

Rational Models of Cognitive Control

Michael C. Mozer

**Institute of Cognitive Science and
Department of Computer Science
University of Colorado, Boulder**

Sachiko Kinoshita
Macquarie University

Mike Shettel
University of Colorado

Shaun Vecera
University of Iowa

Cognitive control

The ability to flexibly modulate cognitive and motor operations based on task demands.

Cognitive control

The ability to flexibly modulate cognitive and motor operations based on task demands.

Conventional perspective

Cognitive control involves loading a new program into the brain's CPU for each task.

Cognitive control

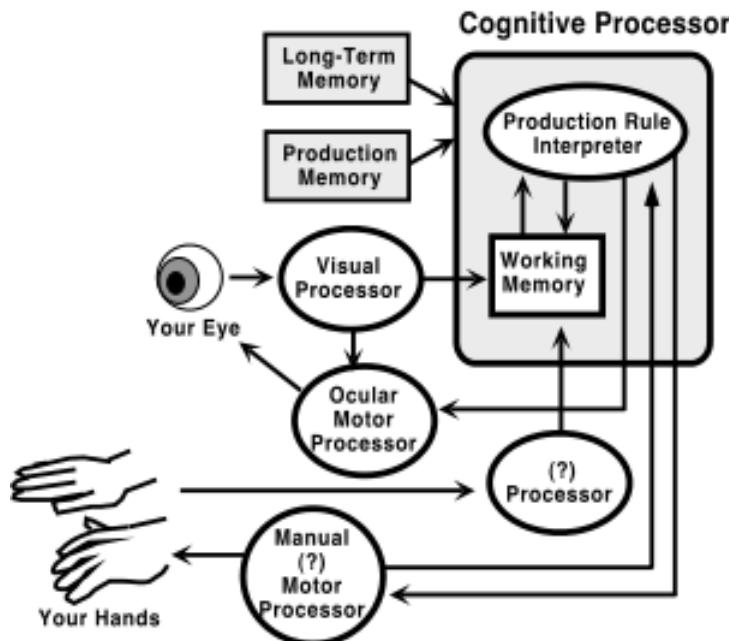
The ability to flexibly modulate cognitive and motor operations based on task demands.

Conventional perspective

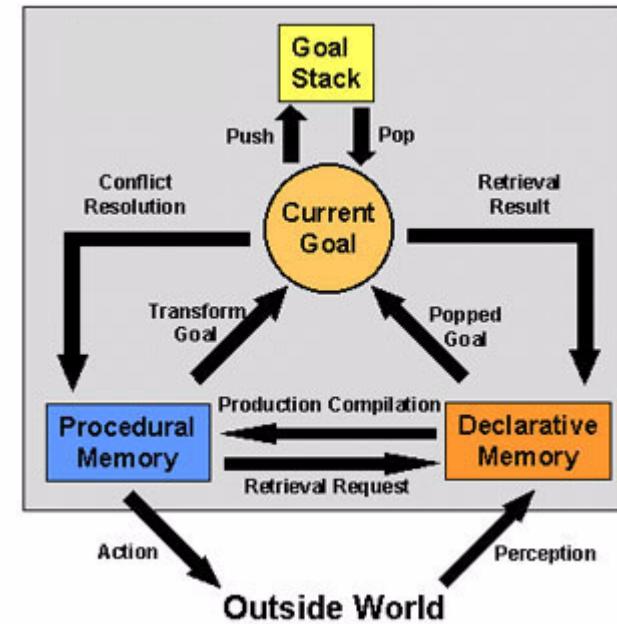
Cognitive control involves loading a new program into the brain's CPU for each task.

E.g., cognitive architectures

EPIC: Kieras & Meyer



ACT-R: Anderson



Cognitive control

The ability to flexibly modulate cognitive and motor operations based on task demands.

Conventional perspective

Cognitive control involves loading a new program into the brain's CPU for each task.

E.g., cognitive architectures

Our perspective

Cognitive control involves optimizing human performance to the task and to the structure of the environment.

Visual Search

Find the 20p coin in a handful of change.

Find your friend in a crowd.

Find a particular book in your library.

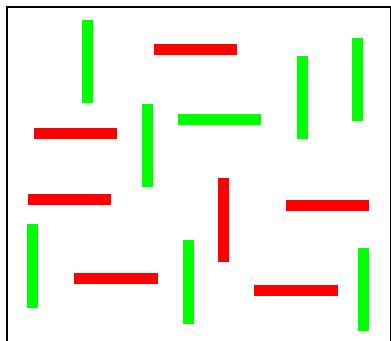
How is the visual system dynamically reconfigured to perform a remarkable variety of arbitrary tasks?

Control of Visual Attention

Control of Visual Attention

1. Focusing processing resources on task-relevant visual features and locations

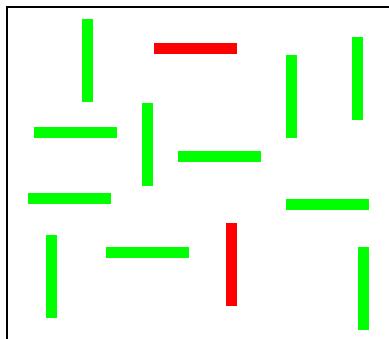
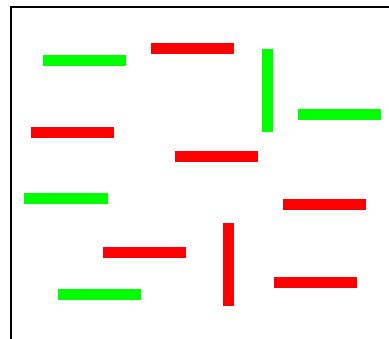
e.g., find the red vertical bar



Control of Visual Attention

1. Focusing processing resources on task-relevant visual features and locations
2. Fine tuning performance to the environment

e.g., find the red vertical bar



Control of Visual Attention

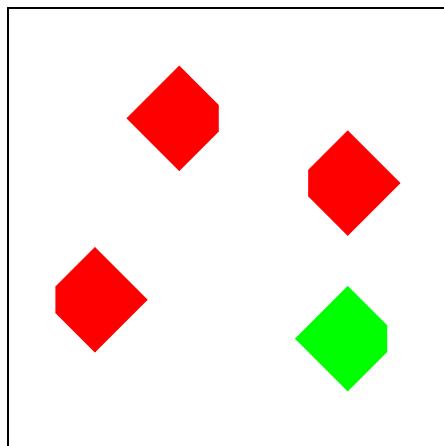
1. Focusing processing resources on task-relevant visual features and locations
2. Fine tuning performance to the environment

Two distinct problems?

Strategy: Study the latter to get a handle on the former

Attentional Adaptation (Maljkovic & Nakayama, 1994)

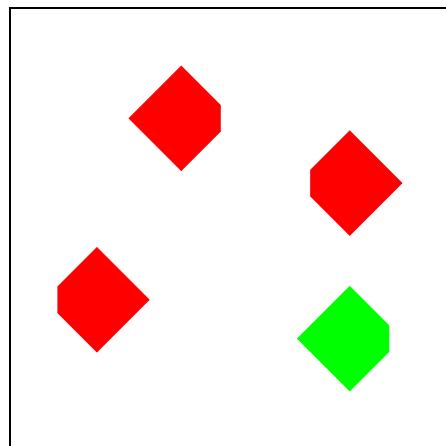
Is odd colored diamond notched on the left or right?



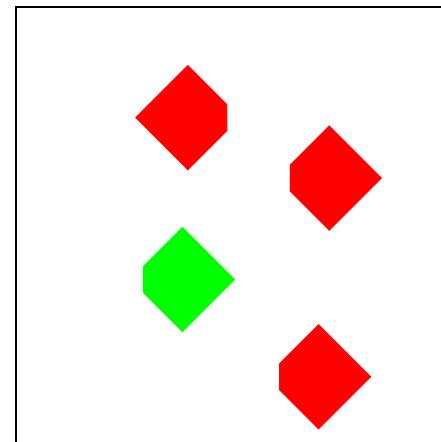
Attentional Adaptation (Maljkovic & Nakayama, 1994)

Is odd colored diamond notched on the left or right?

trial n



trial $n+1$

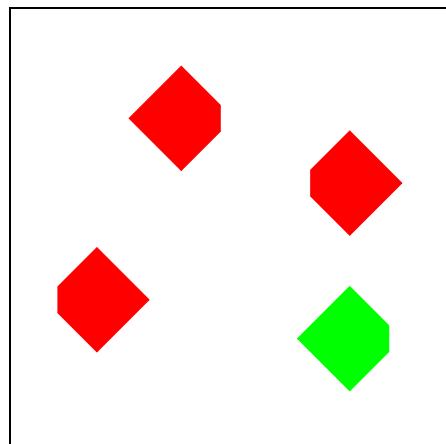


same
target
color

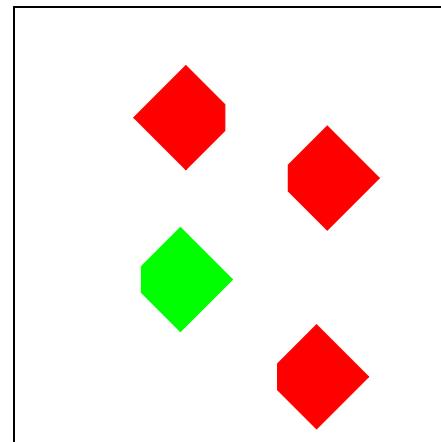
Attentional Adaptation (Maljkovic & Nakayama, 1994)

Is odd colored diamond notched on the left or right?

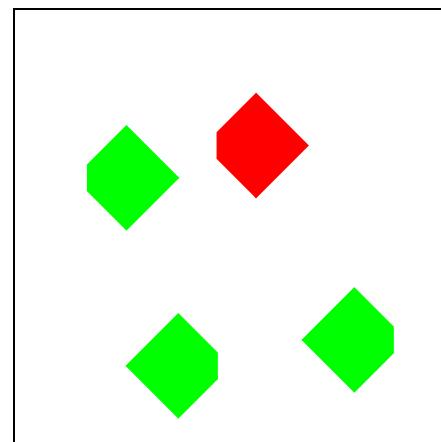
trial n



trial $n+1$

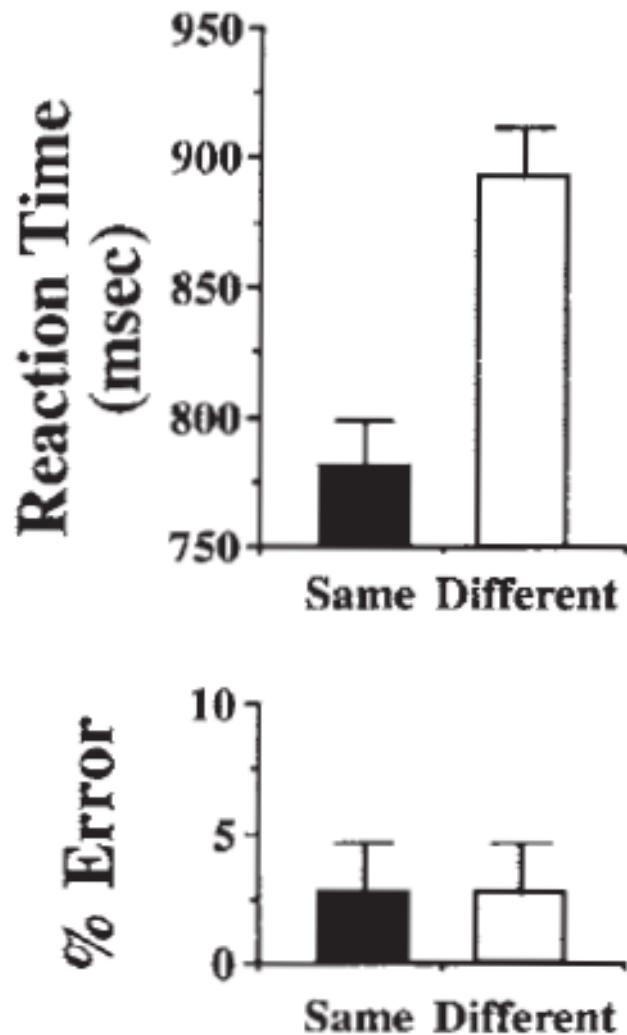


same
target
color



different
target
color

Attentional Adaptation (Maljkovic & Nakayama, 1994)



Why Does Repetition Facilitate Performance?

We view attentional control as optimizing performance to the environment in which an individual is operating.

Why Does Repetition Facilitate Performance?

We view attentional control as optimizing performance to the environment in which an individual is operating.

Two-Stage Process

1. Construct predictive (probabilistic) model of the environment based on past experience.
2. Tune control parameters of attention to optimize performance under the current environmental model.

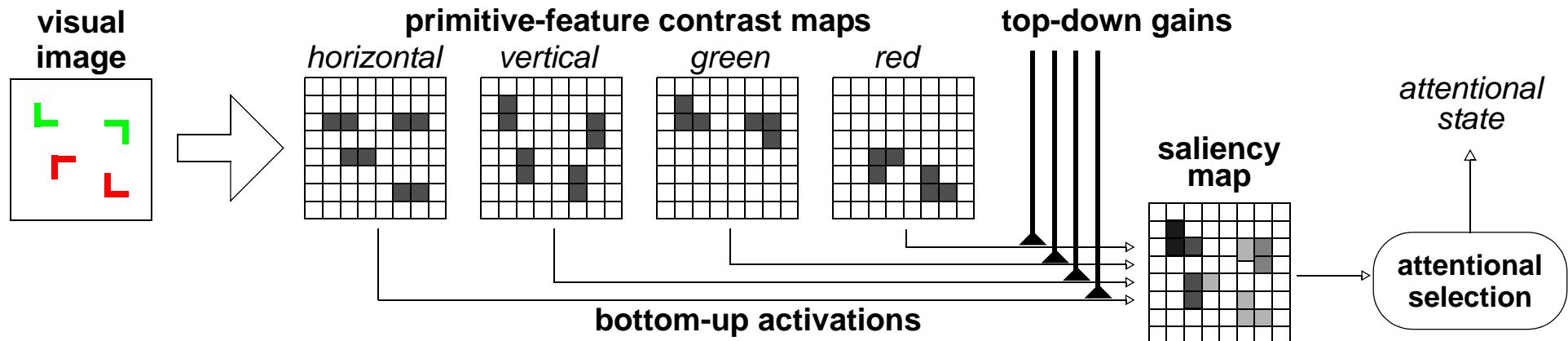
Why Does Repetition Facilitate Performance?

We view attentional control as optimizing performance to the environment in which an individual is operating.

Two-Stage Process

1. Construct predictive (probabilistic) model of the environment based on past experience.
2. Tune control parameters of attention to optimize performance under the current environmental model.

e.g., Itti et al. (1998); Koch & Ullman (1985); Mozer (1991); Wolfe (1994)



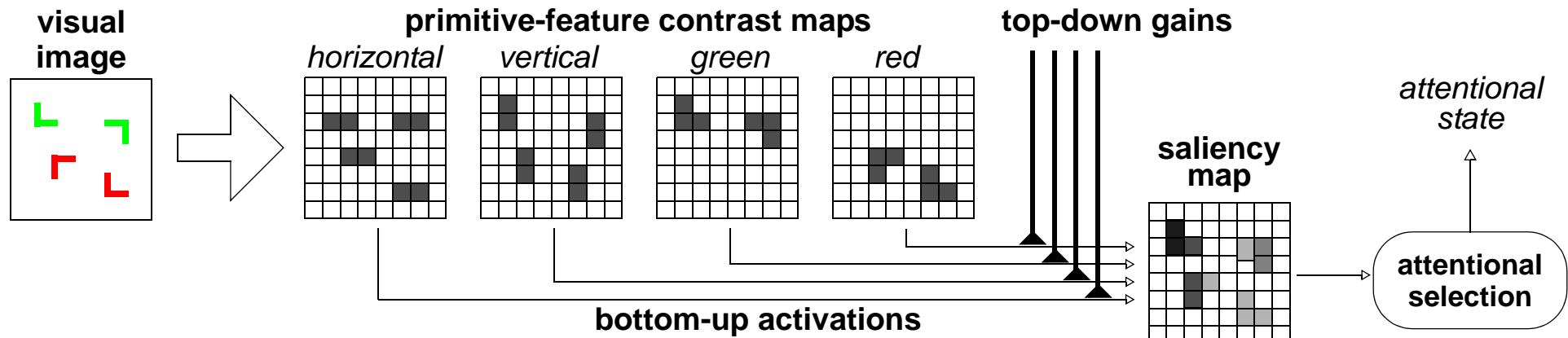
Why Does Repetition Facilitate Performance?

We view attentional control as optimizing performance to the environment in which an individual is operating.

Two-Stage Process

1. Construct predictive (probabilistic) model of the environment based on past experience.
2. Tune control parameters of attention to optimize performance under the current environmental model.

e.g., Itti et al. (1998); Koch & Ullman (1985); Mozer (1991); Wolfe (1994)



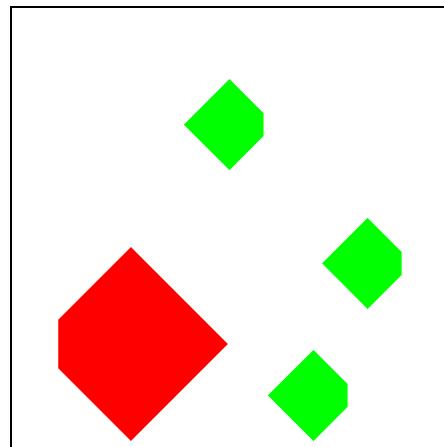
Modeling the Environment

Characterize environment via a probability distribution over configurations of target and distractor features

To simplify presentation, assume distractors are homogeneous.

Example

$T_{color} = \text{red}$
 $T_{size} = \text{large}$
 $T_{notch} = \text{left}$
 $D_{color} = \text{green}$
 $D_{size} = \text{small}$
 $D_{notch} = \text{right}$



Model

$$P(T_{color}, T_{size}, T_{notch}, D_{color}, D_{size}, D_{notch})$$

Model 1: Independent Features

$$P(T_{\text{color}}, T_{\text{size}}, T_{\text{notch}}, D_{\text{color}}, D_{\text{size}}, D_{\text{notch}}) = \\ P(T_{\text{color}}) P(D_{\text{color}}) P(T_{\text{size}}) P(T_{\text{notch}}) P(D_{\text{size}}) P(D_{\text{notch}})$$

Independence assumption is too strong to characterize natural environments.

Model 2: Full Joint Distribution

T_{color}	D_{color}	T_{size}	T_{notch}	D_{size}	D_{notch}	$P(.)$
<i>red</i>	<i>red</i>	<i>small</i>	<i>left</i>	<i>small</i>	<i>left</i>	
<i>green</i>	<i>red</i>	<i>small</i>	<i>left</i>	<i>small</i>	<i>left</i>	
<i>red</i>	<i>green</i>	<i>small</i>	<i>left</i>	<i>small</i>	<i>left</i>	
...	
<i>green</i>	<i>green</i>	<i>large</i>	<i>right</i>	<i>large</i>	<i>right</i>	

With 6 features, $2^6 - 1 = 63$ free parameters

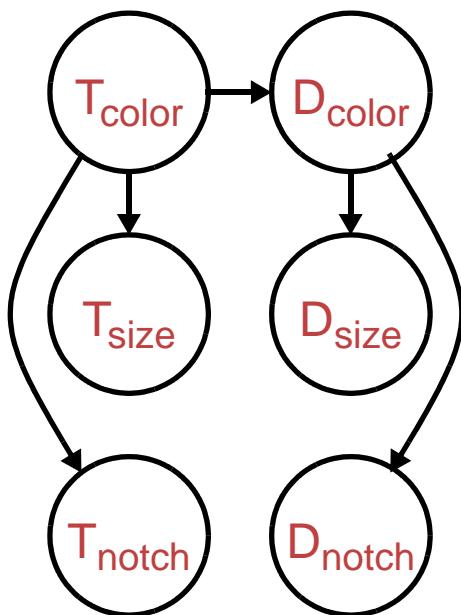
Requires large amount of experience to obtain accurate probability estimates.

Model 3: Task-Based Architecture

Model 3: Task-Based Architecture

Bayes net

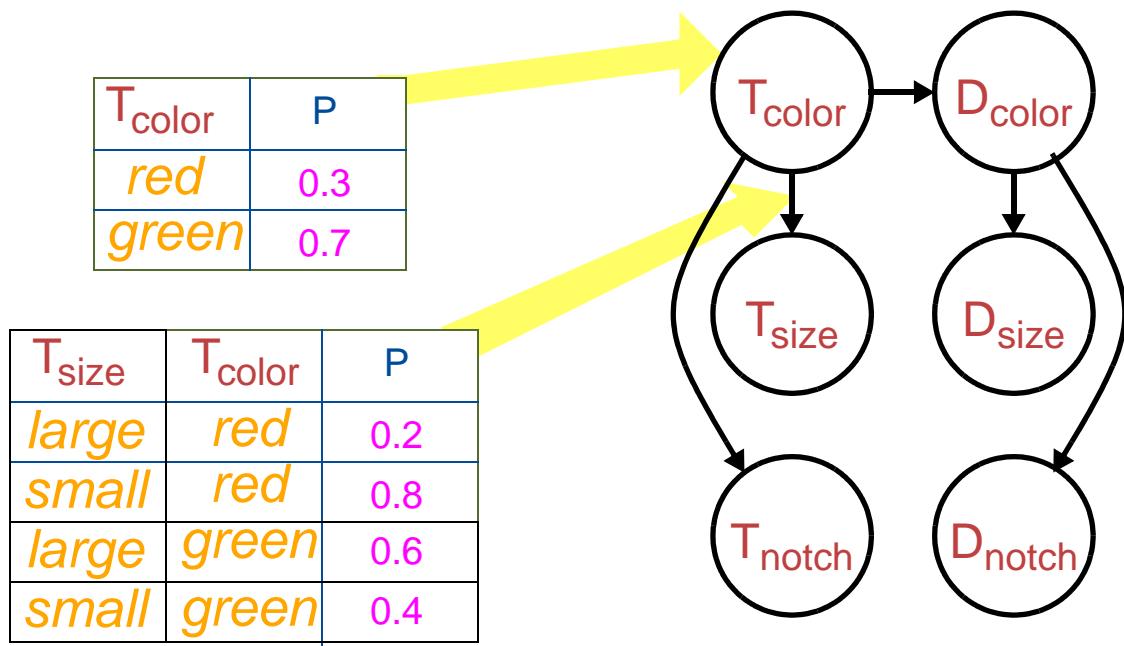
Efficient way of representing high-order probability distributions in terms of low-order distributions



Model 3: Task-Based Architecture

Bayes net

Efficient way of representing high-order probability distributions in terms of low-order distributions

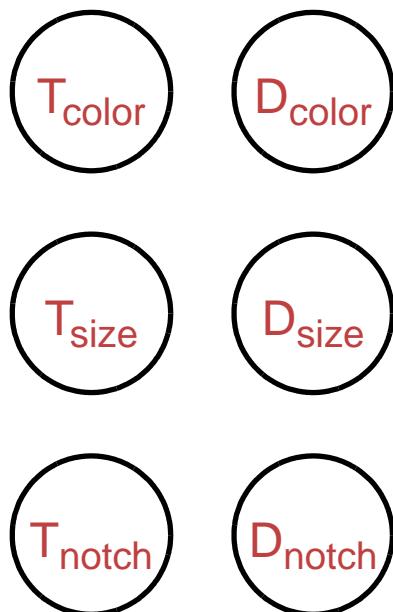


$$P(T_{color}, T_{size}, T_{notch}, D_{color}, D_{size}, D_{notch}) =$$

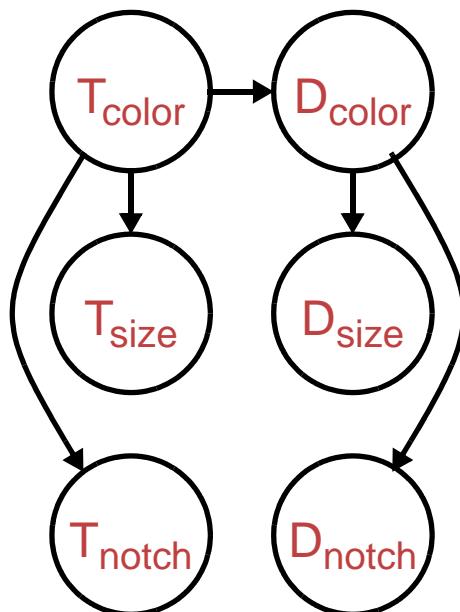
$$P(T_{color}) P(D_{color} | T_{color}) P(T_{size} | T_{color}) P(T_{notch} | T_{color}) P(D_{size} | D_{color})$$

$$P(D_{notch} | D_{color})$$

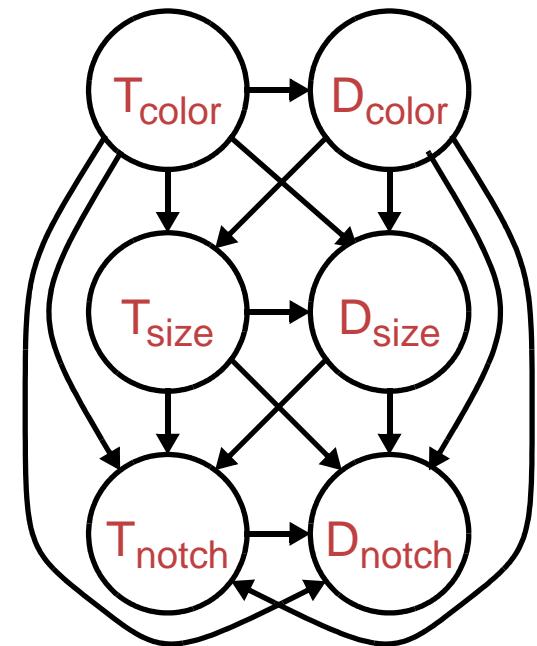
Comparing the Architectures



6 free
parameters

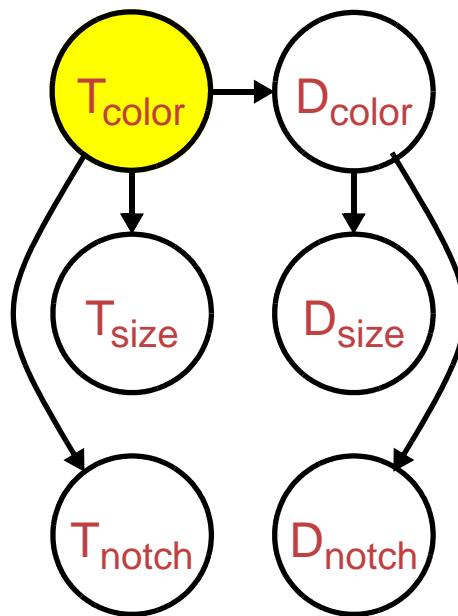


11 free
parameters



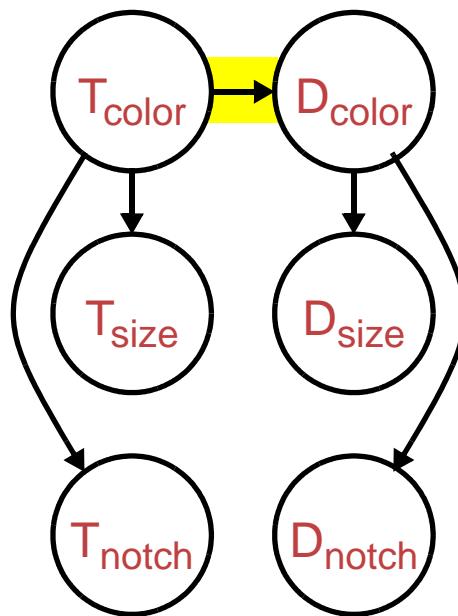
63 free
parameters

Key Assumptions of Task-Based Architecture



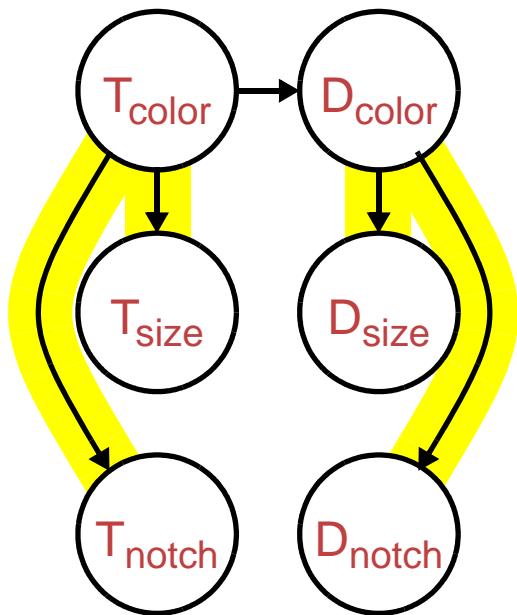
- Defining feature of target is root of tree.

Key Assumptions of Task-Based Architecture



- Defining feature of target is root of tree.
- Defining feature of target dominates defining feature of distractor.

Key Assumptions of Task-Based Architecture



- Defining feature of target is root of tree.
- Defining feature of target dominates defining feature of distractor.
- Defining feature of target dominates nondefining features of target, and likewise for distractors.

Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.

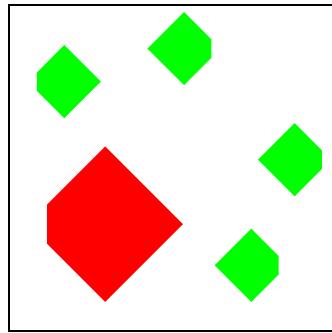
Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.
2. Generate trial sequence that replicates those used in experimental studies.

Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.
2. Generate trial sequence that replicates those used in experimental studies.
3. Following each trial, update environment model.

e.g.,



should increase

$$P(T_{\text{color}} = \text{red})$$

$$P(T_{\text{size}} = \text{large} | T_{\text{color}} = \text{red})$$

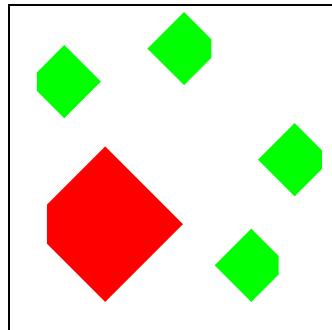
$$P(D_{\text{color}} = \text{green} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{notch}} = \text{right} | D_{\text{color}} = \text{green}) \dots$$

Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.
2. Generate trial sequence that replicates those used in experimental studies.
3. Following each trial, update environment model.

e.g.,



should increase

$$P(T_{\text{color}} = \text{red})$$

$$P(T_{\text{size}} = \text{large} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{color}} = \text{green} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{notch}} = \text{right} | D_{\text{color}} = \text{green}) \dots$$

Simplest scheme: parameter interpolation

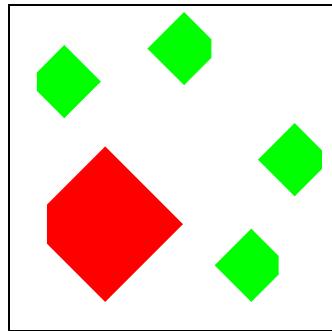
previous
env. model

current
trial

Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.
2. Generate trial sequence that replicates those used in experimental studies.
3. Following each trial, update environment model.

e.g.,



should increase

$$P(T_{\text{color}} = \text{red})$$

$$P(T_{\text{size}} = \text{large} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{color}} = \text{green} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{notch}} = \text{right} | D_{\text{color}} = \text{green}) \dots$$

Simplest scheme: parameter interpolation

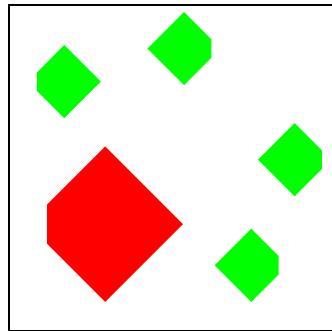
previous updated
env. model env. model

current
trial

Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.
2. Generate trial sequence that replicates those used in experimental studies.
3. Following each trial, update environment model.

e.g.,



should increase

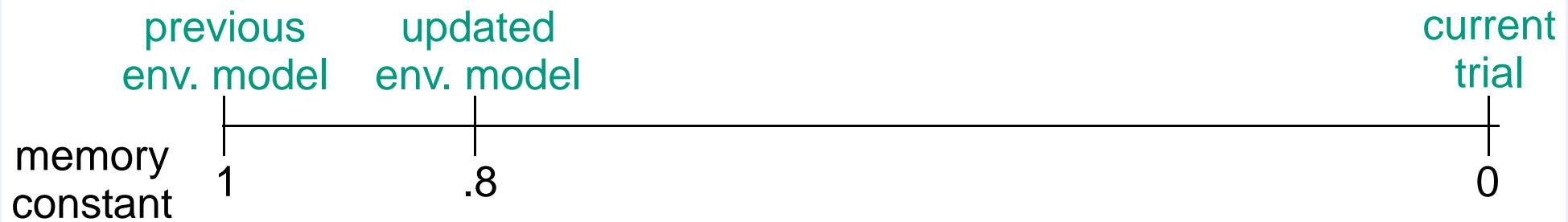
$$P(T_{\text{color}} = \text{red})$$

$$P(T_{\text{size}} = \text{large} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{color}} = \text{green} | T_{\text{color}} = \text{red})$$

$$P(D_{\text{notch}} = \text{right} | D_{\text{color}} = \text{green}) \dots$$

Simplest scheme: parameter interpolation



Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task description.
2. Generate trial sequence that replicates those used in experimental studies.
3. Following each trial, update environment model.
4. Following each update, optimize attentional control to the current environment model.

Rather than explicitly modeling this optimization process, we assume that it yields RTs that are faster to configurations that have higher probability.

$$RT \sim -\log[P(T_{color}, T_{size}, T_{notch}, D_{color}, D_{size}, D_{notch})]$$

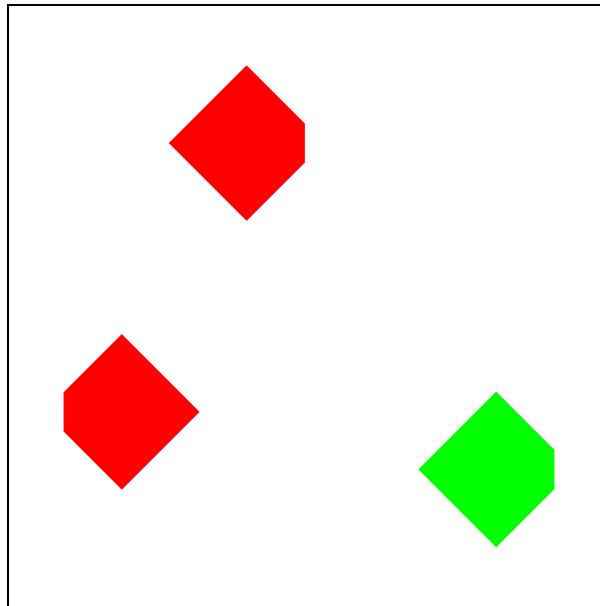
Use this assumption to predict RT on a given trial.

Maljkovic and Nakayama (1994), Experiment 5

Task

Search for color singleton in display of red and green diamonds.

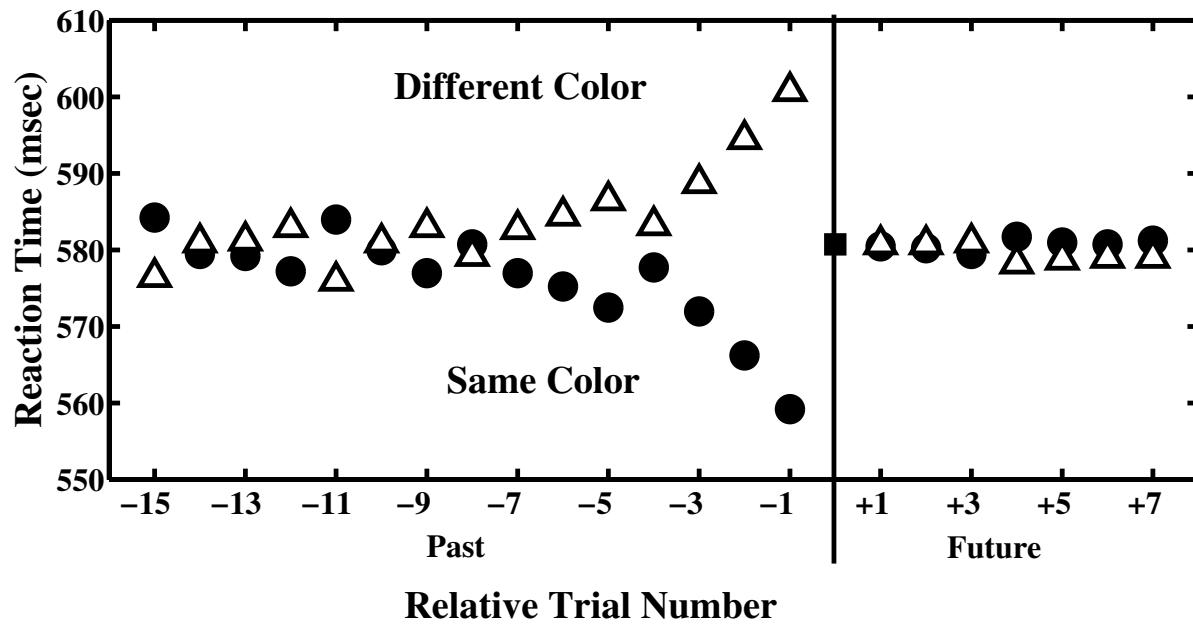
Report whether notch is on left or right.



How does color k trials back affect RT on current trial?

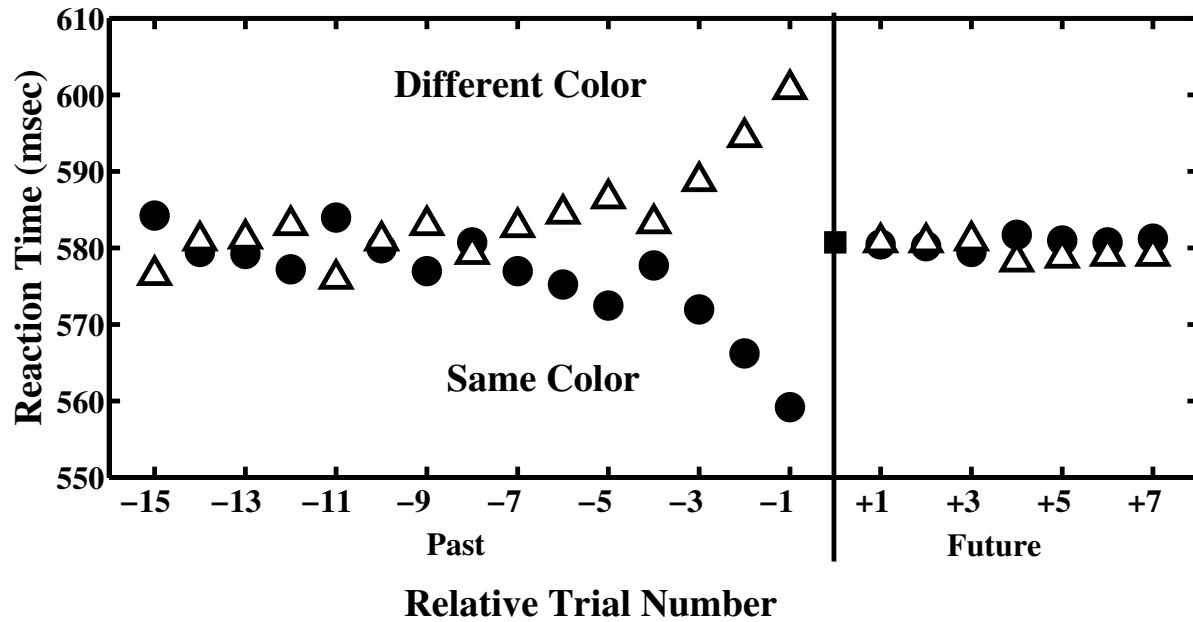
Maljkovic and Nakayama (1994), Experiment 5

Human
Data

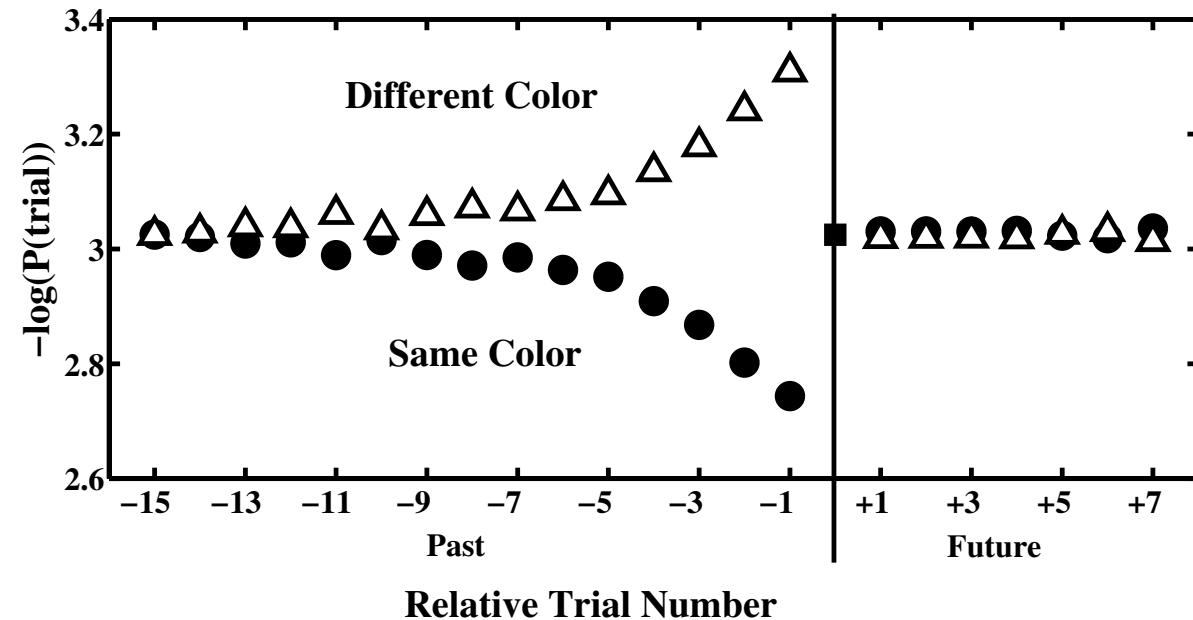


Maljkovic and Nakayama (1994), Experiment 5

Human
Data



Simulation

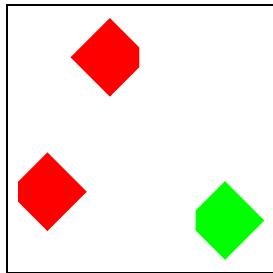
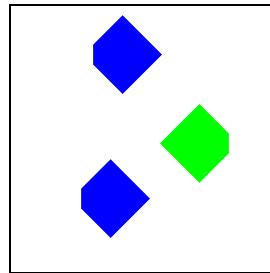
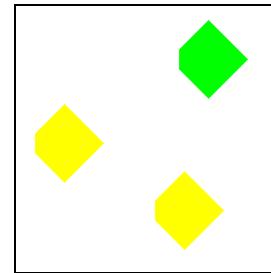
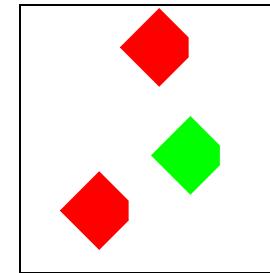
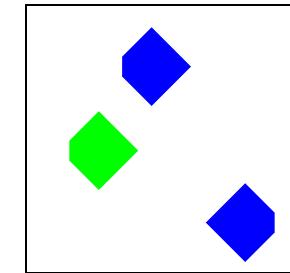
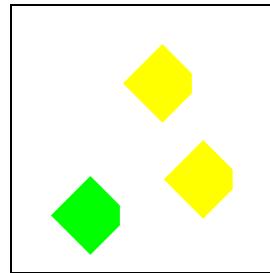


Maljkovic and Nakayama (1994), Experiment 8

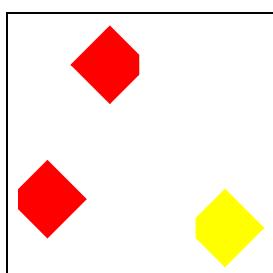
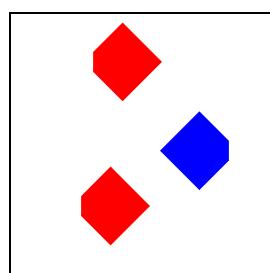
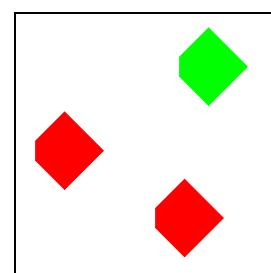
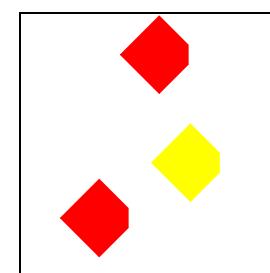
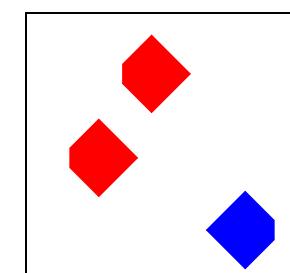
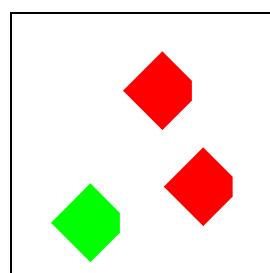
In last experiment, facilitation could be due to repetition of either target or distractor color.

In this experiment, four distinct colors.

Repeat target color up to 6 trials, changing distractor color.

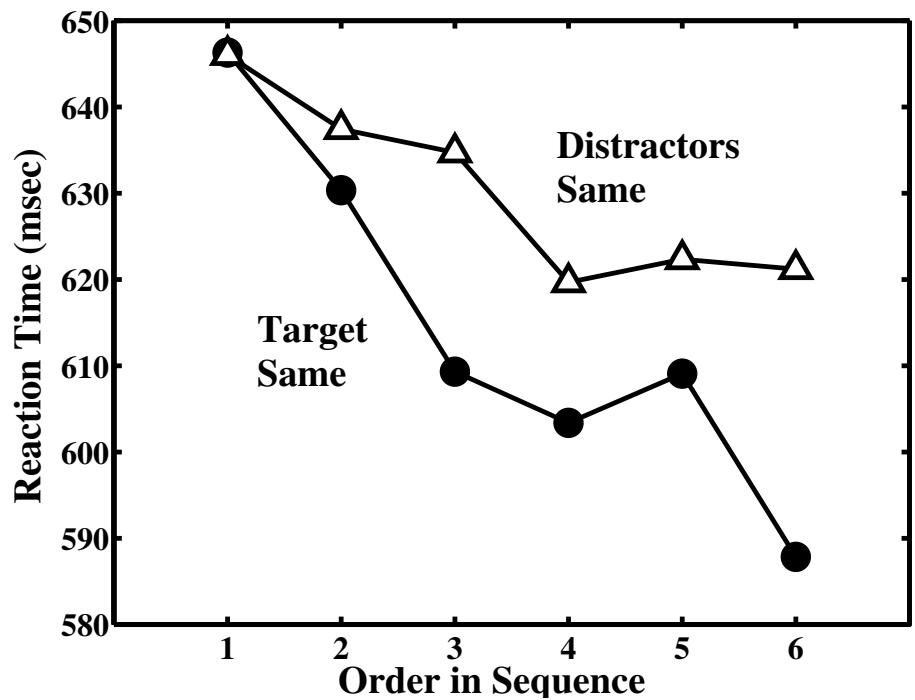


Repeat distractor color up to 6 trials, changing target color.



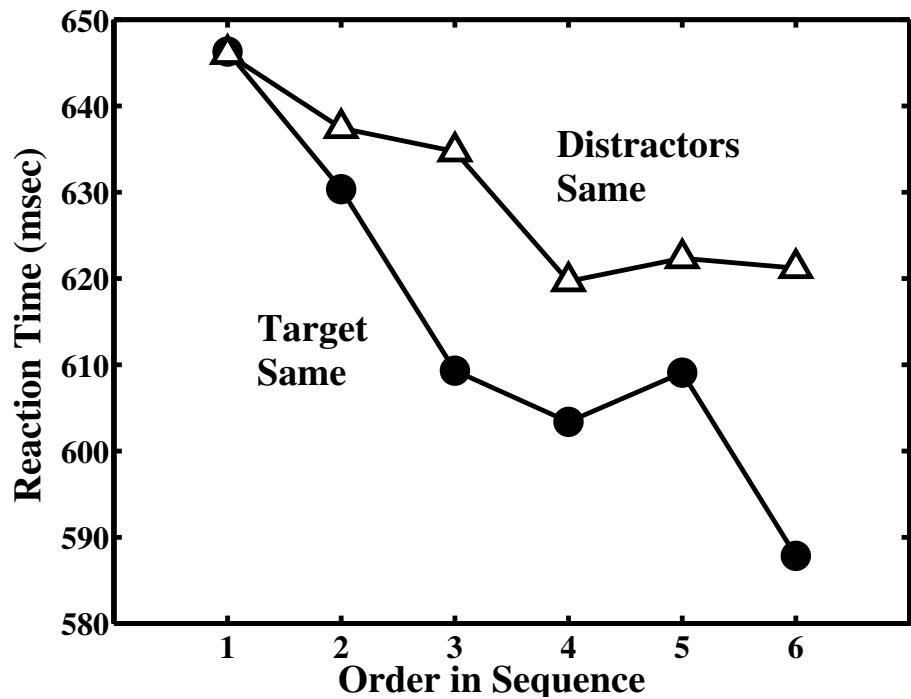
Maljkovic and Nakayama (1994), Experiment 8

Human Data

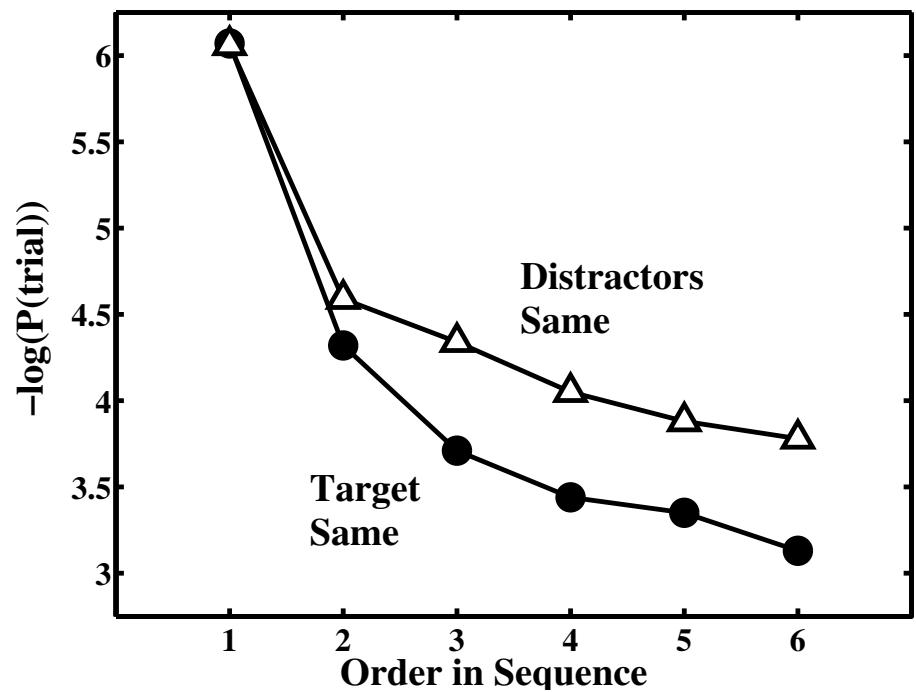


Maljkovic and Nakayama (1994), Experiment 8

Human Data



Simulation



In model, greater effect for target repetition due to dominance of target over distractor.

Huang, Holcombe, and Pashler (2004)

Previous experiments studied only one feature dimension.

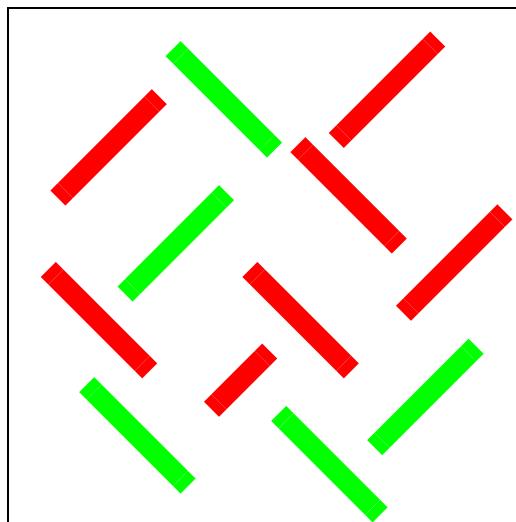
If stimuli vary on multiple dimensions, how do repetitions on one dimension interact with repetitions on another?

Task

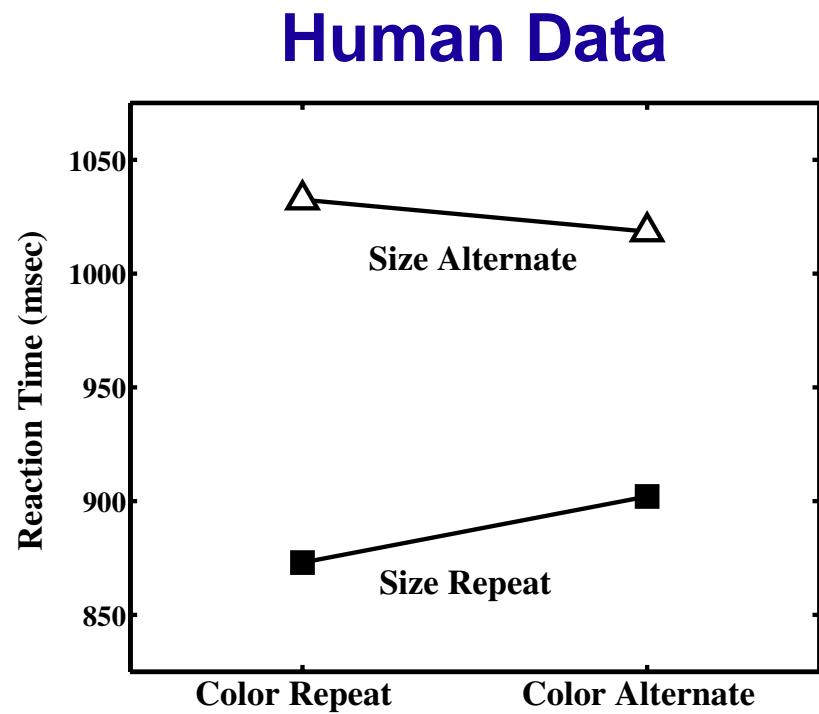
Search for singleton in size.

Report slant (left or right).

Color and orientation uncorrelated with size.



Huang, Holcombe, and Pashler (2004)

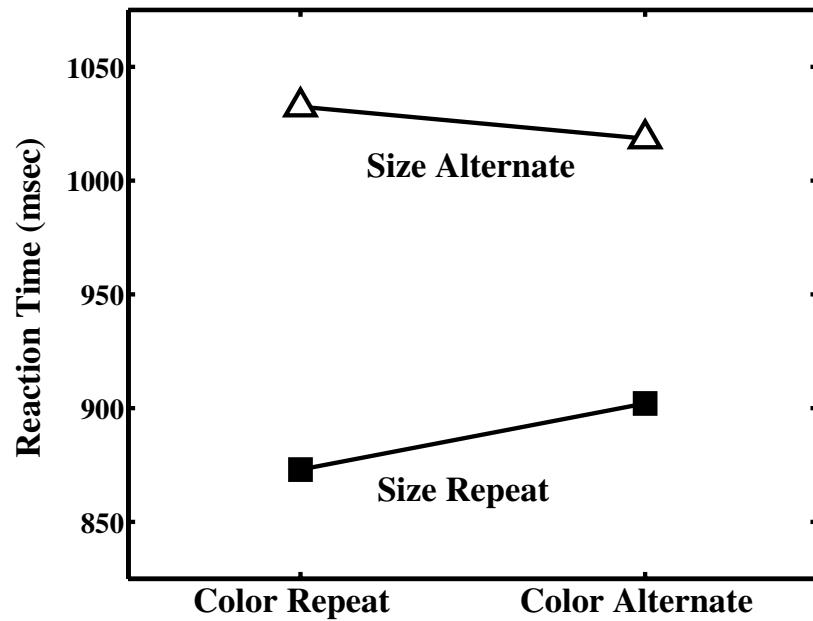


Repetition of defining feature (size) speeds response.

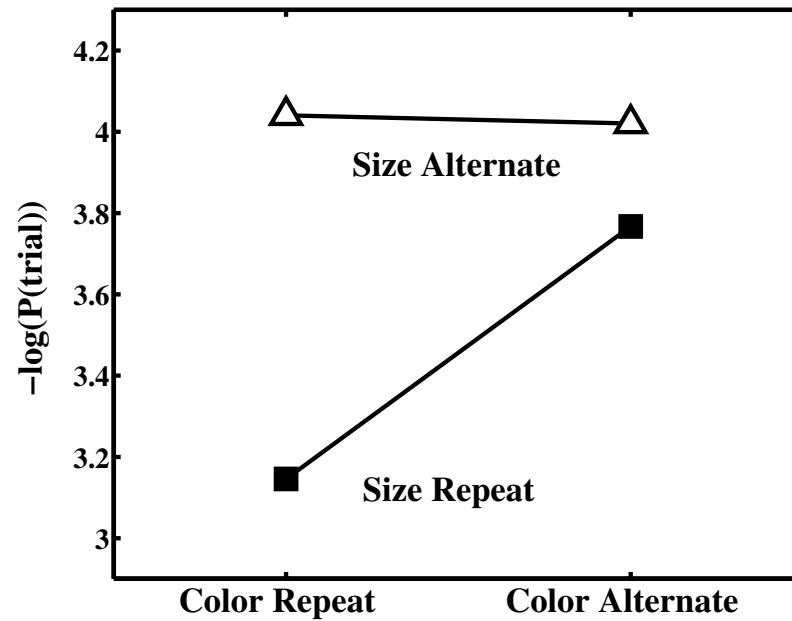
Repetition of nondefining feature (color) speeds response, but only if defining feature is repeated.

Huang, Holcombe, and Pashler (2004)

Human Data



Simulation



Repetition of defining feature (size) speeds response.

Repetition of nondefining feature (color) speeds response, but only if defining feature is repeated.

In model, interaction due to dominance of defining feature over nondefining feature

Wolfe, Butcher, Lee, & Hyle (2003)

Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.

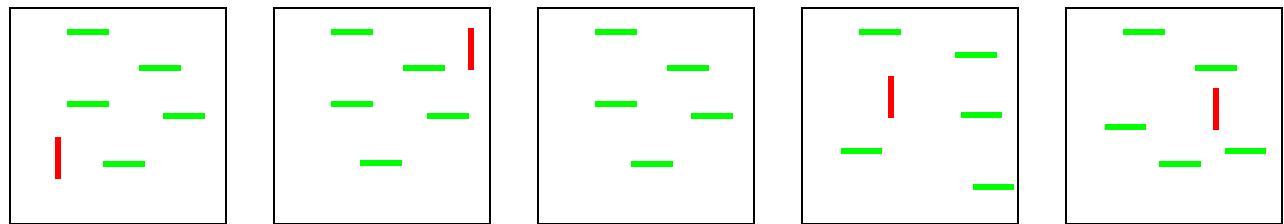
Wolfe, Butcher, Lee, & Hyle (2003)

Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.

homogeneous
environment
(red, vertical target)



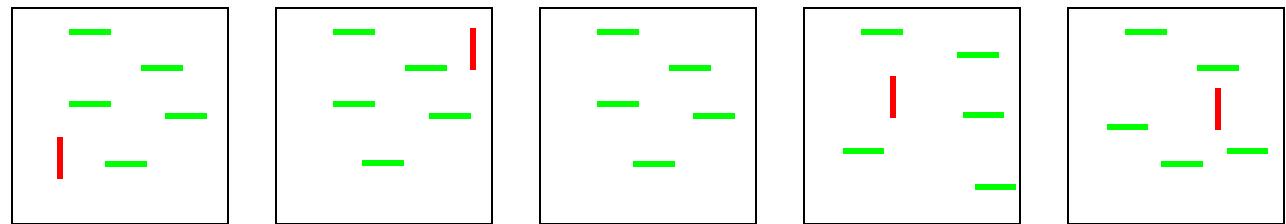
Wolfe, Butcher, Lee, & Hyle (2003)

Task

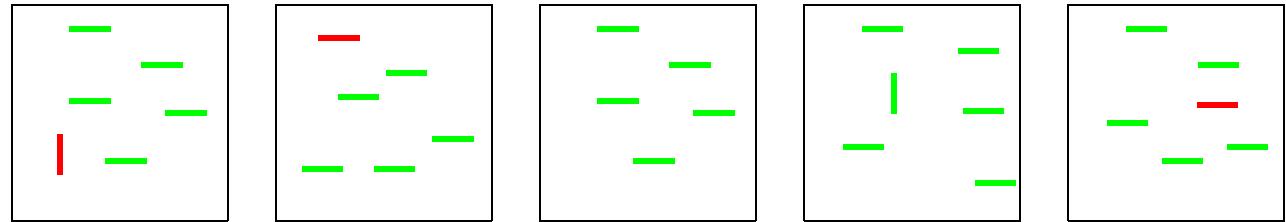
Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.

homogeneous
environment
(red, vertical target)



simple
environment
(red or vertical
target)



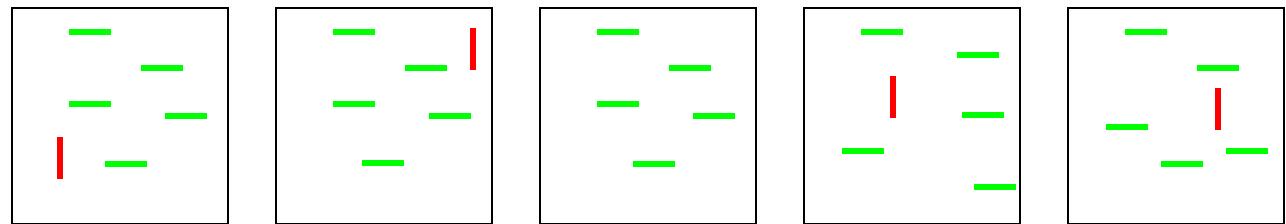
Wolfe, Butcher, Lee, & Hyle (2003)

Task

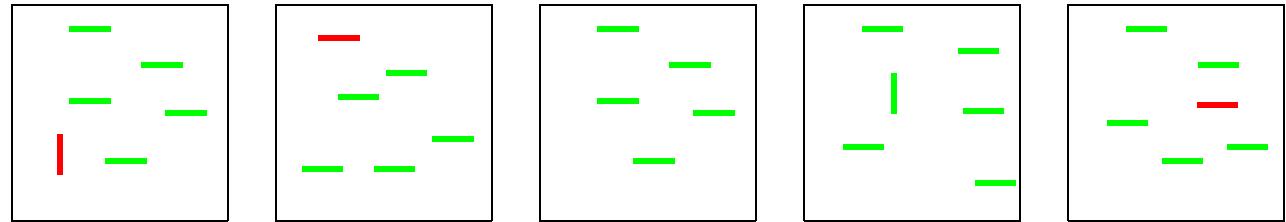
Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.

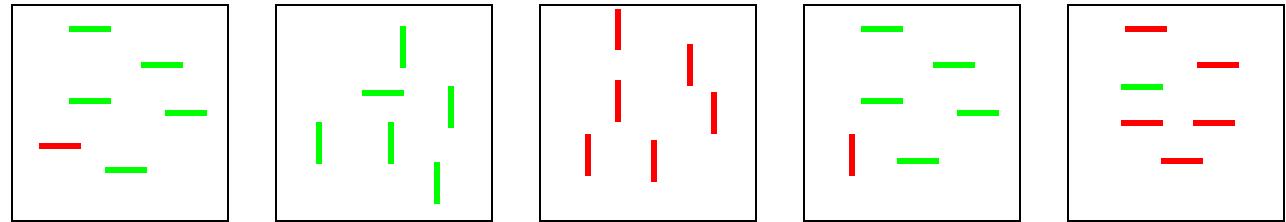
homogeneous
environment
(red, vertical target)



simple
environment
(red or vertical
target)

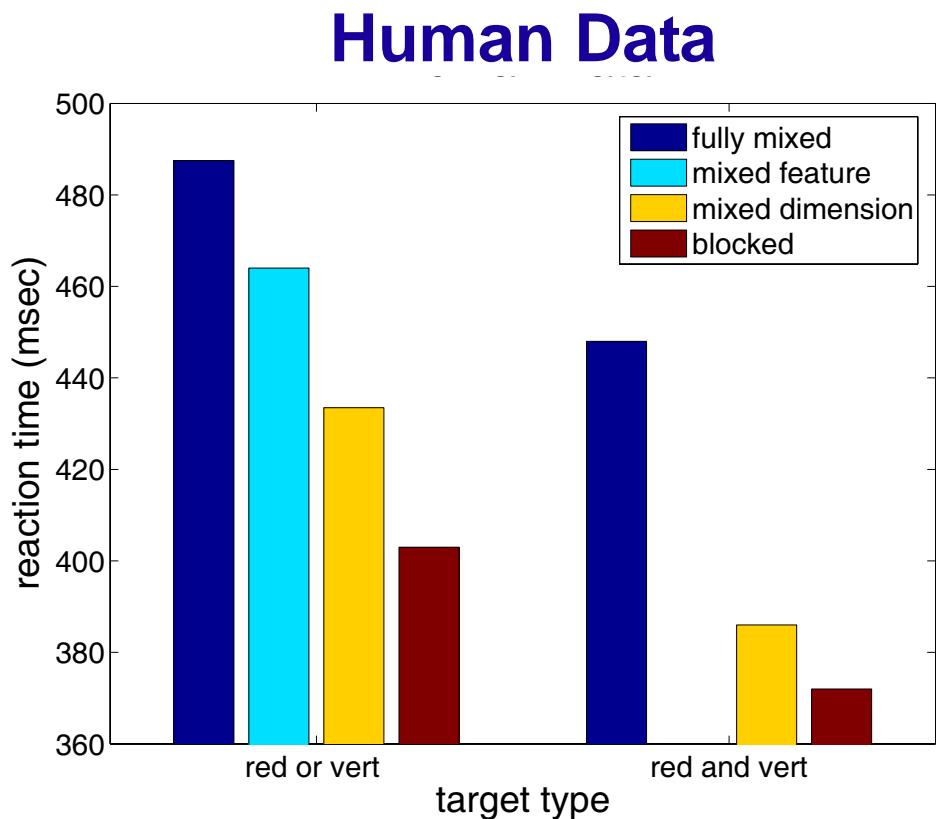


complex
environment
(target is odd
item)



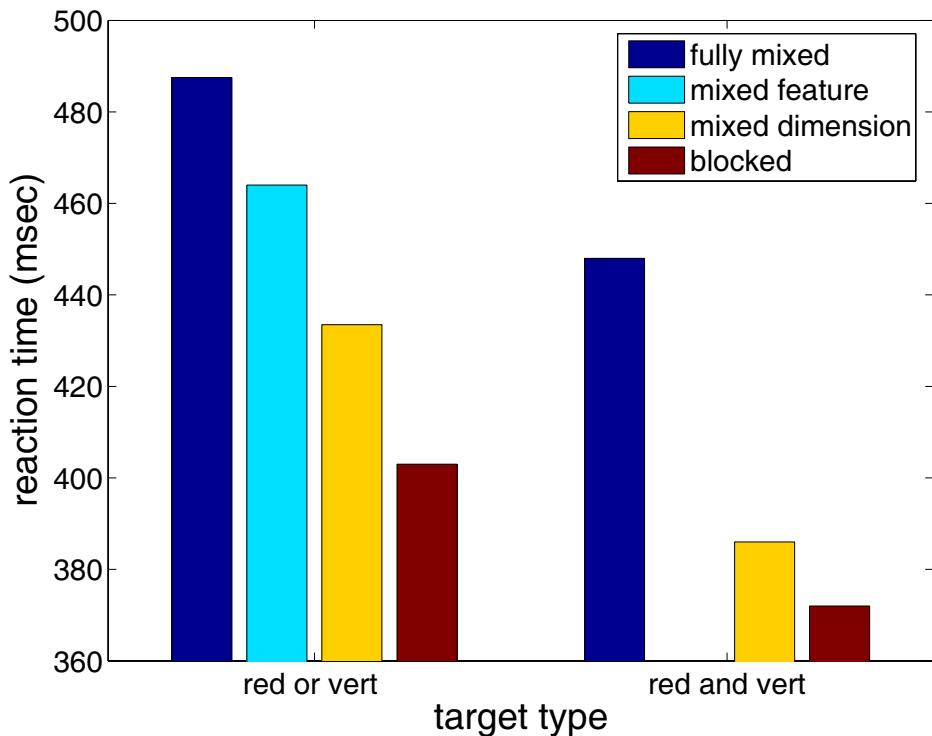
Measure RT on target-present trials.

Wolfe, Butcher, Lee, & Hyle (2003), Experiment 1

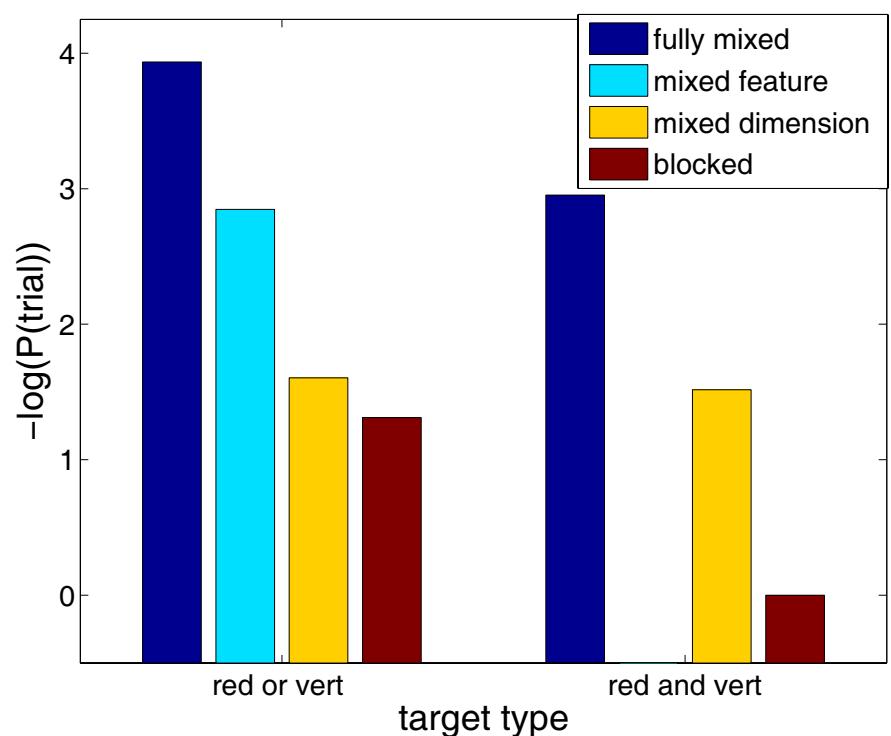


Wolfe, Butcher, Lee, & Hyle (2003), Experiment 1

Human Data



Simulation



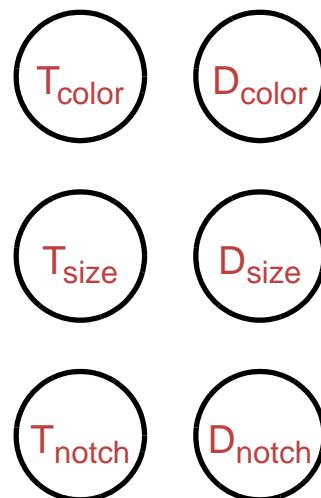
Other Accounts of Attentional Adaptation

Feature-strengthening account (Maljkovic & Nakayama, 1994; Wolfe et al., 2003)

Episodic account (Hillstrom, 2000; Huang et al., 2004)

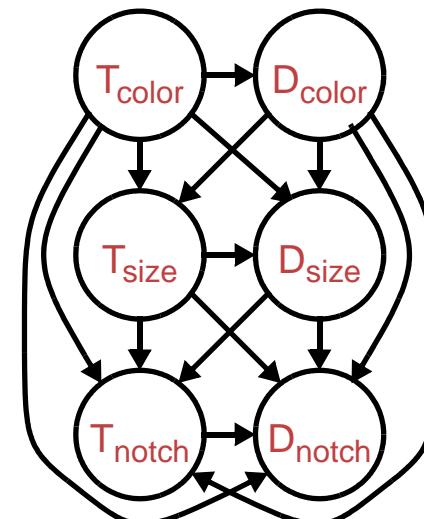
Other Accounts of Attentional Adaptation

Feature-strengthening account (Maljkovic & Nakayama, 1994; Wolfe et al., 2003)



Independence Architecture

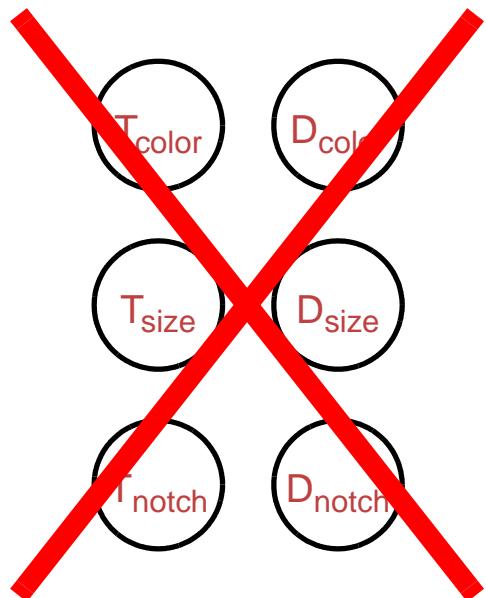
Episodic account (Hillstrom, 2000; Huang et al., 2004)



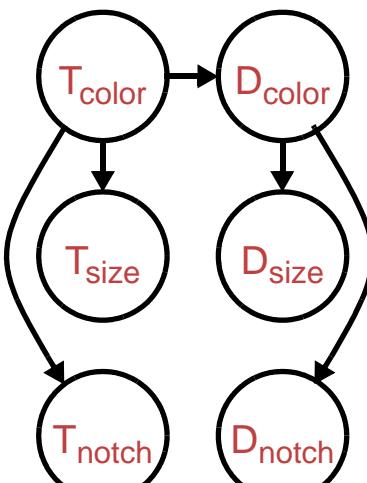
Full Joint Architecture

Other Accounts of Attentional Adaptation

Feature-strengthening account (Maljkovic & Nakayama, 1994; Wolfe et al., 2003)

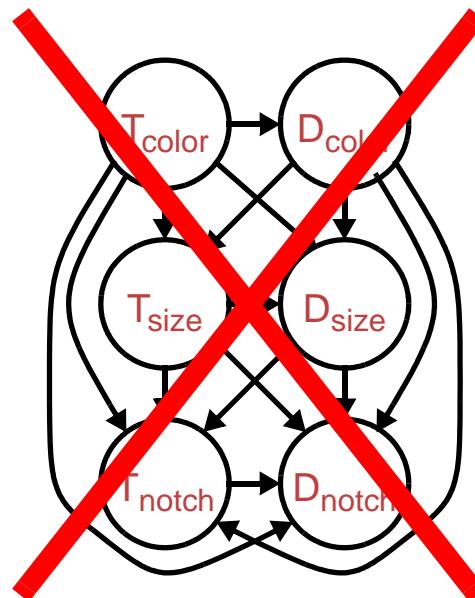


Independence Architecture



Task-Based Architecture

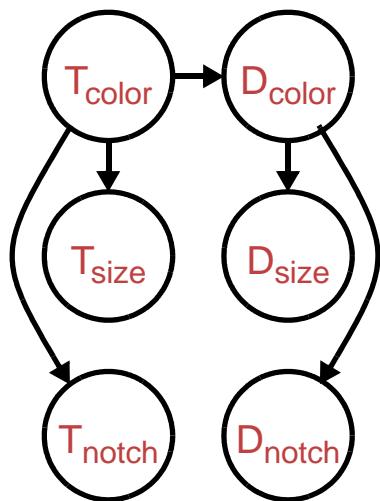
Episodic account (Hillstrom, 2000; Huang et al., 2004)



Full Joint Architecture

Neither is adequate to explain the range of data

Two Ways to View Architecture



- **model of the structure of the environment**
- **model of attentional control**

Rational account

Information processing is optimized to the structure of the environment.

Allows for limitations on information processing
(e.g., structural restrictions on architecture)

Pushing the Rational Account Further

Why does influence of past experience decay rapidly?

Pressures on duration of influence

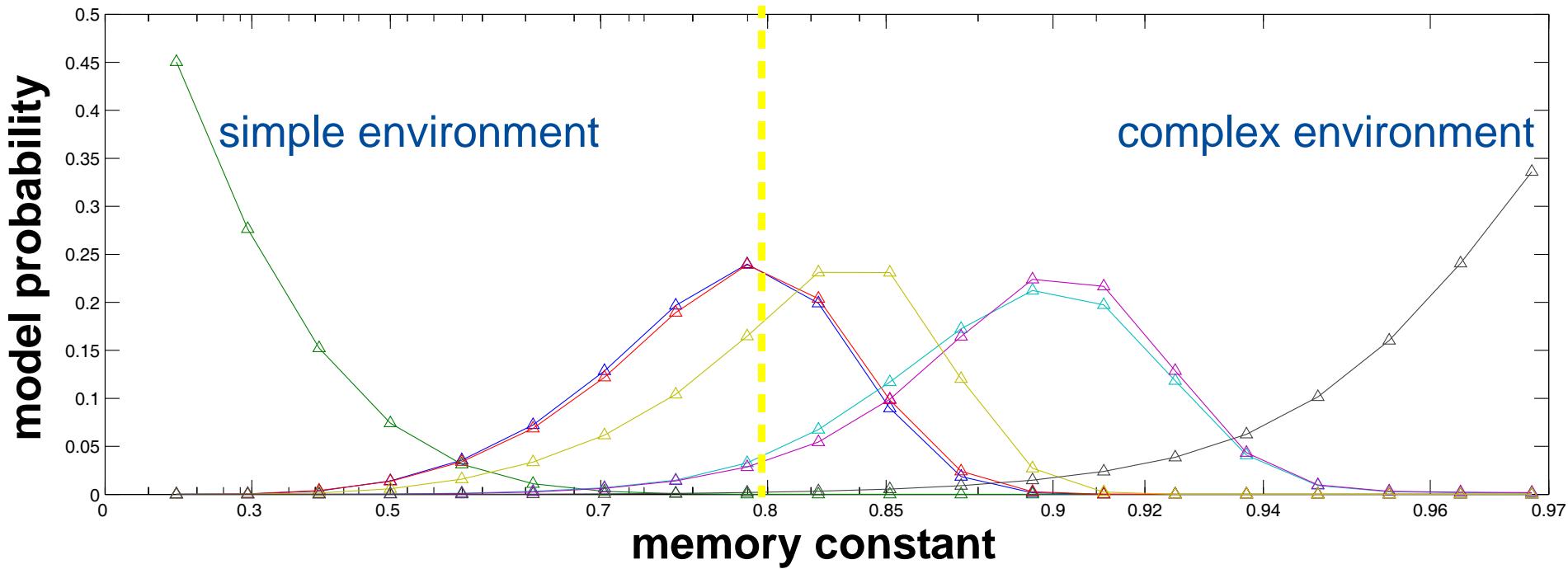
Adapting quickly to changing environment → short lived influence

Capturing statistics of complex environments → long-lived influence

Is observed memory duration optimal?

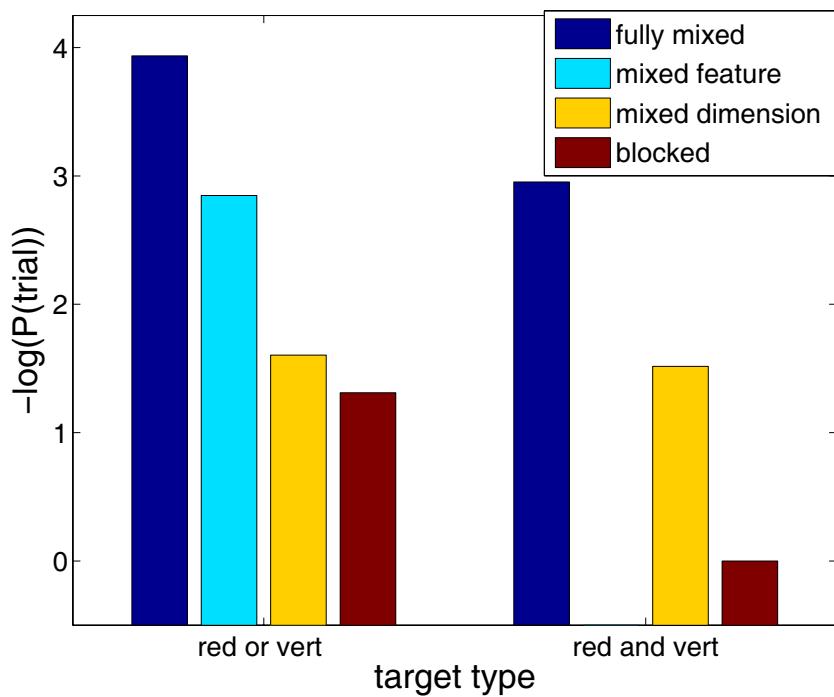
Use Bayesian model selection to determine appropriate memory constant in a given environment.

Posteriors on Memory Constant for Environments of Wolfe et al.

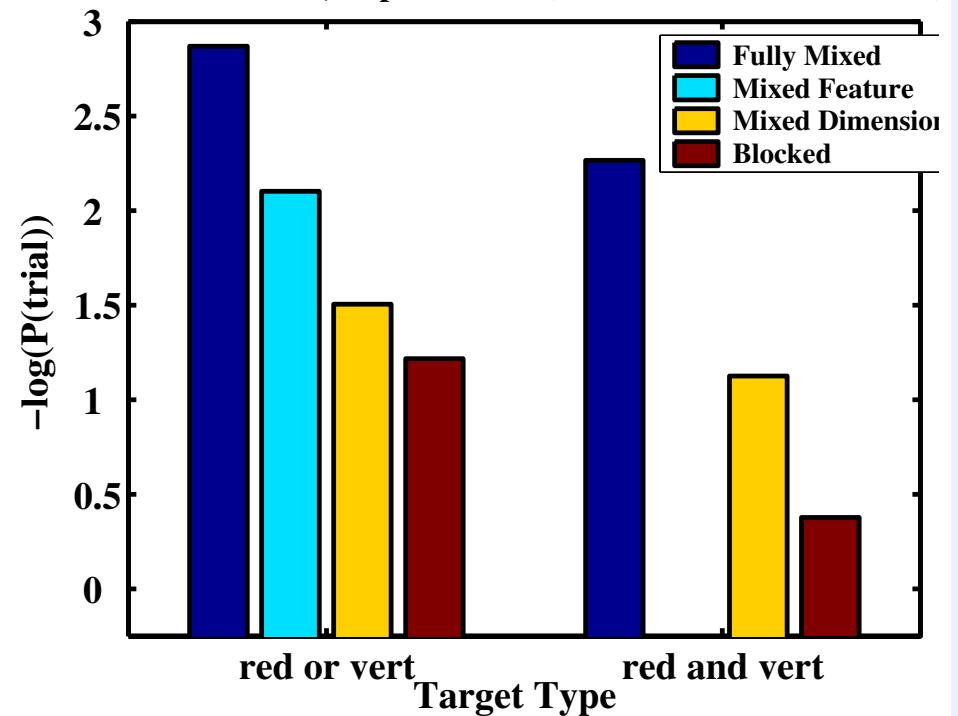


Prediction Via Model Averaging

original simulation



Bayesian model averaging



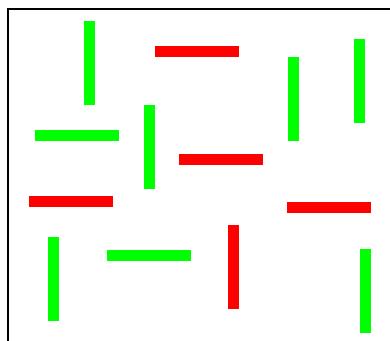
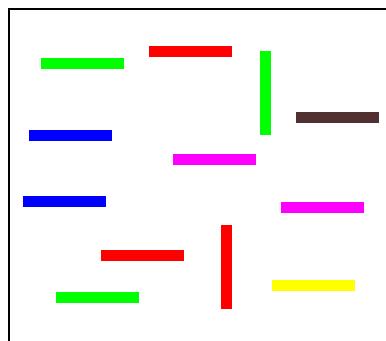
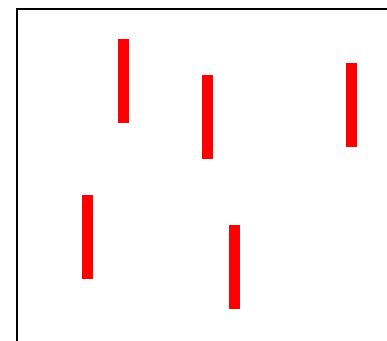
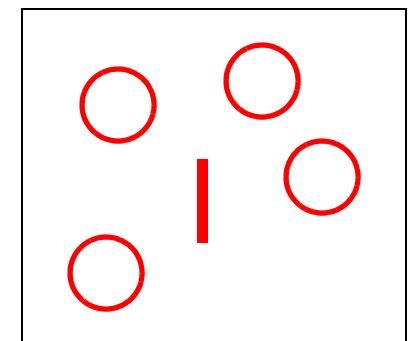
Eliminates the one free parameter of model

How Do Verbal Task Descriptions Influence Control of Attention?

How Do Verbal Task Descriptions Influence Control of Attention?

1. Task provides a representational framework for encoding the environment.
- 2 Task provides weak description of environment that can be used for determining initial control settings.

e.g., find the red vertical line



Control settings can clearly be refined once environment has been experienced.

Stimulus-Response Task

Stimulus-Response Task

E.g., simple addition problem

$$19 + 12$$

Task: name the sum of the numbers

Stimulus-Response Task

E.g., simple addition problem

$$19 + 12$$

Task: name the sum of the numbers

Control issue

When to initiate response?

Speed-accuracy trade off

Stimulus-Response Task

E.g., simple addition problem

$$19 + 12$$

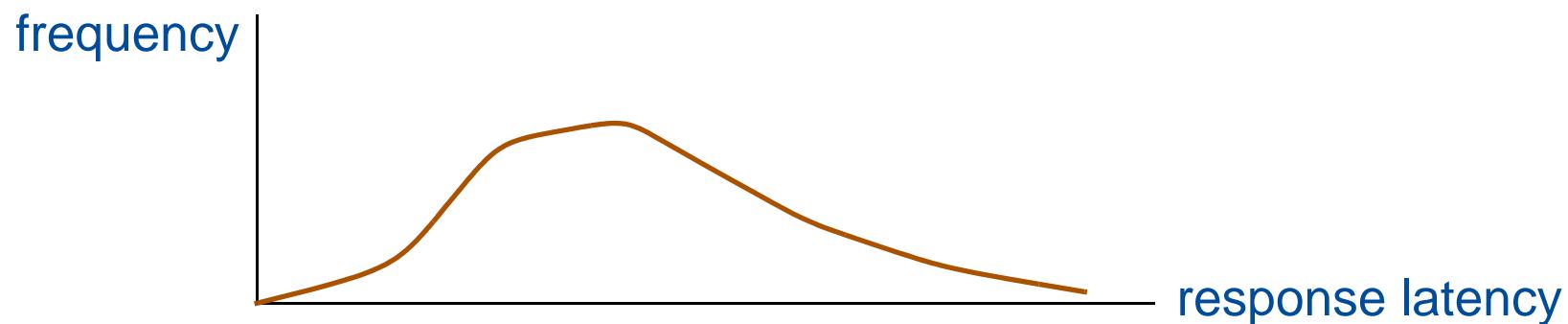
Task: name the sum of the numbers

Control issue

When to initiate response?

Speed-accuracy trade off

Response latency distribution



Can explain much response variability via sequence effects.

18 + 23

$$48 + 26$$

3 + 1

List-Composition Effect (Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Pure Easy Block	Pure Hard Block	Mixed Block
$3 + 2$	$8 + 6$	$3 + 2$
$1 + 4$	$5 + 7$	$5 + 7$
$10 + 7$	$9 + 4$	$10 + 7$
$5 + 5$	$12 + 9$	$12 + 9$

List-Composition Effect (Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Reaction Time

	Easy	Hard
Pure Block	635 msec	1059 msec

Error Rate

	Easy	Hard
Pure Block	0.3%	3.0%

List-Composition Effect (Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Reaction Time

	Easy	Hard
Pure Block	635 msec	1059 msec
Mixed Block	683 msec	1003 msec

Error Rate

	Easy	Hard
Pure Block	0.3%	3.0%
Mixed Block	0.0%	4.8%

List-Composition Effect (Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Reaction Time

	Easy	Hard
Pure Block	635 msec	1059 msec
Mixed Block	683 msec	1003 msec
Difference	+48 msec	-56 msec

Error Rate

	Easy	Hard
Pure Block	0.3%	3.0%
Mixed Block	0.0%	4.8%
Difference	-0.3%	+1.8%

List composition affects speed-accuracy trade off.

Cognitive Control

Cognitive Control

We interpret cognitive control as optimizing performance to the environment in which an individual is operating.

Cognitive Control

We interpret cognitive control as optimizing performance to the environment in which an individual is operating.

Mechanisms

1. construct predictive model of the environment
2. use predictive model to optimize performance

Cognitive Control

We interpret cognitive control as optimizing performance to the environment in which an individual is operating.

Mechanisms

1. construct predictive model of the environment
2. use predictive model to optimize performance

List-composition effect reflects this control process at work.

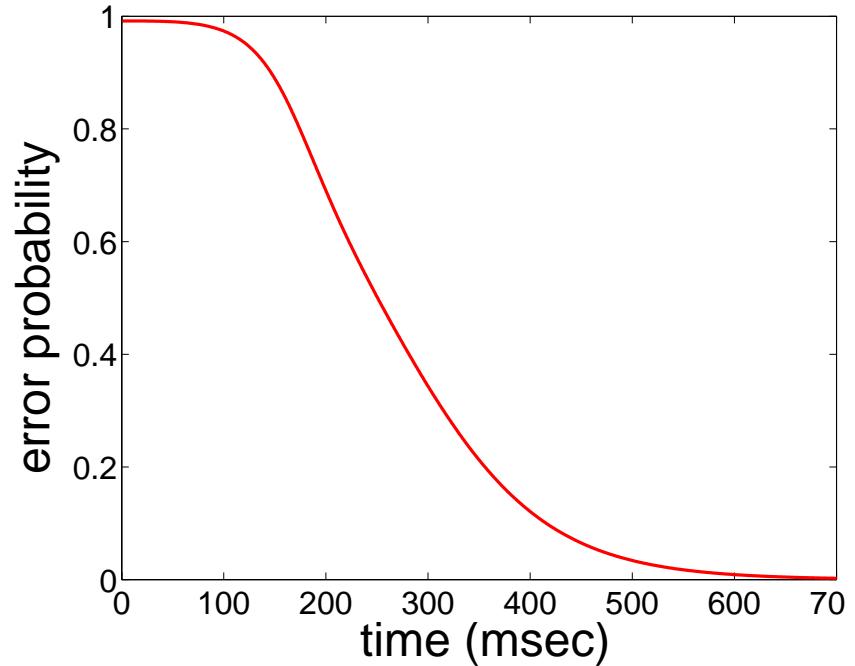
Modeling List-Composition Effects

Modeling List-Composition Effects

Assumptions

- At each instant of time during the processing of a stimulus, the cognitive system estimates the probability of producing an error if a response is made based on the available evidence.

The estimate is used for deciding when to initiate a response.



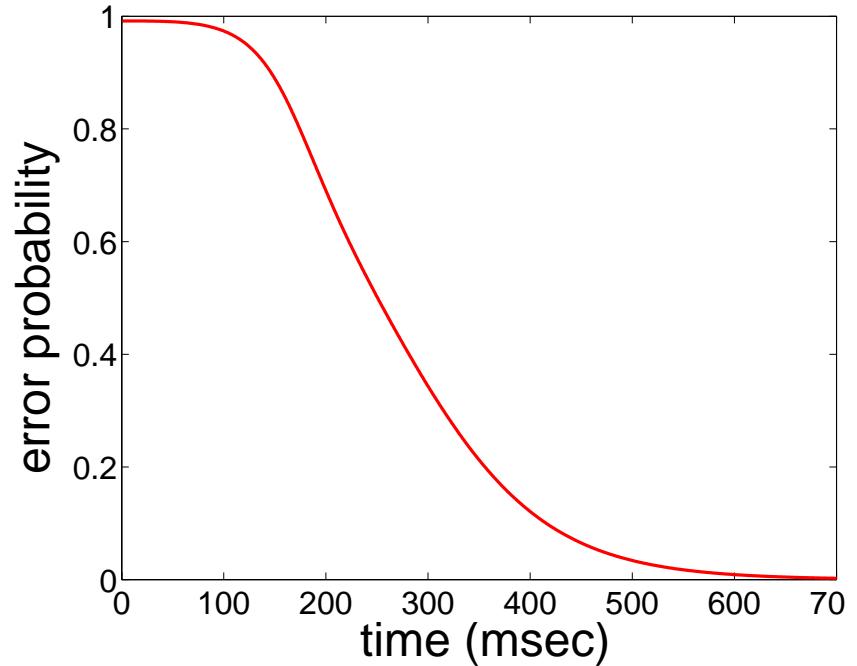
Modeling List-Composition Effects

Assumptions

- At each instant of time during the processing of a stimulus, the cognitive system estimates the probability of producing an error if a response is made based on the available evidence.

The estimate is used for deciding when to initiate a response.

- The estimate is unreliable.



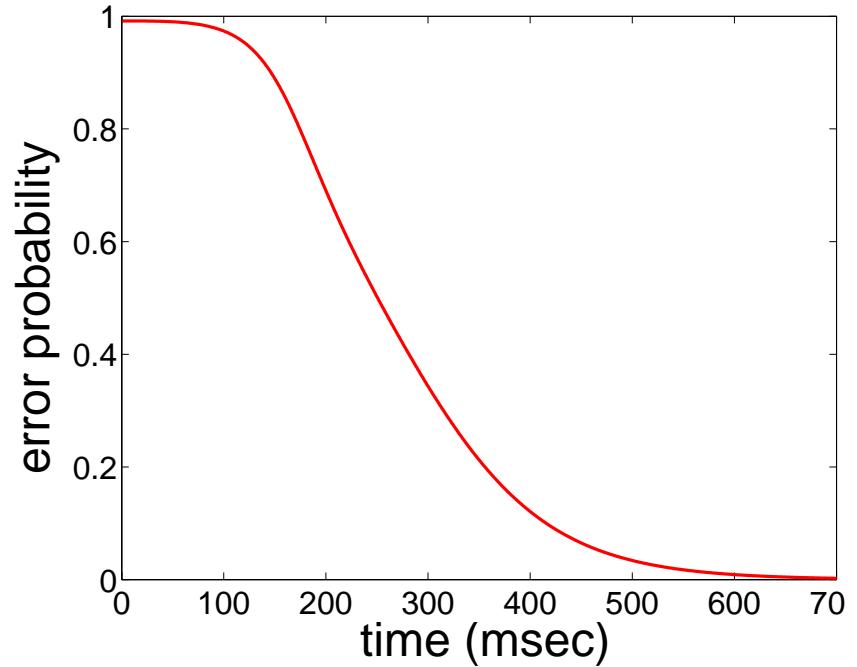
Modeling List-Composition Effects

Assumptions

- At each instant of time during the processing of a stimulus, the cognitive system estimates the probability of producing an error if a response is made based on the available evidence.

The estimate is used for deciding when to initiate a response.

- The estimate is unreliable.
- Current trial is similar in difficulty to recent trials.



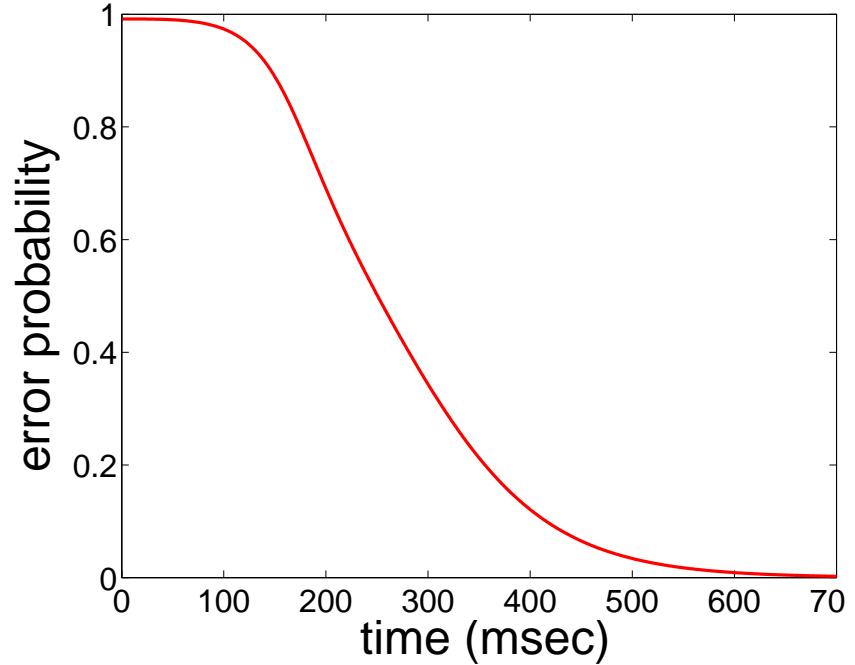
Modeling List-Composition Effects

Assumptions

- At each instant of time during the processing of a stimulus, the cognitive system estimates the probability of producing an error if a response is made based on the available evidence.

The estimate is used for deciding when to initiate a response.

- The estimate is unreliable.
- Current trial is similar in difficulty to recent trials.



Under these assumptions, it is adaptive to use an error estimate based on current *and* recent trials.

Thus, recent trial history affects current trial performance.

Model Details

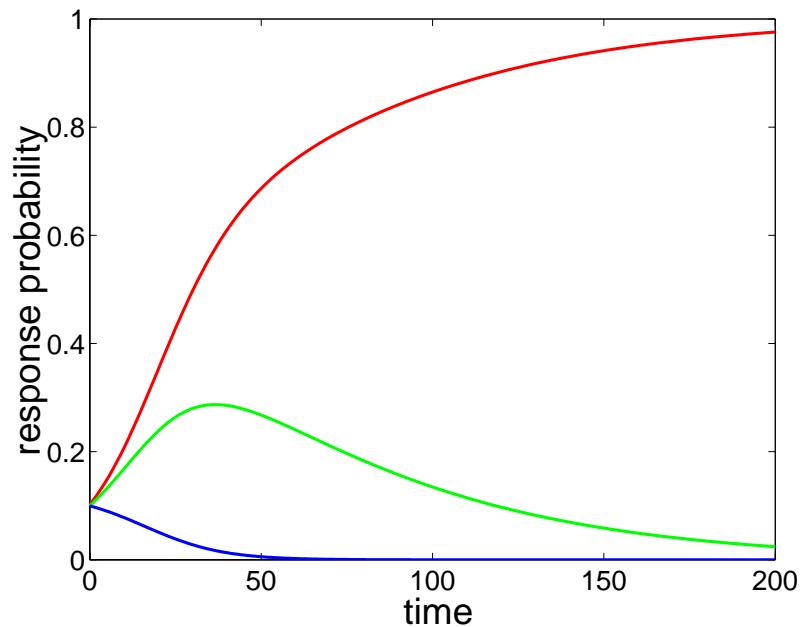
Probabilistic information transmission (PIT) framework of Mozer, Colagrosso, and Huber (2002, 2003)

Dynamic Bayes net

Generalization of sequential sampling models (random walk, diffusion, accumulator models)

PIT produces probability distribution over responses.

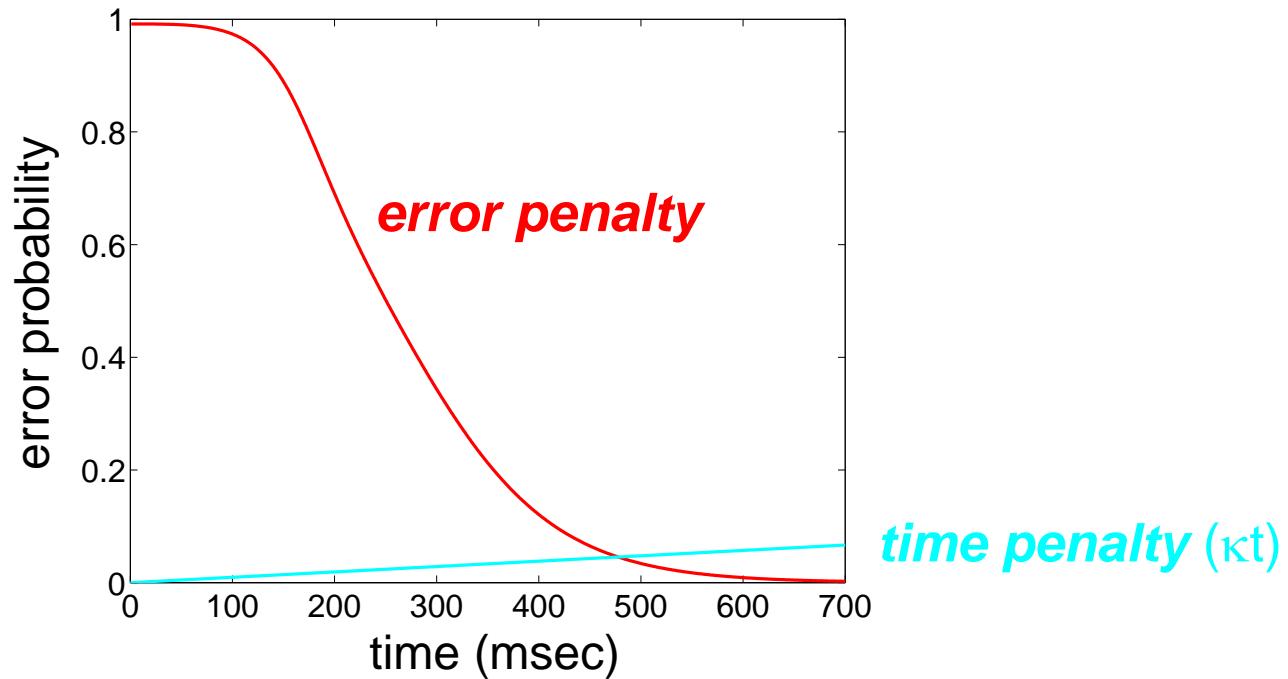
Error probability estimated from this distribution.



Other models of temporal dynamics work fine.

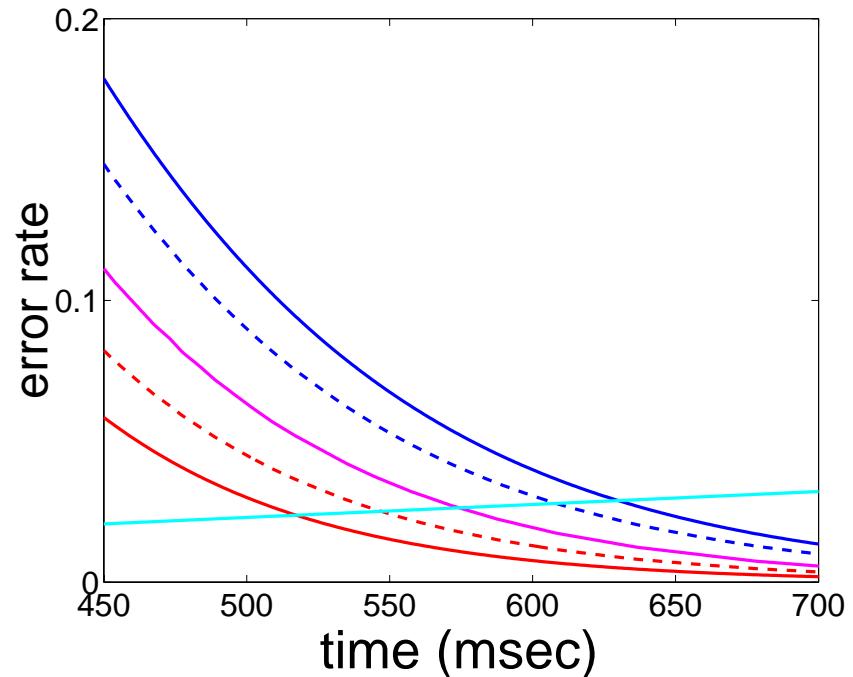
Model Details

Initiate response when *error penalty* drops below *time penalty*



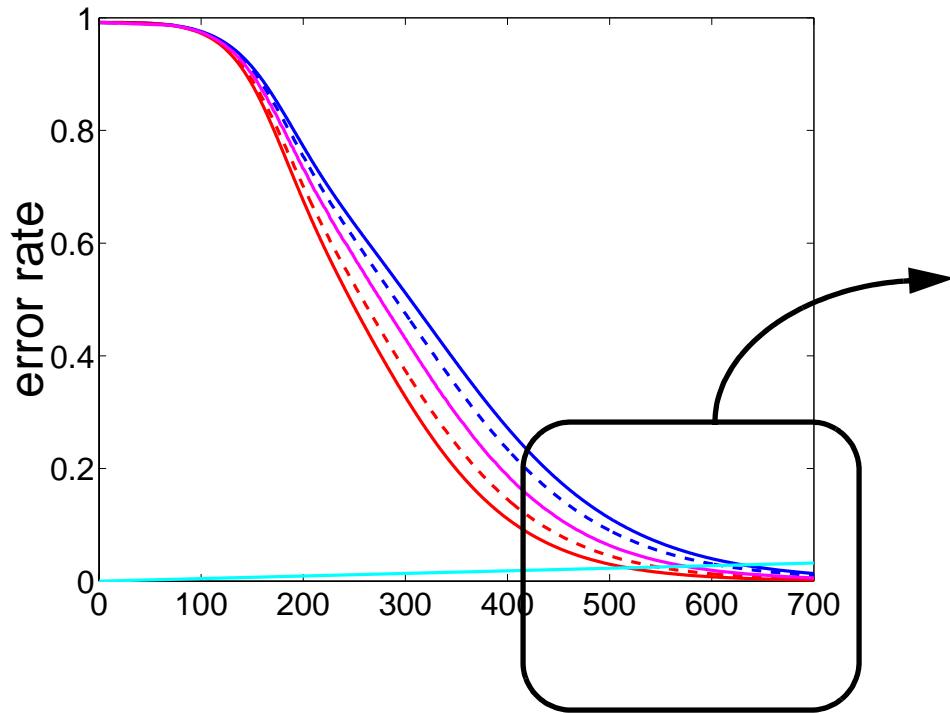
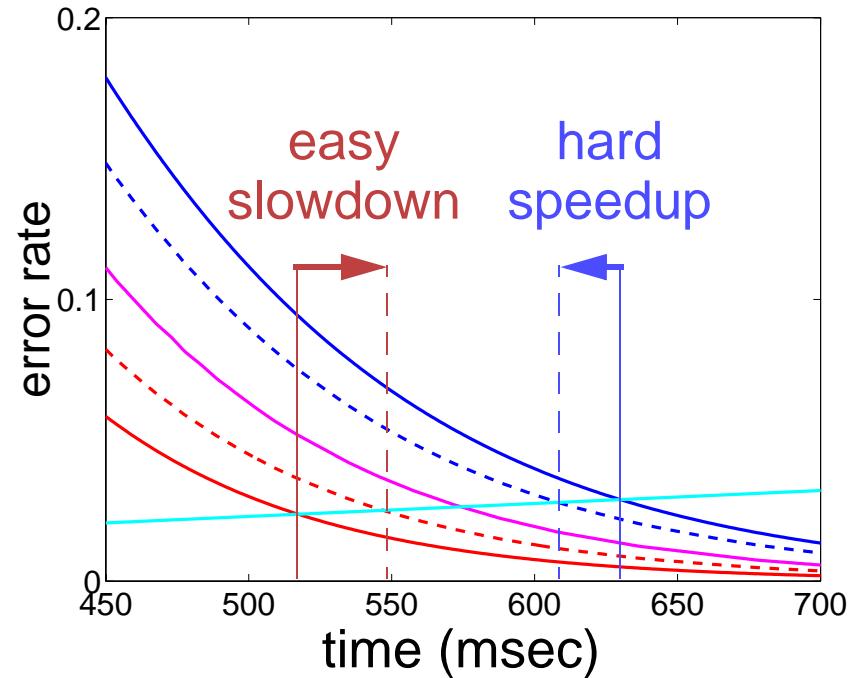
Can be cast in framework of maximizing expected utility.
Other decision rules work fine.

Model Operation



- hard trial
- easy trial
- mean trial history in mixed block
- - - hard-trial estimate using history
- - - easy-trial estimate using history
- κt

Model Operation



- hard trial
- easy trial
- mean trial history in mixed block
- hard-trial estimate using history
- easy-trial estimate using history
- κt

Taylor & Lupker (2001), Experiment 1

		Human Data	
		Easy	Hard
RT	Pure	519 msec	631 msec
	Mixed	548 msec	610 msec
	Diff.	+29 msec	-21 msec

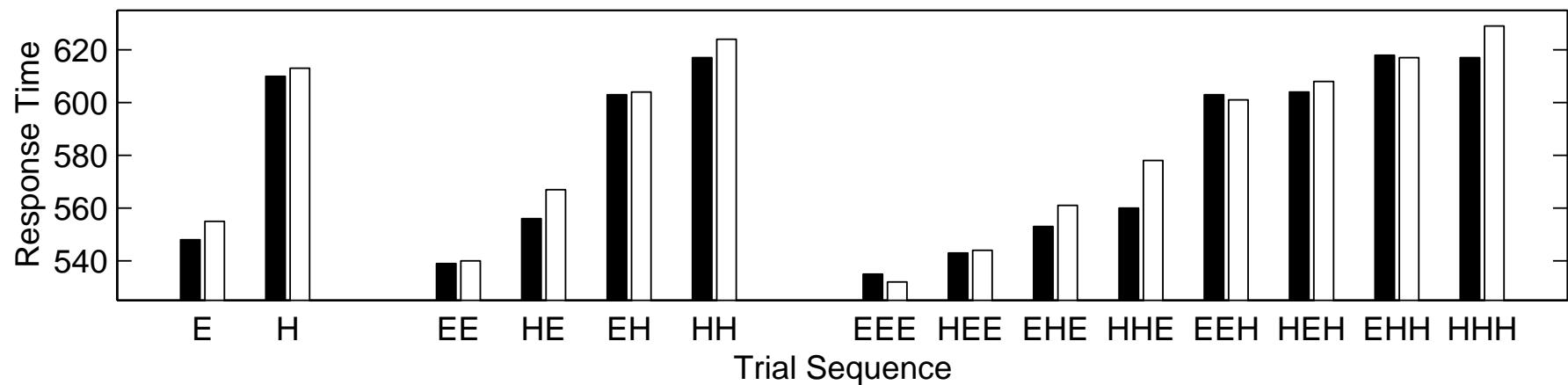
Simulation	
Easy	Hard
518 msec	630 msec
548 msec	610 msec
+29 msec	-20 msec

		Human Data	
		Easy	Hard
Error Rate	Pure	0.6%	2.9%
	Mixed	0.7%	2.9%
	Diff.	0.1%	0.0%

Simulation	
Easy	Hard
2.3%	2.9%
1.6%	3.6%
-0.7%	0.7%

Taylor & Lupker (2001, Experiment 1)

■ human data
□ simulation



Model Successes

Model has been successful in explaining results from other experiments.

Asymptotic effects of context (Kinoshita & Mozer, in preparation)

Prime-validity effect (Bodner & Masson, 2001)

Model Successes

Model has been successful in explaining results from other experiments.

Asymptotic effects of context (Kinoshita & Mozer, in preparation)

Prime-validity effect (Bodner & Masson, 2001)

We've verified predictions of model in further experiments.

Prime-validity effects (Kinoshita, Forster, & Mozer, 2005)

Lexical decision tasks (Kinoshita & Mozer, 2006)

Masked-priming parity tasks (Kinoshita, Mozer, & Forster, 2006)

Model Successes

Model has been successful in explaining results from other experiments.

Asymptotic effects of context (Kinoshita & Mozer, in preparation)

Prime-validity effect (Bodner & Masson, 2001)

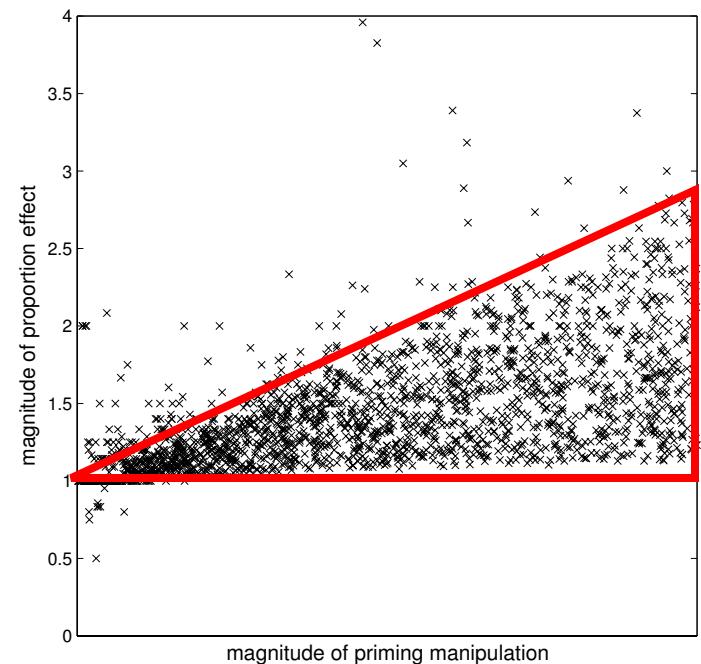
We've verified predictions of model in further experiments.

Prime-validity effects (Kinoshita, Forster, & Mozer, 2005)

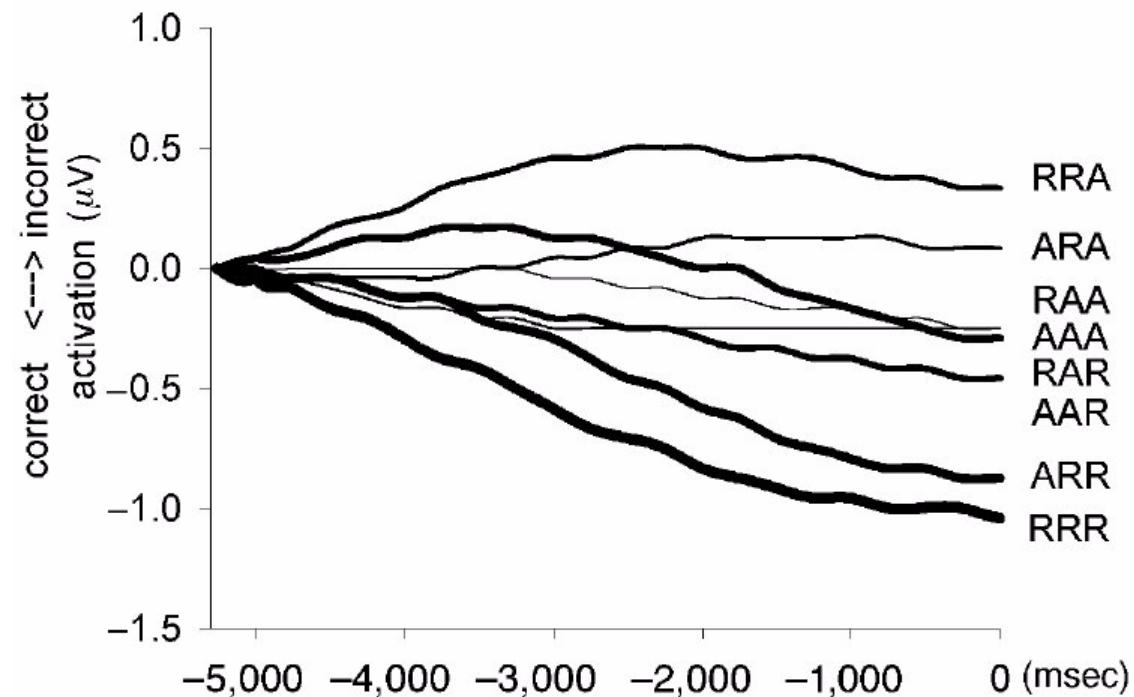
Lexical decision tasks (Kinoshita & Mozer, 2006)

Masked-priming parity tasks (Kinoshita, Mozer, & Forster, 2006)

Model makes strong predictions.



LRP Data (Jentzsch & Sommer, 2002)



Conventional Perspectives on Cognitive Control

Control involves allocating a limited resource.

Some tasks invoke more control than others (Wolfe et al., 2003)

Accounts often imply homunculus that distributes resource.

Control involves loading a new program into the brain's CPU for each task.

***Explicit* mechanisms**

Our Unconventional Perspective

Much of what appears to be cognitive control can be interpreted as a consequence of optimizing performance to the ongoing stream of experience.

Our Unconventional Perspective

Much of what appears to be cognitive control can be interpreted as a consequence of optimizing performance to the ongoing stream of experience.

Learning on a second-to-second time scale

Over a range of simple tasks, about five experiences are needed to tune performance. (No measurable speed up in performance beyond that.)

This tuning is obligatory each time the task or environment switches, *regardless of past experience with task or environment.*

Performing task is necessary: preparation is not sufficient.

Tuning can occur to abstract features (e.g., target color, stimulus difficulty)

Our Unconventional Perspective

Much of what appears to be cognitive control can be interpreted as a consequence of optimizing performance to the ongoing stream of experience.

Learning on a second-to-second time scale

Over a range of simple tasks, about five experiences are needed to tune performance. (No measurable speed up in performance beyond that.)

This tuning is obligatory each time the task or environment switches, *regardless of past experience with task or environment.*

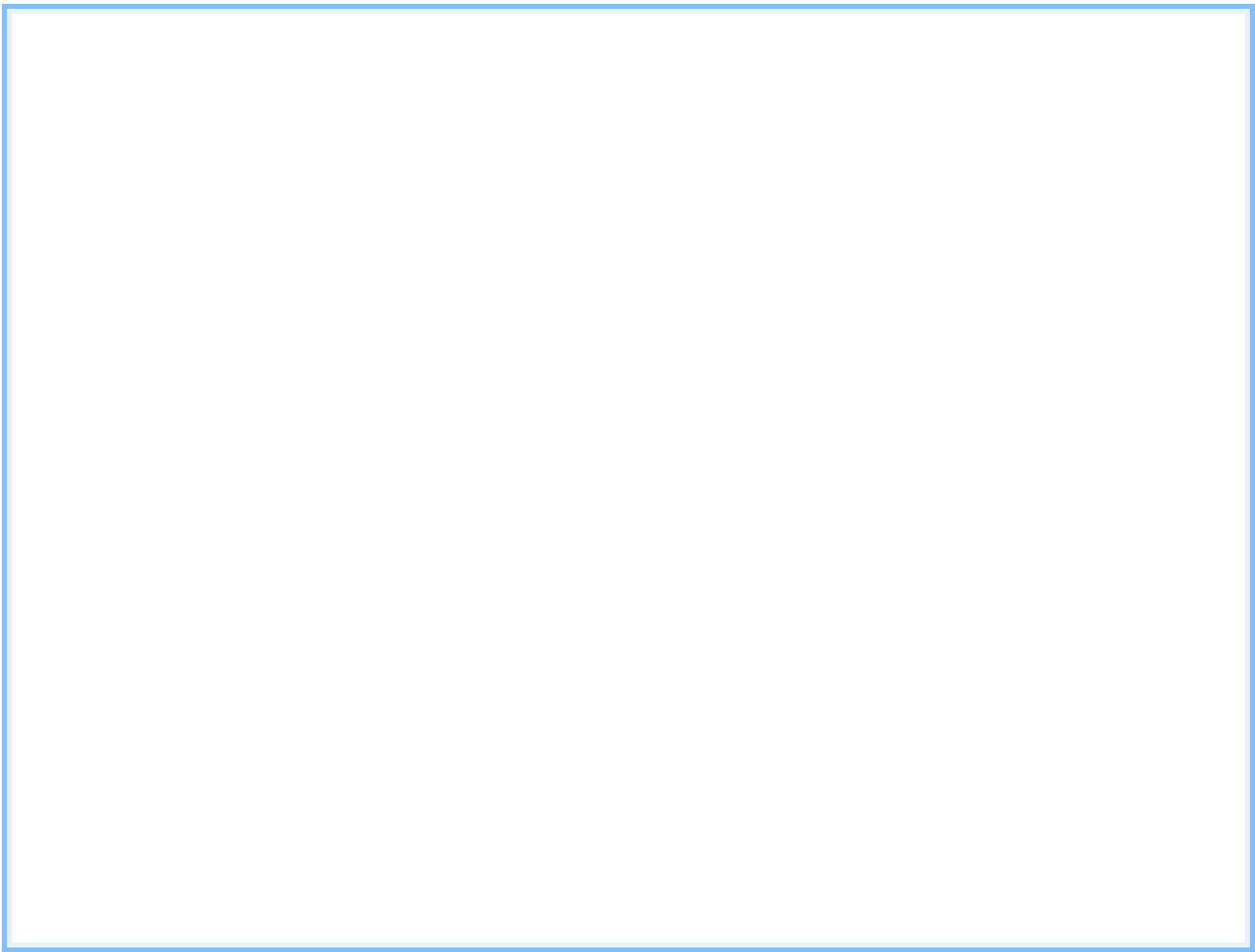
Performing task is necessary: preparation is not sufficient.

Tuning can occur to abstract features (e.g., target color, stimulus difficulty)

Our claim: Experience allows brain to build a model of the environment, which is used to optimize performance.

Even a rough model is very helpful.

Compared to direct reinforcement learning techniques, requires *much less* interaction with the environment for learning.



Explanations for List-Composition Effects

Many explanations have been proposed.

e.g., Kello & Plaut (2001); Meyer, Roelofs, & Levelt (2003); Perea, Carreiras, & Granger (2005); Rastle & Coltheart (1999); Strayer & Kramer (1994)

All have deficiencies.

See Mozer & Kinoshita (in preparation)

Explanations for List-Composition Effects

Many explanations have been proposed.

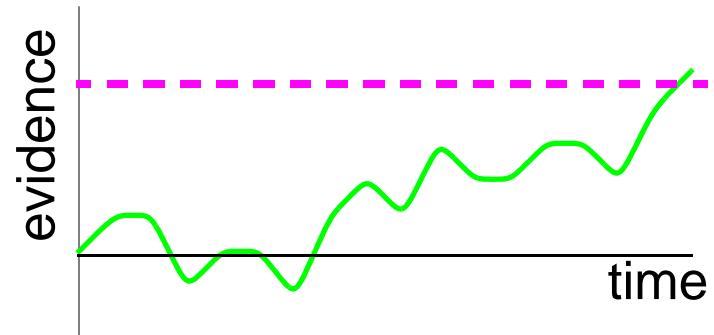
e.g., Kello & Plaut (2001); Meyer, Roelofs, & Levelt (2003); Perea, Carreiras, & Granger (2005); Rastle & Coltheart (1999); Strayer & Kramer (1994)

All have deficiencies.

See Mozer & Kinoshita (in preparation)

E.g., adjustment of response criterion

Diffusion model (Ratcliff, 1978)



Explanations for List-Composition Effects

Many explanations have been proposed.

e.g., Kello & Plaut (2001); Meyer, Roelofs, & Levelt (2003); Perea, Carreiras, & Granger (2005); Rastle & Coltheart (1999); Strayer & Kramer (1994)

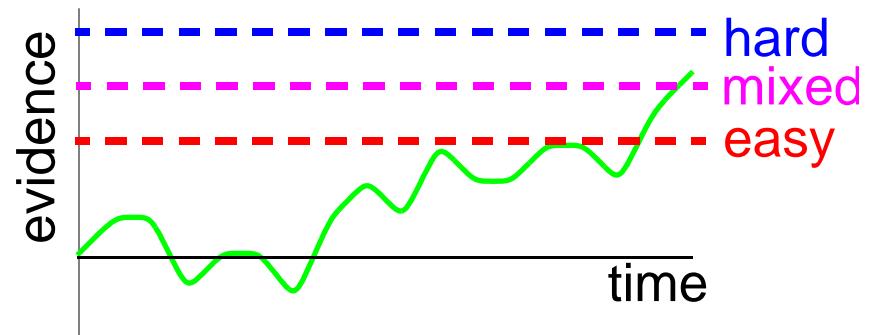
All have deficiencies.

See Mozer & Kinoshita (in preparation)

E.g., adjustment of response criterion

Diffusion model (Ratcliff, 1978)

List composition affects response criterion



Explanations for List-Composition Effects

Many explanations have been proposed.

e.g., Kello & Plaut (2001); Meyer, Roelofs, & Levelt (2003); Perea, Carreiras, & Granger (2005); Rastle & Coltheart (1999); Strayer & Kramer (1994)

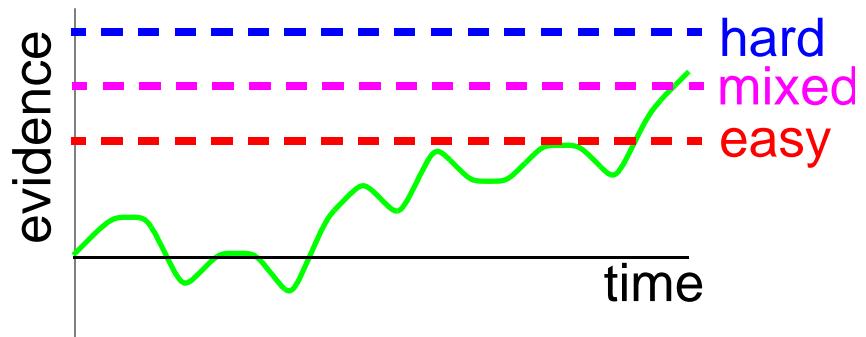
All have deficiencies.

See Mozer & Kinoshita (in preparation)

E.g., adjustment of response criterion

Diffusion model (Ratcliff, 1978)

List composition affects response criterion



Experimental evidence contradicts criterion-adjustment accounts (Dorfman & Glanzer, 1988; Gold & Shadlen, 2003; Jentzsch & Sommer, 2002; Osman et al., 2000)

Sequential Dependencies

When executing a task repeatedly, experience on one trial affects performance on subsequent trials.

Performance = RT, accuracy, type of errors, interpretation of stimulus, etc.

Adaptation on the time scale of seconds

Robust and widespread across a range of tasks

Some varieties termed priming

Most are short lived (~ 5 trials)

Some are long lived (> 100 trials)

Sequential Dependencies

component of architecture			
perception			
stimulus-response mapping			
response initiation			
attentional control			

Sequential Dependencies

component of architecture	experimental paradigm		
perception	identification		
	intensity judgement		
	categorization		
stimulus-response mapping	task switching		
response initiation	word naming		
	choice		
attentional control	cued detection and identification		
	visual search		

Sequential Dependencies

component of architecture	experimental paradigm	dimension of dependency	
perception	identification	stimulus shape and identity	
	intensity judgement	stimulus magnitude	
	categorization	stimulus features	
stimulus-response mapping	task switching	task set	
response initiation	word naming	stimulus difficulty	
	choice	response repetition	
attentional control	cued detection and identification	cue validity	
	visual search	stimulus features	
		global stimulus configuration	

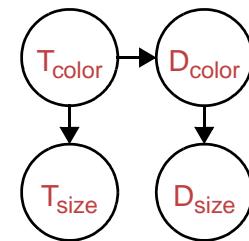
Sequential Dependencies

component of architecture	experimental paradigm	dimension of dependency	example citations
perception	identification	stimulus shape and identity	Bar & Biederman (1997); Ratcliff & McKoon (1997)
	intensity judgement	stimulus magnitude	Lockhead (1984, 2004)
	categorization	stimulus features	Jones & Mewhort (2003); Stewart et al. (2002)
stimulus-response mapping	task switching	task set	Rogers & Monsell (1995)
response initiation	word naming	stimulus difficulty	Kiger & Glass (1981); Taylor & Lupker (2001)
	choice	response repetition	Jentsch & Sommer (2002); Jones et al. (2003)
attentional control	cued detection and identification	cue validity	Bodner & Masson (2001); Posner (1980)
	visual search	stimulus features	Maljkovic & Nakayama (1996); Wolfe et al. (2003); Huang et al. (2004)
		global stimulus configuration	Chun & Jiang (1998, 1999)

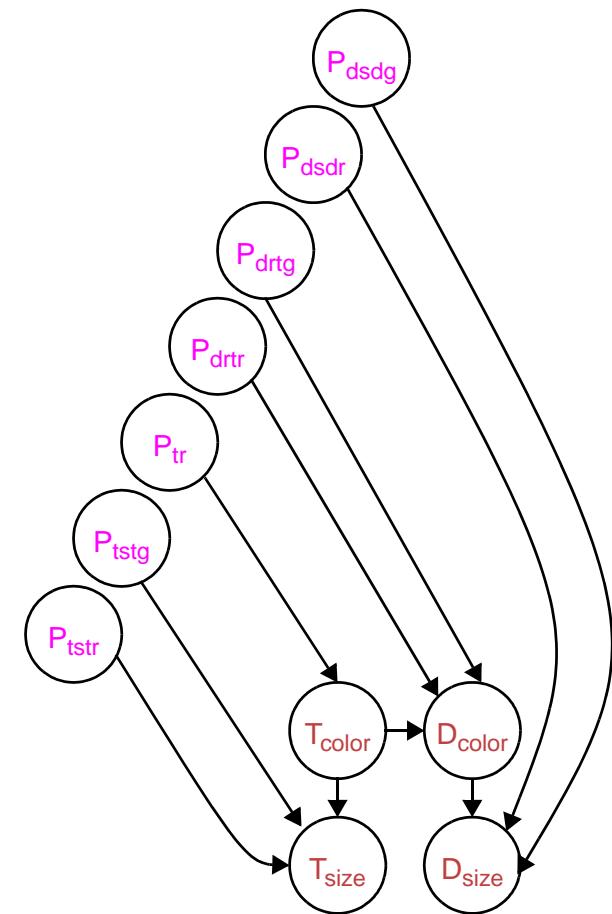
Fancy Version of Model



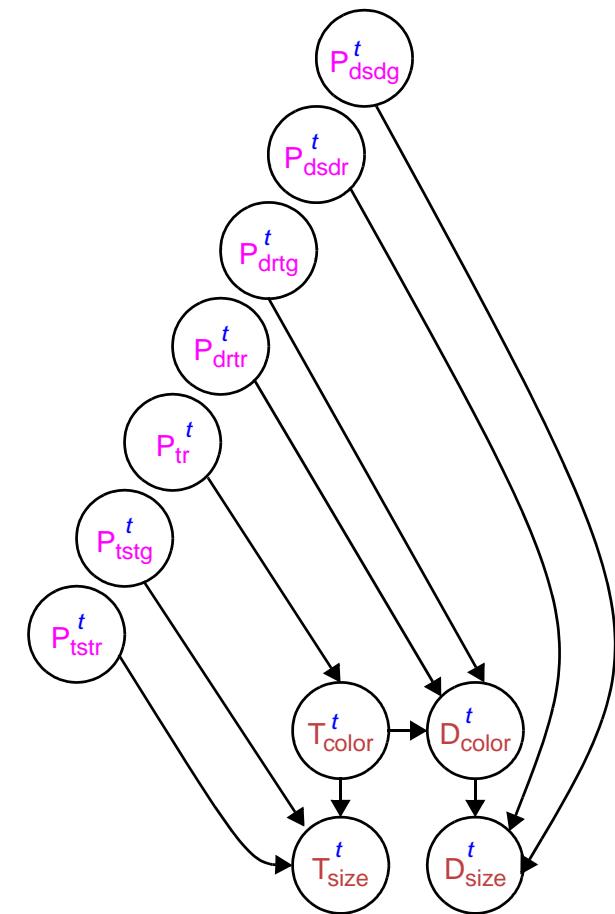
Fancy Version of Model



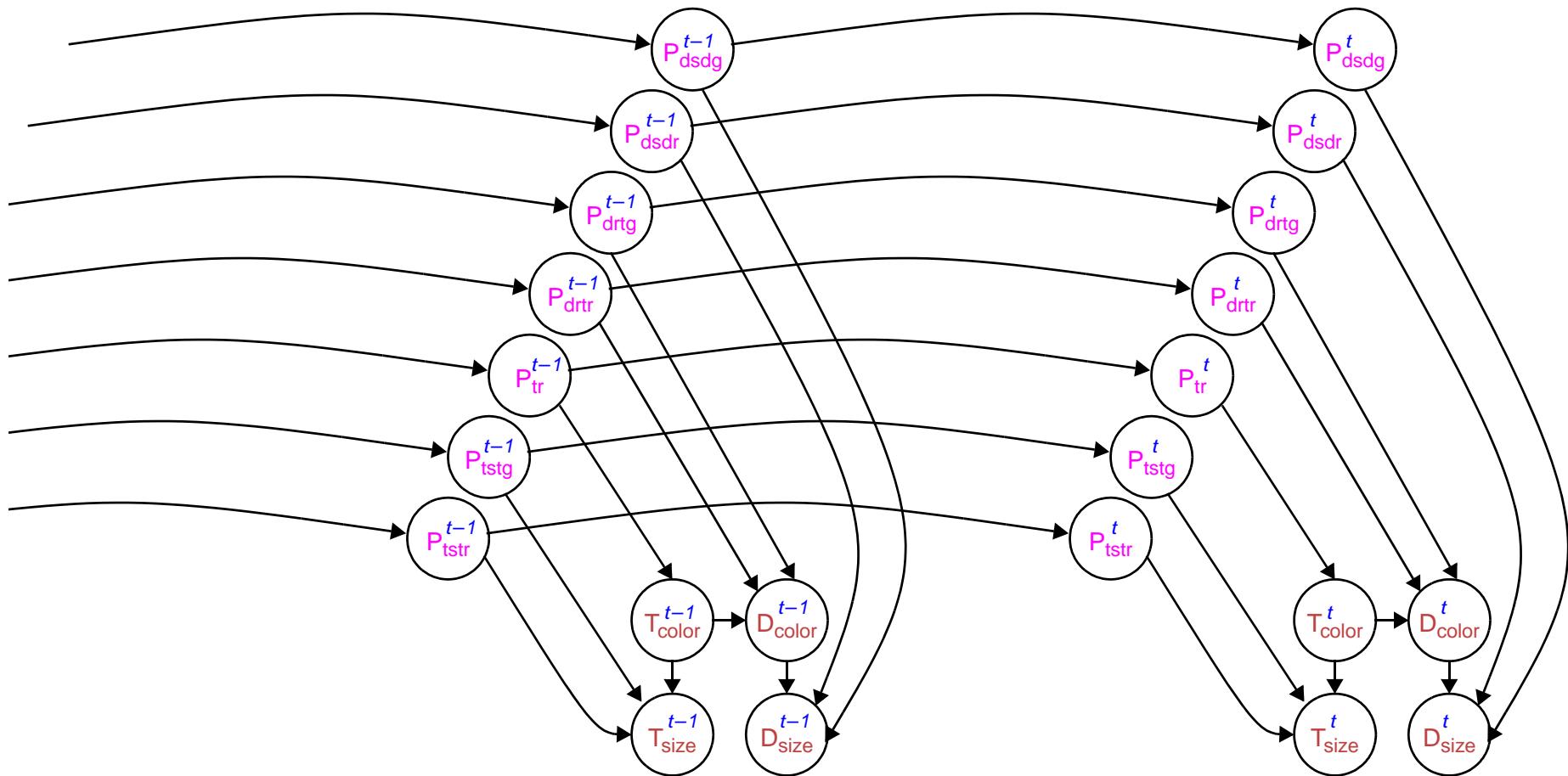
Fancy Version of Model



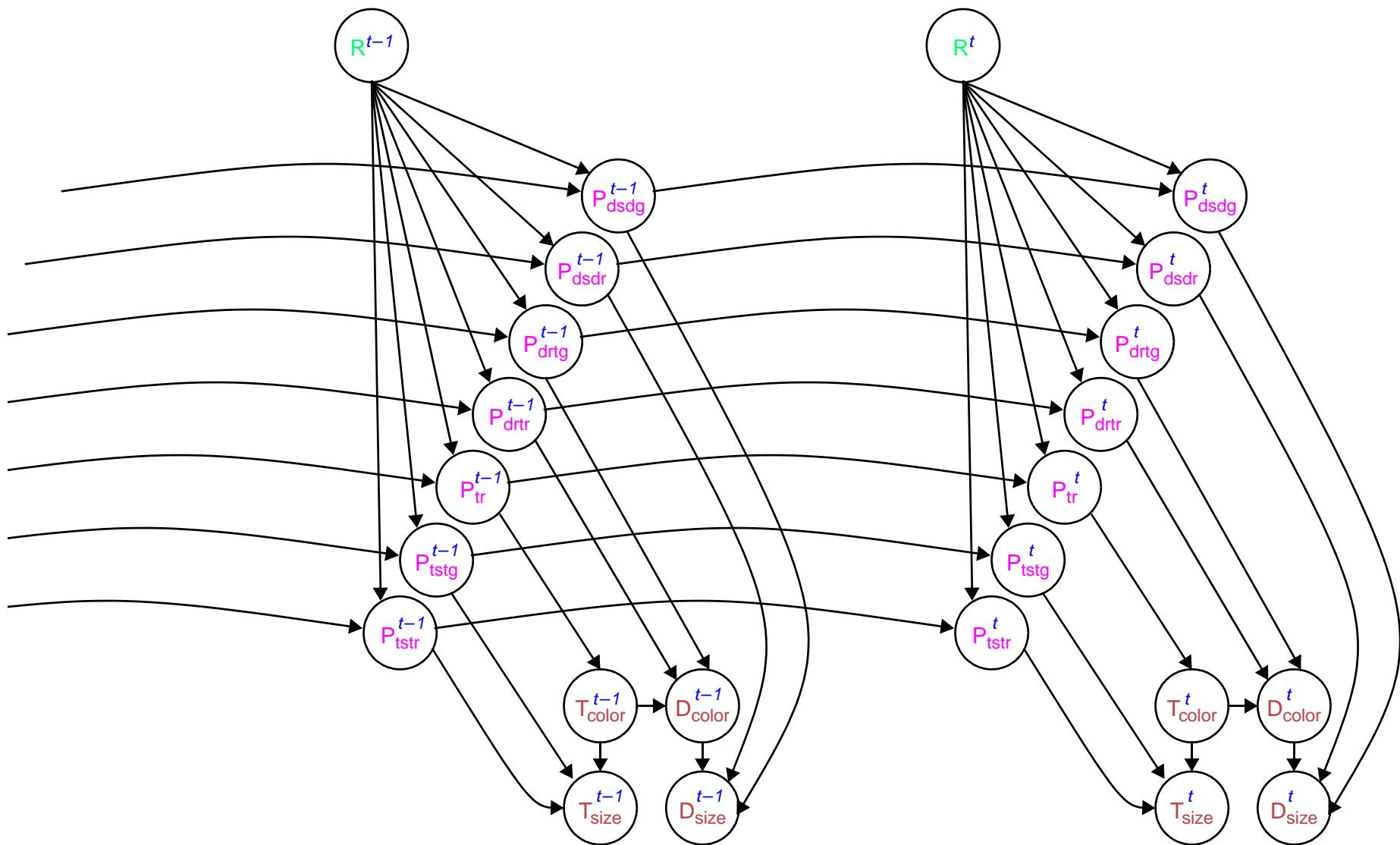
Fancy Version of Model



Fancy Version of Model



Fancy Version of Model



Summary

Two case studies

1. control of attention and the influence of recent stimulus displays
2. control of response initiation and the influence of recent stimulus difficulty

Sequential dependencies reflect adaptation to the ongoing stream of experience.

Implicit control

Trial-to-trial adaptation looks like control from the experimenter's perspective.

But not from the perspective of processing mechanisms

