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Cognitive control
The ability to flexibly modulate cognitive and motor operations based on task 
demands.

Conventional perspective
Cognitive control involves loading a new program into the brain’s CPU for 
each task.

E.g., cognitive architectures

Our perspective
Cognitive control involves optimizing human performance to the task and to 
the structure of the environment.



Visual Search
Find the 20p coin in a handful of change.

Find your friend in a crowd.

Find a particular book in your library.

How is the visual system dynamically reconfigured to 
perform a remarkable variety of arbitrary tasks?
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Control of Visual Attention
1. Focusing processing resources on task-relevant visual 
features and locations

2. Fine tuning performance to the environment

Two distinct problems?

Strategy: Study the latter to get a handle on the former
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Attentional Adaptation
(Maljkovic & Nakayama, 1994)
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Modeling the Environment
Characterize environment via a probability distribution over 
configurations of target and distractor features

To simplify presentation, assume distractors are homogeneous.

Example
Tcolor=red
Tsize=large
Tnotch=left
Dcolor=green
Dsize=small
Dnotch=right

Model
P(Tcolor, Tsize, Tnotch, Dcolor, Dsize, Dnotch)



Model 1: Independent Features

P(Tcolor, Tsize, Tnotch, Dcolor, Dsize, Dnotch) = 

P(Tcolor) P(Dcolor) P(Tsize) P(Tnotch) P(Dsize) P(Dnotch)

Independence assumption is too strong to characterize 
natural environments.



Model 2: Full Joint Distribution

With 6 features, 26 – 1 = 63 free parameters

Requires large amount of experience to obtain accurate 
probability estimates.

Tcolor Dcolor Tsize Tnotch Dsize Dnotch P(.)

red red small left small left
green red small left small left
red green small left small left
... ... ... ... ... ...

green green large right large right
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Model 3: Task-Based Architecture
Bayes net

Efficient way of representing high-order probability distributions in terms of 
low-order distributions 

P(Tcolor, Tsize, Tnotch, Dcolor, Dsize, Dnotch) = 

P(Tcolor) P(Dcolor | Tcolor) P(Tsize | Tcolor)P(Tnotch | Tcolor) P(Dsize | Dcolor)

P(Dnotch | Dcolor)

Tnotch

Tsize

Tcolor

Dnotch

Dsize

DcolorTcolor

Tsize

P

red
green

0.3
0.7

Tcolor P

red
red

0.2
0.8

green
green

large
small
large
small

0.6
0.4



Comparing the Architectures

11 free
parameters

63 free
parameters

6 free
parameters
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Key Assumptions of Task-Based Architecture

• Defining feature of target is root of tree.
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Key Assumptions of Task-Based Architecture

• Defining feature of target is root of tree.

• Defining feature of target dominates defining feature of 
distractor.

• Defining feature of target dominates nondefining features 
of target, and likewise for distractors.

Tnotch

Tsize

Tcolor

Dnotch

Dsize

Dcolor
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Simulation of Attentional Adaptation Paradigms
1. Set up Bayes net for each experiment based on task 

description.

2. Generate trial sequence that replicates those used in 
experimental studies.

3. Following each trial, update environment model.

e.g., should increase

 ...
Simplest scheme: parameter interpolation
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Simulation of Attentional Adaptation Paradigms
1. Set up Bayes net for each experiment based on task 

description.

2. Generate trial sequence that replicates those used in 
experimental studies.

3. Following each trial, update environment model.

4. Following each update, optimize attentional control to the 
current environment model.

Rather than explicitly modeling this optimization process, we assume that it 
yields RTs that are faster to configurations that have higher probability.

RT ~ –log[ P(Tcolor, Tsize, Tnotch, Dcolor, Dsize, Dnotch) ]

Use this assumption to predict RT on a given trial.



Maljkovic and Nakayama (1994), Experiment 5
Task

Search for color singleton in display of red and green diamonds.

Report whether notch is on left or right.

How does color k trials back affect RT on current trial?



Maljkovic and Nakayama (1994), Experiment 5
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Maljkovic and Nakayama (1994), Experiment 8
In last experiment, facilitation could be due to repetition of 
either target or distractor color.

In this experiment, four distinct colors.

Repeat target color up to 6 trials, changing distractor color.

Repeat distractor color up to 6 trials, changing target color.



Maljkovic and Nakayama (1994), Experiment 8
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Maljkovic and Nakayama (1994), Experiment 8

In model, greater effect for target repetition due to 
dominance of target over distractor.

Human Data Simulation
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Huang, Holcombe, and Pashler (2004)
Previous experiments studied only one feature dimension.

If stimuli vary on multiple dimensions, how do repetitions on 
one dimension interact with repetitions on another?

Task
Search for singleton in size. 

Report slant (left or right).

Color and orientation uncorrelated with size.



Huang, Holcombe, and Pashler (2004)

Repetition of defining feature (size) speeds response.

Repetition of nondefining feature (color) speeds response, 
but only if defining feature is repeated.
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Huang, Holcombe, and Pashler (2004)

Repetition of defining feature (size) speeds response.

Repetition of nondefining feature (color) speeds response, 
but only if defining feature is repeated.

In model, interaction due to dominance of defining feature 
over nondefining feature

Human Data Simulation
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Wolfe, Butcher, Lee, & Hyle (2003)
Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.
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Wolfe, Butcher, Lee, & Hyle (2003)
Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.

Measure RT on target-present trials.

complex 
environment
(target is odd
item)

homogeneous
environment
(red, vertical target)

simple
environment
(red or vertical
target)



Wolfe, Butcher, Lee, & Hyle (2003), Experiment 1
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Wolfe, Butcher, Lee, & Hyle (2003), Experiment 1
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Other Accounts of Attentional Adaptation
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Other Accounts of Attentional Adaptation

Neither is adequate to explain the range of data

Tnotch

Tsize

Tcolor

Dnotch

Dsize

Dcolor

Tnotch

Tsize

Tcolor

Dnotch

Dsize

Dcolor

Independence
Architecture

Full Joint
Architecture

Task-Based
Architecture

Tnotch

Tsize

Tcolor

Dnotch

Dsize

Dcolor

Episodic account
(Hillstrom, 2000;
Huang et al., 2004)

Feature-strengthening
account (Maljkovic &
Nakayama, 1994; Wolfe
et al., 2003)



Two Ways to View Architecture

• model of the structure of the environment

• model of attentional control

Rational account
Information processing is optimized to the structure of the environment.

Allows for limitations on information processing
(e.g., structural restrictions on architecture)
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Pushing the Rational Account Further
Why does influence of past experience decay rapidly?

Pressures on duration of influence
Adapting quickly to changing environment —> short lived influence

Capturing statistics of complex environments —> long-lived influence

Is observed memory duration optimal?

Use Bayesian model selection to determine appropriate 
memory constant in a given environment.



Posteriors on Memory Constant for
Environments of Wolfe et al.
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Prediction Via Model Averaging

Eliminates the one free parameter of model
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How Do Verbal Task Descriptions
Influence Control of Attention?



How Do Verbal Task Descriptions
Influence Control of Attention?

1. Task provides a representational framework for encoding 
the environment.

2 Task provides weak description of environment that can 
be used for determining initial control settings.

e.g., find the red vertical line

Control settings can clearly be refined once environment has been 
experienced.
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Task: name the sum of the numbers
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Stimulus-Response Task
E.g., simple addition problem

19 + 12

Task: name the sum of the numbers

Control issue
When to initiate response?

Speed-accuracy trade off

Response latency distribution

Can explain much response variability via sequence effects.

response latency

frequency



18 + 23



48 + 26



3 + 1



List-Composition Effect
(Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Pure Easy Block Pure Hard Block Mixed Block
3 + 2 8 + 6 3 + 2
1 + 4 5 + 7 5 + 7

10 + 7 9 + 4 10 + 7
5 + 5 12 + 9 12 + 9
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List-Composition Effect
(Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Reaction Time

Error Rate

List composition affects speed-accuracy trade off.

Easy Hard

Pure Block 635 msec 1059 msec

Mixed Block 683 msec 1003 msec

Difference +48 msec –56 msec

Easy Hard

Pure Block 0.3% 3.0%

Mixed Block 0.0% 4.8%

Difference –0.3% +1.8%
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Cognitive Control
We interpret cognitive control as optimizing performance to 
the environment in which an individual is operating.

Mechanisms
1. construct predictive model of the environment

2. use predictive model to optimize performance

List-composition effect reflects this control process at work.
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Modeling List-Composition Effects
Assumptions

• At each instant of time during the 
processing of a stimulus, the cognitive 
system estimates the probability of 
producing an error if a response is 
made based on the available evidence.

The estimate is used for deciding
when to initiate a response.

• The estimate is unreliable.

• Current trial is similar in difficulty to 
recent trials.

Under these assumptions, it is adaptive to use an error 
estimate based on current and recent trials.

Thus, recent trial history affects current trial performance.
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Model Details
Probabilistic information transmission (PIT) framework of 
Mozer, Colagrosso, and Huber (2002, 2003)

Dynamic Bayes net

Generalization of sequential sampling 
models (random walk, diffusion, 
accumulator models)

PIT produces probability distribution 
over responses.

Error probability estimated from this 
distribution.

Other models of temporal dynamics work fine.
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Model Details
Initiate response when error penalty drops below
time penalty

Can be cast in framework of maximizing expected utiliity.

Other decision rules work fine.
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Model Operation
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Taylor & Lupker (2001), Experiment 1

Human Data Simulation
Easy Hard Easy Hard

RT
Pure 519 msec 631 msec 518 msec 630 msec

Mixed 548 msec 610 msec 548 msec 610 msec

Diff. +29 msec –21 msec +29 msec –20 msec

Human Data Simulation
Easy Hard Easy Hard

Error 
Rate

Pure 0.6% 2.9% 2.3% 2.9%

Mixed 0.7% 2.9% 1.6% 3.6%

Diff. 0.1% 0.0% –0.7% 0.7%



Taylor & Lupker (2001, Experiment 1)
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Model Successes
Model has been successful in explaining results from other 
experiments.

Asymptotic effects of context (Kinoshita & Mozer, in preparation)

Prime-validity effect (Bodner & Masson, 2001)

We’ve verified predictions of model in further experiments.
Prime-validity effects (Kinoshita, Forster, & Mozer, 2005)

Lexical decision tasks (Kinoshita & Mozer, 
2006) 
Masked-priming parity tasks (Kinoshita, 
Mozer, & Forster, 2006)

Model makes strong predictions.
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LRP Data (Jentzsch & Sommer, 2002)



Conventional Perspectives on Cognitive Control
Control involves allocating a limited resource.

Some tasks invoke more control than others (Wolfe et al., 2003)

Accounts often imply homunculus that distributes resource.

Control involves loading a new program into the brain’s CPU 
for each task.

Explicit mechanisms
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interpreted as a consequence of optimizing performance to 
the ongoing stream of experience.
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Learning on a second-to-second time scale
Over a range of simple tasks, about five experiences are needed to tune 
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performance. (No measurable speed up in performance beyond that.)

This tuning is obligatory each time the task or environment switches, 
regardless of past experience with task or environment.

Performing task is necessary: preparation is not sufficient.

Tuning can occur to abstract features (e.g., target color, stimulus difficulty)

Our claim: Experience allows brain to build a model of the 
environment, which is used to optimize performance.

Even a rough model is very helpful.

Compared to direct reinforcement learning techniques, requires much less 
interaction with the environment for learning.
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E.g., adjustment of response criterion 
Diffusion model (Ratcliff, 1978)

List composition affects response 
criterion

Experimental evidence contradicts criterion-adjustment accounts (Dorfman & 
Glanzer, 1988; Gold & Shadlen, 2003; Jentzsch & Sommer, 2002; Osman et 
al., 2000)
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Sequential Dependencies
When executing a task repeatedly, experience on one trial 
affects performance on subsequent trials.

Performance = RT, accuracy, type of errors, interpretation of stimulus, etc.

Adaptation on the time scale of seconds

Robust and widespread across a range of tasks

Some varieties termed priming

Most are short lived (~ 5 trials)

Some are long lived (> 100 trials)
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Sequential Dependencies
component of 
architecture

experimental 
paradigm

dimension of 
dependency

example 
citations

perception

identification stimulus shape and 
identity

Bar & Biederman (1997); 
Ratcliff & McKoon (1997)

intensity 
judgement stimulus magnitude Lockhead (1984, 2004)

categorization stimulus features Jones & Mewhort (2003); 
Stewart et al. (2002)

stimulus-response 
mapping task switching task set Rogers & Monsell (1995)

response initiation
word naming stimulus difficulty Kiger & Glass (1981); 

Taylor & Lupker (2001)

choice response repetition Jentszch & Sommer 
(2002); Jones et al. (2003)

attentional
control

cued detection 
and identification cue validity Bodner & Masson (2001); 

Posner (1980)

visual search
stimulus features

Maljkovic & Nakayama 
(1996); Wolfe et al. (2003); 
Huang et al.(2004)

global stimulus 
configuration

Chun & Jiang
(1998, 1999)
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Summary
Two case studies

1. control of attention and the influence of recent stimulus displays

2. control of response initiation and the influence of recent stimulus difficulty

Sequential dependencies reflect adaptation to the ongoing 
stream of experience.

Implicit control
Trial-to-trial adaptation looks like control from the experimenter’s perspective.

But not from the perspective of processing mechanisms
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