolean list are True.

As an example of an operator definition for the BP-constraint
language, (<−) can be defined:

a<−xs = orP [ lit (a `Sat̀ anys x) | x ← xs ]
where anys x = Con x (replicate (arity x) Any)

So, for example:

e<−["True" ] = lit (e `Sat̀ Con "True" [ ])
e<−[":" ] = lit (e `Sat̀ Con ":" [Any, Any ])
e<−[":", "[]" ] = lit (e `Sat̀ Con ":" [Any, Any ]) ∨

lit (e `Sat̀ Con "[]" [ ])

3.4 Preconditions for Pattern Safety
Our intention is that for every function, a proposition combining
constraints on the arguments forms a precondition to ensure the
result does not contain ⊥. The precondition for error is False. A
program is safe if the precondition on main is True. Our analysis
method derives these preconditions. Given precond which returns

pre :: Expr → Prop (Sat Expr)
pre (Var v ) = true
pre (Make c xs ) = andP (map pre xs)
pre (Call f xs ) = pre′ f xs ∧ andP (map pre xs)

where pre′ f xs = substP (zip (args f) xs) (precond f)
pre (Case on alts) = pre on ∧ andP (map alt alts)

where alt (Alt c vs e) = on<−(ctors c \ [c]) ∨ pre e

Figure 9. Precondition of an expression, pre.

precond :: FuncName → Prop (Sat VarName)
precond0 f = if f ≡ "error" then false else true
precondn+1 f = precondn f ∧

reduce (pre{precondn}(body f))

Figure 10. Precondition calculation.

the precondition of a function, we can determine the precondition
of an expression using the pre function in Figure 9. The intuition
behind pre is that in all subexpressions f xs, the arguments xs must
satisfy the precondition for f. The only exception is that a case
expression is safe if the scrutinee is safe, and each alternative is
either safe, or never taken.

Example 1

safeTail xs = case null xs of
True → [ ]
False → tail xs

The precondition for safeTail, after removing conjunctions with
true, is computed as:

pre′ null [xs ] ∧ (null xs<−["True" ] ∨ pre′ tail [xs])

This predicate states that the invocation of null xs must be safe,
and either null xs is True or tail xs must be safe. ¤

3.4.1 Stable Preconditions
The iterative algorithm for calculating preconditions is given in
Figure 10. Initially all preconditions are assumed to be true, apart
from the error precondition, which is false. In each iteration we cal-
culate the precondition using the pre function from Figure 9, using
the previous value of precond. Each successive precondition is con-
joined with the previous one, and is therefore more restrictive. So if
all chains of increasingly restrictive propositions of constraints are
finite, termination is guaranteed – a topic we return to in §3.7.

We can improve the efficiency of the algorithm by tracking
dependencies between preconditions, and performing the minimum
amount of recalculation. Finding strongly connected components in
the static call graph of a program allows parts of the program to be
checked separately.

3.4.2 Preconditions and Laziness
The pre function defined in Figure 9 does not take laziness into
account. The Call equation demands that preconditions hold on all
arguments – only correct if a function is strict in all arguments.
For example, the precondition on False && error "here" is False,
when it should be True. In general, preconditions may be more
restrictive than necessary. However, investigation of a range of
examples suggests that inlining (&&) and (||) captures many of the
common cases where laziness would be required.
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reduce :: Prop (Sat Expr) → Prop (Sat VarName)
reduce = mapP (λ(Sat x k) → red x k)

red :: Expr → Constraint → Prop (Sat VarName)
red (Var v ) k = case var v of

Nothing → lit (v `Sat̀ k)
Just (on, s) → red on (s B k)

red (Make c xs ) k = reduce $ substP (zip [0 . . ] xs) (c C k)
red (Call f xs ) k = reduce $ substP (zip (args f) xs)

(prePost f k)
red (Case on alts) k = andP [alt c e | Alt c vs e ← alts ]

where alt c e = reduce (on<−(ctors c \ [c])) ∨ red e k

Figure 11. Specification of constraint reduction, reduce.

3.5 Manipulating constraints
The pre function generates constraints in terms of expressions,
which the precond function transforms into constraints on function
arguments, using reduce. The reduce function is defined in Figure
11. We will first give an example of how reduce works, followed
by a description of each rule corresponding to an equation in the
definition of red.

Example 1 (revisited)
The precondition for the safeTail function is:

pre′ null [xs ] ∧ (null xs<−["True" ] ∨ pre′ tail [xs])

We can use the preconditions computed for null and tail to rewrite
the precondition as:

null xs<−["True" ] ∨ xs<−[":" ]

The reduce function changes constraints on expressions to con-
straints on function arguments. It makes use of an entailment to
turn the constraint on null’s result into a constraint on its argument:

xs<−["[]" ] ∨ xs<−[":" ]

Which can be shown to be a tautology. ¤
The Var rule has two alternatives. The first alternative deals with
top-level bound arguments, which are already in the correct form.
The other alternative applies to variables bound by patterns in case
alternatives. It lifts conditions on a bound variable to the scrutinee
of the case expression in which they occur. The B operator lifts a
constraint on one part of a data structure to a constraint on the entire
data structure. For BP-constraints, B can be defined as:

(c, i) B k = Con c [ if i ≡ j then k else Any
| j ← [0 . . arity c− 1]]

Example 2

case xs of
[ ] → [ ]
y : ys → tail y

Here the initial precondition will be y<−[":" ], which evalu-
ates to the result y `Sat̀ Con ":" [Any, Any ]. The var func-
tion on y gives Just (xs, (":", 0)). After the application of
B the revised constraint refers to xs instead of y, and will be
xs `Sat̀ Con ":" [Con ":" [Any, Any ], Any ]. We have gone
from a constraint on y, using the knowledge that y is bound to a
portion of xs, to a constraint on xs. ¤

prePost :: FuncName → Constraint → Prop (Sat VarName)
prePost0 f k = true
prePostn+1 f k = prePostn f k ∧

reduce{prePostn}(lit $ body f `Sat̀ k)

Figure 12. Fixed point calculation for prePost.

The Make rule deals with an application of a constructor. The C
operator splits a constraint on an entire structure into a proposition
combining constraints on each field of a constructor.

c C Any = true
c C Con c2 xs = bool (c2 ≡ c) ∧

andP (map lit (zipWith Sat [0 . . ] xs))

The intuition is that given knowledge of the root constructor of
a data value, we can reformulate the constraint in terms of what the
constructor fields must satisfy. For example, Sat 0 k requires that
the first field satisfies k. Some sample applications:

"True" C Con "True" [ ] = true
"False" C Con "True" [ ] = false
":" C Con ":" [Con "True" [ ], Any ] =

lit (0 `Sat̀ Con "True" [ ]) ∧ lit (1 `Sat̀ Any)

The Case rule generates a conjunct for each alternative. An alter-
native satisfies a constraint if either it is never taken, or it meets the
constraint when taken.

The Call rule relies on the prePost function defined in Figure
12. This function calculates the precondition necessary to ensure a
given postcondition on a function, which forms an entailment. Like
the precondition calculation in §3.4, the prePost function works
iteratively, with each result becoming increasingly restrictive. Ini-
tially, all postconditions are assumed to be true. The iterative step
takes the body of the function, and uses the reduce transforma-
tion to obtain a predicate in terms of the arguments to the func-
tion, using the previous value of prePost. If refinement chains of
constraint/function pairs are finite, termination is guaranteed. Here
again, a speed up can be obtained by tracking the dependencies be-
tween constraints, and additionally caching all calculated results.

3.6 Semantics of Constraints
The semantics of a constraint are determined by which values sat-
isfy it. We can implement a satisfies function using the C operator:

satisfies :: Value → Constraint → Bool
satisfies Bottom k = True
satisfies (Value c xs) k =

satisfiesP $ substP (zip [0 . . ] xs) (c C k)

satisfiesP :: Prop (Sat Value) → Bool
satisfiesP x = (true :: Prop ()) ≡

mapP (λ(Sat v k) → bool $ satisfies v k) x

The first equation returns True given a value of type Bottom,
as if a value contains ⊥ then any constraint is true. In order to
be consistent with C, the other operations must respect certain
properties, here expressed as boolean-valued functions that should
always return True.

propExtend v@(Value c xs) k i
| satisfies v ((c, i) B k) = satisfies (xs !! i) k

propExtend = True

The propExtend property requires that if a constraint satisfies
a value after they have both been extended, then the original
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value must have satisfied the original constraint. For example, if
Just α `Sat̀ (("Just", 0)Bk) is true, then α `Sat̀ k must be true.

propOneOf v@(Value c xs) cs
| c /∈ cs = not (satisfiesP (v<−cs))

propOneOf = True

The propOneOf property requires that v<−cs must not match values
constructed by constructors not in cs. Note that both properties
allow for constraints to be more restrictive than necessary.

In (Mitchell 2008) we give a detailed argument that if a con-
straint language satisfies these two properties, the algorithms pre-
sented in Figures 9 to 12 are sound. We also show that both BP-
constraints and MP-constraints (introduced in §4.2) satisfy these
properties.

3.7 Finite Refinement of Constraints
With unbounded recursion in patterns, the BP-constraint language
does not have only finite chains of refinement. As we saw in §3.4.1,
we need this property for termination of the iterative analysis. In
the next section we introduce two alternative constraint systems.
Both share a key property: for any type, there are finitely many
constraints.

4. Richer but Finite Constraint Systems
There are many ways of defining a richer constraint system, while
also ensuring the necessary finiteness properties. Here we outline
two – one adapted from Catch05, one entirely new – both imple-
mented in Catch08. Neither is strictly more powerful than the other;
each is capable of expressing constraints that the other cannot ex-
press.

When designing a constraint system, the main decision is which
distinctions between data values to ignore. Since the constraint
system must be finite, there must be sets of data values which
no constraint within the system can distinguish between. As the
constraint system stores more information, it will distinguish more
values, but will likely take longer to obtain fixed points. The two
constraint systems in this section were developed by looking at
examples, and trying to find systems offering sufficient power to
solve real problems, but still remain bounded.

4.1 Regular Expression (RE) Constraints
Catch05 used regular expressions in constraints. Figure 13 gives
an implementation of Catch08 regular expression based constraints
(RE-constraints). In a constraint of the form (rÃcs), r is a regular
expression and cs is a set of constructors. Such a constraint is
satisfied by a data structure d if every well-defined application to d
of a sequence of selectors described by r reaches a constructor in
the set cs. If no such sequence of selectors has a well-defined result
then the constraint is vacuously true.

Concerning the helper functions needed to define B and C
in Figure 13, the differentiate function is from Conway (1971);
integrate is its inverse; ewp is the empty word property.

Example 3
(head xs) is safe if xs evaluates to a non-empty list. The RE-
constraint generated by Catch is: xs `Sat̀ (1 Ã {:}). This may
be read: from the root of the value xs, after following an empty
path of selectors, we reach a (:)-constructed value. ¤

Example 4
(map head xs) is safe if xs evaluates to a list of non-empty lists.
The RE-constraint is: xs `Sat̀ (tl∗·hd Ã {:}). From the root of
xs, following any number of tails, then exactly one head, we reach
a (:). If xs is [ ], it still satisfies the constraint, as there are no well

data Constraint = RegExpÃ [CtorName ]
type RegExp = [RegItem ]
data RegItem = Atom Selector | Star [Selector ]

(<−) :: α → [CtorName ] → Prop (Sat α)
e<−cs = lit $ e `Sat̀ ([ ]Ãcs)

(B) :: Selector → Constraint → Constraint
p B (rÃcs) = integrate p rÃcs

(C) :: CtorName → Constraint → Prop (Sat Int)
c C (rÃcs) = bool (not (ewp r) || c ∈ cs) ∧

andP (map f [0 . . arity c− 1])
where
f i = case differentiate (c, i) r of

Nothing → true
Just r2 → lit $ i `Sat̀ (r2 Ãcs)

ewp :: RegExp → Bool
ewp x = all isStar x

where isStar (Star ) = True
isStar (Atom ) = False

integrate :: Selector → RegExp → RegExp
integrate p r | not (isRec p) = Atom p : r
integrate p (Star ps : r) = Star (nub (p : ps)) : r
integrate p r = Star [p ] : r

differentiate :: Selector → RegExp → Maybe RegExp
differentiate p [ ] = Nothing
differentiate p (Atom r : rs) | p ≡ r = Just rs

| otherwise = Nothing
differentiate p (Star r : rs) | p ∈ r = Just (Star r : rs)

| otherwise = differentiate p rs

Figure 13. RE-constraints.

defined paths containing a hd selector. If xs is infinite then all its
infinitely many elements must be (:)-constructed. ¤

Example 5
(map head (reverse xs)) is safe if every item in xs is (:)-
constructed, or if xs is infinite – so reverse does not terminate. The
RE-constraint is: xs `Sat̀ (tl∗·hdÃ {:}) ∨ xs `Sat̀ (tl∗Ã { :}).
The second term specifies the infinite case: if the list xs is (:)-
constructed, it will have a tl selector, and therefore the tl path is
well defined and requires the tail to be (:). Each step in the chain
ensures the next path is well defined, and therefore the list is infi-
nite. ¤

Catch05 regular expressions were unrestricted and quickly grew
to an unmanageable size, preventing analysis of larger programs.
In general, a regular expression takes one of six forms:

r1 + r2 union of regular expressions r1 and r2
r1 ·r2 concatenation of regular expressions r1 then r2
r1
∗ any number (possibly zero) occurrences of r1

sel a selector, i.e. hd for the head of a list
0 the language is the empty set
1 the language is the set containing the empty string

Catch08 implements REs using the data type RegExp from
Figure 13, with RegExp being a list of concatenated RegItem. In
addition to the restrictions imposed by the data type, we require: (1)
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within Atom the Selector is not recursive; (2) within Star there is a
non-empty list of Selectors, each of which is recursive; (3) no two
Star constructors are adjacent in a concatenation. These restrictions
are motivated by three observations:

• Because of static typing, constructor-sets must all be of the
same type. (In Catch05 expressions such as hd∗ could arise.)

• There are finitely many RexExp expressions for any type. Com-
bined with the finite number of constructors, this property is
sufficient to guarantee termination when computing a fixed-
point iteration on constraints.

• The restricted REs with 0 are closed under integration and
differentiation. (The 0 alternative is catered for by the Maybe
return type in the differentiation. As 0 Ã c always evaluates to
True, C replaces Nothing by True.)

4.1.1 Finite Number of RE-Constraints
We require that for any type, there are finitely many constraints (see
§3.7). We can model types as:

data Type = Type [Ctor ]
type Ctor = [Maybe Type ]

Each Type has a number of constructors. For each constructor
Ctor, every component has either a recursive type (represented as
Nothing) or a non-recursive type t (represented as Just t). As
each non-recursive type is structurally smaller than the original,
a function that recurses on the type will terminate. We define
a function count which takes a type and returns the number of
possible RE-constraints.

count :: Type → Integer
count (Type t) = 2ˆrec ∗ (2ˆctor + sum (map count nonrec))

where
rec = length (filter isNothing (concat t))
nonrec = [x | Just x ← concat t ]
ctor = length t

The 2 ˆ rec term corresponds to the number of possible con-
straints under Star. The 2ˆctor term accounts for the case where
the selector path is empty.

4.1.2 RE-Constraint Propositions
Catch computes over propositional formulae with constraints as
atomic propositions. Among other operators on propositions, they
are compared for equality to obtain a fixed point. All the fixed-point
algorithms given in this paper stop once equal constraints are found.
We use Binary Decision Diagrams (BDD) (Lee 1959) to make these
equality tests fast. Since the complexity of performing an operation
is often proportional to the number of atomic constraints in a
proposition, we apply simplification rules to reduce this number.
For example, three of the nineteen rules are:

Exhaustion: In the constraint x `Sat̀ (r Ã [":", "[]" ]) the con-
dition lists all the possible constructors. Because of static typing, x
must be one of these constructors. Any such constraint simplifies
to True.

And merging: The conjunction e `Sat̀ (rÃc1) ∧ e `Sat̀ (rÃc2)
can be replaced by e `Sat̀ (rÃ(c1 ∩ c2)).

Or merging: The disjunction e `Sat̀ (rÃ c1) ∨ e `Sat̀ (rÃ c2)
can be replaced by e `Sat̀ (rÃc2) if c1 ⊆ c2.

4.2 Multipattern (MP) Constraints & Simplification
Although RE-constraints are capable of solving many examples,
they suffer from a problem of scale. As programs become more

type Constraint = [Val]
data Val = [Pattern ] ? [Pattern ] | Any
data Pattern = Pattern CtorName [Val]

-- useful auxiliaries, non recursive selectors
nonRecs :: CtorName → [Int ]
nonRecs c = [ i | i ← [0 . . arity c− 1], not (isRec (c, i))]

-- a complete Pattern on c
complete :: CtorName → Pattern
complete c = Pattern c (map (const Any) (nonRecs c))

(<−) :: α → [CtorName ] → Prop (Sat α)
e<−cs = lit $ Sat e [ map complete cs

? map complete (ctors (head cs))
| not (null cs)]

(B) :: Selector → Constraint → Constraint
(c, i) B k = map f k

where
f Any = Any
f (ms1 ? ms2) | isRec (c, i) = [complete c ] ? merge ms1 ms2

f v = [Pattern c [ if i ≡ j then v else Any | j ← nonRecs c ]]
? map complete (ctors c)

(C) :: CtorName → Constraint → Prop (Sat Int)
c C vs = orP (map f vs)

where
(rec, non) = partition (isRec ◦ (, ) c) [0 . . arity c− 1]

f Any = true
f (ms1 ? ms2) = orP [andP $ map lit $ g vs1

| Pattern c1 vs1 ← ms1, c1 ≡ c]
where g vs = zipWith Sat non (map (:[ ]) vs) ++

map ( `Sat̀ [ms2 ? ms2 ]) rec

(u) :: Val → Val → Val
(a1 ? b1) u (a2 ? b2) = merge a1 a2 ? merge b1 b2

x u y = if x ≡ Any then y else x

merge :: [Pattern ] → [Pattern ] → [Pattern ]
merge ms1 ms2 = [Pattern c1 (zipWith (u) vs1 vs2) |

Pattern c1 vs1 ← ms1, Pattern c2 vs2 ← ms2, c1 ≡ c2 ]

Figure 14. MP-constraints.

complex the size of the propositions grows quickly, slowing Catch
unacceptably. Multipattern constraints (MP-constraints, defined in
Figure 14) are an alternative which scales better.

MP-constraints are similar to BP-constraints, but can constrain
an infinite number of items. A value v satisfies a constraint p1 ? p2

if v itself satisfies the pattern p1 and all its recursive components at
any depth satisfy p2. We call p1 the root pattern, and p2 the recur-
sive pattern. Each of p1 and p2 is given as a set of matches similar
to BP-constraints, but each Pattern only specifies the values for the
non-recursive selectors, all recursive selectors are handled by p2. A
constraint is a disjunctive list of ? patterns.

The intuition behind the definition of (c, i) B ps is that if the
selector (c, i) is recursive, given a pattern α?β, the new root pattern
requires the value to be c-constructed, and the recursive patterns
become merge α β – i.e. all recursive values must satisfy both the
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root and recursive patterns of the original pattern. If the selector is
non-recursive, then each new pattern contains the old pattern within
it, as the appropriate non-recursive field. So, for example:

hd B (α ? β) = {(:) (α ? β)} ? { [ ], (:) Any}
tl B (α ? β) = {(:) Any } ? (merge α β)

For the C operator, if the root pattern matches, then all non-
recursive fields are matched to their non-recursive constraints, and
all recursive fields have their root and recursive patterns become
their recursive pattern. In the result, each field is denoted by its
argument position. So, for example:

":" C ({[ ] } ? β) = false
":" C ({(:) α} ? β) = 0 `Sat̀ α ∧ 1 `Sat̀ (β ? β)

Example 3 (revisited)
Safe evaluation of (head xs) requires xs to be non-empty. The MP-
constraint generated by Catch on xs is: {(:) Any} ? { [ ], (:) Any}.
This constraint can be read in two portions: the part to the left of
? requires the value to be (:)-constructed, with an unrestricted hd
field; the right allows either a [ ] or a (:) with an unrestricted hd
field, and a tl field restricted by the constraint on the right of the
?. In this particular case, the right of the ? places no restrictions
on the value. This constraint is longer than the corresponding RE-
constraint as it makes explicit that both the head and the recursive
tails are unrestricted. ¤

Example 4 (revisited)
Safe evaluation of (map head xs) requires xs to be a list of non-
empty lists. The MP-constraint on xs is:

{ [ ], (:) ({(:) Any} ? {[ ], (:) Any})} ?
{ [ ], (:) ({(:) Any} ? {[ ], (:) Any})} ¤

Example 5 (revisited)
(map head (reverse x)) requires xs to be a list of non-empty lists
or infinite. The MP-constraint for an infinite list is: {(:) Any} ?
{(:) Any} ¤

MP-constraints also have simplification rules. For example, two
of the eight rules are:

Val-list simplification: Given a Val-list, if the value Any is in this
list, the list is equal to [Any ]. If a value occurs more than once in
the list, one copy can be removed.

Val simplification: If both p1 and p2 cover all constructors and all
their components have Any as their constraint, the constraint p1?p2

can be replaced with Any.

4.2.1 Finitely Many MP-Constraints per Type
As in §4.1.1, we show there are finitely many constraints per type
by defining a count function:

count :: Type → Integer
count (Type t) = 2ˆval t

where val t = 1 + 2 ∗ 2ˆ(pattern t)

pattern t = sum (map f t)
where f c = product [count t2 | Just t2 ← c ]

The val function counts the number of possible Val construc-
tions. The pattern function performs a similar role for Pattern
constructions.

4.2.2 MP-Constraint Propositions and Uncurrying
A big advantage of MP-constraints is that if two constraints on the
same expression are combined at the proposition level, they can be
reduced into one atomic constraint:

(Sat e v1) ∨ (Sat e v2) = Sat e (v1 ++ v2)
(Sat e v1) ∧ (Sat e v2) = Sat e [a u b | a ← v1, b ← v2 ]

This ability to combine constraints on equal expressions can be
exploited further by translating the program to be analysed. After
applying reduce, all constraints will be in terms of the arguments
to a function. So if all functions took exactly one argument then all
the constraints associated with a function could be collapsed into
one. We therefore uncurry all functions.

Example 6

(||) x y = case x of
True → True
False → y

in uncurried form becomes:
(||) a = case a of

(x, y) → case x of
True → True
False → y

¤
Combining MP-constraint reduction rules with the uncurrying

transformation makes Sat α equivalent in power to Prop (Sat α).
This simplification reduces the number of different propositional
constraints, making fixed-point computations faster. In the RE-
constraint system uncurrying would do no harm, but it would be
of no use, as no additional simplification rules would apply.

4.3 Comparison of Constraint Systems
As we discussed in §3.7, it is not possible to use BP-constraints, as
they do not have finite chains of refinement. Both RE-constraints
and MP-constraints are capable of expressing a wide range of
value-sets, but neither subsumes the other. We give examples where
one constraint language can differentiate between a pair of values,
and the other cannot.

Example 7
Let v1 = (T:[ ]) and v2 = (T:T:[ ]) and consider the MP-constraint
{(:) Any} ? { [ ]}. This constraint is satisfied by v1 but not by v2.
No proposition over RE-constraints can separate these values. ¤

Example 8
Consider a data type:

data Tree α = Branch{ left :: Tree α, right :: Tree α}
| Leaf { leaf :: α}

and two values of the type Tree Bool

v1 = Branch (Leaf True ) (Leaf False)
v2 = Branch (Leaf False) (Leaf True )

The RE-constraint (left∗·leaf ÃTrue) is satisfied by v1 but not v2.
No MP-constraint separates the two values. ¤

We have implemented both constraint systems in Catch. Factors
to consider when choosing which constraint system to use include:
how readable the constraints are, expressive power, implementation
complexity and scalability. In practice the issue of scalability is
key: how large do constraints become, how quickly can they be
manipulated, how expensive is their simplification. Catch08 uses
MP-constraints by default, as they allow much larger examples to
be checked.
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5. Results and Evaluation
The best way to see the power of Catch is by example. §5.1 dis-
cusses in general how some programs may need to be modified to
obtain provable safety. §5.2 investigates all the examples from the
Imaginary section of the Nofib suite (Partain et al. 2008). To il-
lustrate results for larger and widely-used applications, §5.3 inves-
tigates the FiniteMap library, §5.4 investigates the HsColour pro-
gram and §5.5 reports on XMonad. In all cases our defunctionali-
sation method successfully removes all higher-order functions.

5.1 Modifications for Verifiable Safety
Take the following example:

average xs = sum xs `div̀ length xs

If xs is [ ] then a division by zero occurs, modelled in Catch as a
pattern-match error. One small local change could be made which
would remove this pattern match error:

average xs = if null xs then 0 else sum xs `div̀ length xs

Now if xs is [ ], the program simply returns 0, and no pattern match
error occurs. In general, pattern-match errors can be avoided in two
ways:

Widen the domain of definition: In the example, we widen the
domain of definition for the average function. The modification is
made in one place only – in the definition of average itself.

Narrow the domain of application: In the example, we narrow
the domain of application for the div function. Note that we narrow
this domain only for the div application in average – other div
applications may remain unsafe. Another alternative would be to
narrow the domain of application for average, ensuring that [ ] is
not passed as the argument. This alternative would require a deeper
understanding of the flow of the program, requiring rather more
work.

In the following sections, where modifications are required, we
prefer to make the minimum number of changes. Consequently, we
widen the domain of definition.

5.2 Nofib Benchmark Tests
The entire Nofib suite (Partain et al. 2008) is large. We concentrate
on the ‘Imaginary’ section. These programs are all under a page of
text, excluding any Prelude or library definitions used, and particu-
larly stress list operations and numeric computations.

Results using MP-constraints are given in Table 1. Using RE-
constraints, only 8 programs can be proven safe within 10 minutes,
even after the modifications described later in this section. Only
four programs contain no calls to error as all pattern-matches are
exhaustive. Four programs use the list-indexing operator (!!), which
requires the index to be non-negative and less than the length of
the list; Catch can only prove this condition if the list is infinite.
Eight programs include applications of either head or tail, most
of which can be proven safe. Seven programs have incomplete
patterns, often in a where binding and Catch performs well on
these. Nine programs use division, with the precondition that the
divisor must not be zero; most of these can be proven safe.

Three programs have preconditions on the main function, all of
which state that the test parameter must be a natural number. In all
cases the generated precondition is a necessary one – if the input
violates the precondition then pattern-match failure will occur.

We now discuss general modifications required to allow Catch
to begin checking the programs, followed by the six programs
which required changes. We finish with the Digits of E2 program
– a program with complex pattern matching that Catch is able to
prove safe without modification.

Table 1. Table of results
Name is the name of the checked program (a starred name indicates
that changes were made before safe pattern-matching could be
verified); Src is the number of lines in the original source code;
Core is the number of lines of first-order Core, including all needed
Prelude and library definitions, just before analysis; Err is the
number of calls to error (missing pattern cases); Pre is the number
of functions which have a precondition which is not simply ‘True’;
Sec is the time taken for transformations and analysis; Mb is the
maximum residency of Catch at garbage-collection time.

Name Src Core Err Pre Sec Mb

Bernoulli* 35 652 5 11 4.1 0.8
Digits of E1* 44 377 3 8 0.3 0.6
Digits of E2 54 455 5 19 0.5 0.8
Exp3-8 29 163 0 0 0.1 0.1
Gen-Regexps* 41 776 1 1 0.3 0.4
Integrate 39 364 3 3 0.3 1.9
Paraffins* 91 1153 2 2 0.8 1.9
Primes 16 241 6 13 0.2 0.1
Queens 16 283 0 0 0.2 0.2
Rfib 9 100 0 0 0.1 1.7
Tak 12 155 0 0 0.1 0.1
Wheel Sieve 1* 37 570 7 10 7.5 0.9
Wheel Sieve 2* 45 636 2 2 0.3 0.6
X2n1 10 331 2 5 1.8 1.9

FiniteMap* 670 1829 13 17 1.6 1.0
HsColour* 823 5060 4 9 2.1 2.7

Modifications for Checking Take a typical benchmark, Primes.
The main function is:

main = do [arg ] ← getArgs
print $ primes !! (read arg)

The first unsafe pattern is [arg ] ← getArgs, as getArgs is a
primitive which may return any value. Additionally, if read fails
to parse the value extracted from getArgs, it will evaluate to ⊥.
Instead, we check the revised program:

main = do args ← getArgs
case map reads args of

[[(x, s)]] | all isSpace s → print $ primes !! x
→ putStrLn "Bad command line"

Instead of crashing on malformed command line arguments, the
modified program informs the user.

Bernoulli This program has one instance of tail (tail x). MP-
constraints are unable to express that a list must be of at least length
two, so Catch conservatively strengthens this to the condition that
the list must be infinite – a condition that Bernoulli does not satisfy.
One remedy is to replace tail (tail x) with drop 2 x. After
this change, the program still has several non-exhaustive pattern
matches, but all are proven safe.

Digits of E1 This program contains the following equation:

ratTrans (a, b, c, d) xs |
((signum c ≡ signum d) || (abs c < abs d)) &&
(c + d) ∗ q 6 a + b && (c + d) ∗ q + (c + d) > a + b

= q : ratTrans (c, d, a− q ∗ c, b− q ∗ d) xs
where q = b `div̀ d

Catch is able to prove that the division by d is only unsafe if both
c and d are zero, but it is not able to prove that this invariant is
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maintained. Widening the domain of application of div allows the
program to be proved safe.

As the safety of this program depends on quite deep results in
number theory, it is no surprise that it is beyond the scope of an
automatic checker such as Catch.

Gen-Regexps This program expects valid regular expressions as
input. There are many ways to crash this program, including enter-
ing "", "[" or "<". One potential error comes from head ◦ lines,
which can be replaced by takeWhile (6≡ ’\n’). Two potential er-
rors take the form (a, : b) = span f xs. At first glance this
pattern definition is similar to the one in risers. But here the pat-
tern is only safe if for one of the elements in the list xs, f returns
True. The test f is actually (6≡ ’-’), and the only safe condition
Catch can express is that xs is an infinite list. With the amendment
(a, b) = safeSpan f xs, where safeSpan is defined by:

safeSpan p xs = (a, drop 1 b) where (a, b) = span p xs

Catch verifies pattern safety.

Wheel Sieve 1 This program defines a data type Wheel, and a
function sieve:

data Wheel = Wheel Int [ Int ]

sieve :: [Wheel ] → [ Int] → [ Int ] → [Int ]

The lists are infinite, and the integers are positive, but the pro-
gram is too complex for Catch to infer these properties in full. To
prove safety a variant of mod is required which does not raise divi-
sion by zero and a pattern in notDivBy has to be completed. Even
with these two modifications, Catch takes 7.5 seconds to check the
other non-exhaustive pattern matches.

Wheel Sieve 2 This program has similar datatypes and invariants,
but much greater complexity. Catch is able to prove very few of the
necessary invariants. Only after widening the domain of definition
in three places – replacing tail with drop 1, head with a version
returning a default on the empty list, and mod with a safe variant –
is Catch able to prove safety.

Paraffins Again the program can only be validated by Catch after
modification. There are two reasons: laziness and arrays. Laziness
allows the following odd-looking definition:

radical generator n = radicals undefined
where radicals unused = big memory computation

If radicals had a zero-arity definition it would be computed
once and retained as long as there are references to it. To prevent
this behaviour, a dummy argument (undefined) is passed. If the
analysis was more lazy (as discussed in §3.4) then this example
would succeed using Catch. As it is, simply changing undefined to
() resolves the problem.

The Paraffins program uses the function array::Ix a ⇒ (a, a) →
[(a, b)] → Array a b which takes a list of index/value pairs and
builds an array. The precondition on this function is that all indexes
must be in the range specified. This precondition is too complex for
Catch, but simply using listArray, which takes a list of elements one
after another, the program can be validated. Use of listArray actu-
ally makes the program shorter and more readable. The array index-
ing operator (!) is also troublesome. The precondition requires that
the index is in the bounds given when the array was constructed,
something Catch does not currently model.

Digits of E2 This program is quite complex, featuring a number
of possible pattern-match errors. To illustrate, consider the follow-
ing fragment:

carryPropagate base (d : ds) = . . .
where carryguess = d `div̀ base

remainder = d `mod̀ base
nextcarry : fraction = carryPropagate (base + 1) ds

There are four potential pattern-match errors in as many lines.
Two of these are the calls to div and mod, both requiring base
to be non-zero. A possibly more subtle pattern match error is the
nextcarry : fraction left-hand side of the third line. Catch is able to
prove that none of these pattern-matches fails. Now consider:

e = ("2."++) $
tail ◦ concat $
map (show ◦ head) $
iterate (carryPropagate 2 ◦map (10∗) ◦ tail) $
2 : [1, 1 . . ]

Two uses of tail and one of head occur in quite complex functional
pipelines. Catch is again able to prove that no pattern-match fails.

5.3 The FiniteMap library
The FiniteMap library for Haskell has been widely distributed for
over 10 years. The library uses balanced binary trees, based on
(Adams 1993). There are 14 non-exhaustive pattern matches.

The first challenge is that there is no main function. Catch uses
all the exports from the library, and checks each of them as if it had
main status.

Catch is able to prove that all but one of the non-exhaustive
patterns are safe. The definition found unsafe has the form:

delFromFM (Branch key . . .) del key | del key > key = . . .
| del key < key = . . .
| del key ≡ key = . . .

At first glance the cases appear to be exhaustive. The law of
trichotomy leads us to expect one of the guards to be true. However,
the Haskell Ord class does not enforce this law. There is nothing to
prevent an instance for a type with partially ordered values, some
of which are incomparable. So Catch cannot verify the safety of
delFromFM as defined as above.

The solution is to use the compare function which returns one
of GT, EQ or LT. This approach has several advantages: (1) the
code is free from non-exhaustive patterns; (2) the assumption of
trichotomy is explicit in the return type; (3) the library is faster.

5.4 The HsColour Program
Artificial benchmarks are not necessarily intended to be fail-proof.
But a real program, with real users, should never fail with a pattern-
match error. We have taken the HsColour program3 and analysed
it using Catch. HsColour has 12 modules, is 5 years old and has
had patches from 6 different people. We have contributed patches
back to the author of HsColour, with the result that the development
version can be proved free from pattern-match errors.

Catch required 4 small patches to the HsColour program be-
fore it could be verified free of pattern-match failures. Details of
the checking process are given in Table 1. Of the 4 patches, 3 were
genuine pattern-match errors which could be tripped by construct-
ing unexpected input. The issues were: (1) read was called on a
preferences file from the user, this could crash given a malformed
preferences file; (2) by giving the document consisting of a sin-
gle double quote character ", and passing the “-latex” flag, a crash
occurred; (3) by giving the document (‘), namely open bracket,
backtick, close bracket, and passing “-html -anchor” a crash oc-
curred. The one patch which did not (as far as we are able to ascer-
tain) fix a real bug could still be considered an improvement, and
was minor in nature (a single line).

3 http://www.cs.york.ac.uk/fp/darcs/hscolour/
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Examining the read error in more detail, by default Catch out-
puts the potential error message, and a list of potentially unsafe
functions in a call stack:

Checking “Prelude.read: no parse”
Partial Prelude.read$252
Partial Language.Haskell.HsColour.Colourise.parseColourPrefs
...
Partial Main.main

We can see that parseColourPrefs calls read, which in turn calls
error. The read function is specified to crash on incorrect parses,
so the blame probably lies in parseColourPrefs. By examining this
location in the source code we are able to diagnose and correct
the problem. Catch optionally reports all the preconditions it has
deduced, although in our experience problems can usually be fixed
from source-position information alone.

5.5 The XMonad Program
XMonad (Stewart and Sjanssen 2007) is a window manager, which
automatically manages the layout of program windows on the
screen. The central module of XMonad contains a pure API, which
is used to manipulate a data structure containing information re-
garding window layout. Catch has been run on this central module,
several times, as XMonad has evolved. The XMonad API con-
tains 36 exported functions, most of which are intended to be total.
Within the implementation of these functions, there are a number
of incomplete patterns and calls to partial functions.

When the Catch tool was first used, it detected six issues which
were cause for concern – including unsafe uses of partial func-
tions, API functions which contained incomplete pattern matches,
and unnecessary assumptions about the Ord class. All these is-
sues were subsequently fixed. The XMonad developers have said:
“QuickCheck and Catch can be used to provide mechanical sup-
port for developing a clean, orthogonal API for a complex system”
(Stewart and Sjanssen 2007).

In E-mail correspondence, the XMonad developers have sum-
marised their experience using Catch as follows: “XMonad made
heavy use of Catch in the development of its core data structures
and logic. Catch caught several suspect error cases, and helped us
improve robustness of the window manager core by weeding out
partial functions. It helps encourage a healthy skepticism to partial-
ity, and the quality of code was improved as a result. We’d love to
see a partiality checker integrated into GHC.”

6. Related Work
6.1 Mistake Detectors
There has been a long history of writing tools to analyse programs
to detect potential bugs, going back at least to the classic C Lint
tool (Johnson 1978). In the functional arena there is the Dialyzer
tool (Lindahl and Sagonas 2004) for Erlang (Virding et al. 1996).
The aim is to have a static checker that works on unmodified code,
with no additional annotations. However, a key difference is that
in Dialyzer all warnings indicate a genuine problem that needs to
be fixed. Because Erlang is a dynamically typed language, a large
proportion of Dialyzer’s warnings relate to mistakes a type checker
would have detected.

The Catch tool tries to prove that error calls are unreachable.
The Reach tool (Naylor and Runciman 2007) also checks for reach-
ability, trying to find values which will cause a certain expression
to be evaluated. Unlike Catch, if the Reach tool cannot find a way
to reach an expression, this is no guarantee that the expression is
indeed unreachable. So the tools are complementary: Reach can be
used to find examples causing non-exhaustive patterns to fail, Catch
can be used to prove there are no such examples.

6.2 Proving Incomplete Patterns Safe
Despite the seriousness of the problem of pattern matching, there
are very few other tools for checking pattern-match safety. This
paper has similar goals to Mitchell and Runciman (2007), but
many key design decisions are radically different. The difference
in practice is that Catch08 supports full Haskell, can scale to much
larger examples and can feasibly be used on real programs. Some
of the reasons for these better results include a different fixed-point
mechanism, the use of MP-constraints and a superior translation
from Core.

The closest other work we are aware of is ESC/Haskell (Xu
2006) and its successor Sound Haskell (Xu et al. 2007). The Sound
Haskell approach requires the programmer to give explicit pre-
conditions and contracts which the program obeys. Contracts have
more expressive power than our constraints – one of the examples
involves an invariant on an ordered list, something beyond Catch.
But the programmer has more work to do. We eagerly await proto-
types of either tool, to permit a full comparison against Catch.

6.3 Eliminating Incomplete Patterns
One way to guarantee that a program does not crash with an incom-
plete pattern is to ensure that all pattern matching is exhaustive. The
GHC compiler (The GHC Team 2007) has an option flag to warn of
any incomplete patterns. Unfortunately the Bugs section (12.2.1) of
the manual notes that the checks are sometimes wrong, particularly
with string patterns or guards, and that this part of the compiler
“needs an overhaul really” (The GHC Team 2007). A more precise
treatment of when warnings should be issued is given in Maranget
(2007). These checks are only local: defining head will lead to a
warning, even though the definition is correct; using head will not
lead to a warning, even though it may raise a pattern-match error.

A more radical approach is to build exhaustive pattern matching
into the design of the language, as part of a total programming
system (Turner 2004). The Catch tool could perhaps allow the
exhaustive pattern matching restriction to be lifted somewhat.

6.4 Type System Safety
One method for specifying properties about functional programs is
to use the type system. This approach is taken in the tree automata
work done on XML and XSLT (Tozawa 2001), which can be seen
as an algebraic data type and a functional language. Another soft
typing system with similarities is by Aiken and Murphy (1991), on
the functional language FL. This system tries to assign a type to
each function using a set of constructors, for example head takes
the type Cons and not Nil.

Types can sometimes be used to explicitly encode invariants on
data in functional languages. One approach is the use of phantom
types (Fluet and Pucella 2002), for example a safe variant of tail can
be written as in Figure 15. The List type is not exported, ensuring
that all lists with a Cons tag are indeed non-empty. The types Cons
and Unknown are phantom types – they exist only at the type level,
and have no corresponding value.

Using GADTs (Peyton Jones et al. 2006), an encoding of lists
can be written as in Figure 16. Notice that fromList requires a
locally quantified type. The type-directed approach can be pushed
much further with dependent types, which allow types to depend
on values. There has been much work on dependent types, using
undecidable type systems (McBride and McKinna 2004), using
extensible kinds (Sheard 2004) and using type systems restricted
to a decidable fragment (Xi and Pfenning 1999). The downside to
all these type systems is that they require the programmer to make
explicit annotations, and require the user to learn new techniques
for computation.
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data Cons
data Unknown
newtype List α τ = List [α ]

cons :: α → [α ] → List α Cons
cons a as = List (a : as)

nil :: List α Unknown
nil = List [ ]

fromList :: [α ] → List α Unknown
fromList xs = List xs

safeTail :: List α Cons → [α ]
safeTail (List (a : as)) = as

Figure 15. A safeTail function with Phantom types.

data ConsT α
data NilT

data List α τ where
Cons :: α → List α τ → List α (ConsT τ)
Nil :: List α NilT

safeTail :: List α (ConsT τ) → List α τ
safeTail (Cons a b) = b

fromList :: [α ] → (∀ τ • List α τ → β) → β
fromList [ ] f = f Nil
fromList (x : xs) f = fromList xs (f ◦ Cons x)

Figure 16. A safeTail function using GADTs.

7. Conclusions and Future Work
We have described the design, implementation and application of
Catch, an analysis tool for safe pattern-matching in Haskell 98.
Two key design decisions in Catch simplify the analysis and make
it scalable: (1) the target of analysis is a very small, first-order
core language; (2) there are finitely many value-set-defining con-
straints per type. Decision (1) requires a translation from the full
language that avoids the introduction of analysis bottlenecks such
as a mini-interpreter. Decision (2) inevitably limits the expressive
power of constraints; yet it does not prevent the expression of uni-
form recursive constraints on the deep structure of values, as in
MP-constraints.

Practical evaluation, using Catch to analyse widely distributed
examples in Haskell 98, confirms our claim to give results for
programs of moderate size written in the full language. But it
does also reveal a frequent need to make minor modifications to
programs, before Catch can verify pattern-match safety.

Outcomes of example applications could drive the exploration
of more powerful variants of MP-constraints, with a greater (but
still finite) number of expressible constraints per type. More de-
manding tests of scalability could include the application of Catch
to a Haskell compiler, or indeed to Catch itself.

Like many researchers, we are interested in narrowing the gap
between the exactness of constructive mathematics and the scala-
bility of practical programming systems. We hope that Catch or its
successors can provide a small but useful bridge crossing part of
that gap.
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