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Cognitive control

The ability to flexibly modulate cognitive and motor operations based on task
demands.




Cognitive control

The ability to flexibly modulate cognitive and motor operations based on task
demands.

Conventional perspective

Cognitive control involves loading a new program into the brain’s CPU for
each task.




E.g., cognitive architectures
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Cognitive control

The ability to flexibly modulate cognitive and motor operations based on task
demands.

Conventional perspective

Cognitive control involves loading a new program into the brain’s CPU for
each task.

E.g., cognitive architectures

Our perspective

Cognitive control involves optimizing human performance to the task and to
the structure of the environment.




Visual Search
Find the 20p coin in a handful of change.
Find your friend in a crowd.

Find a particular book in your library.

How is the visual system dynamically reconfigured to
perform a remarkable variety of arbitrary tasks?



Control of Visual Attention




Control of Visual Attention

1. Focusing processing resources on task-relevant visual
features and locations

e.g., find the red vertical bar




Control of Visual Attention

1. Focusing processing resources on task-relevant visual
features and locations

2. Fine tuning performance to the environment

e.g., find the red vertical bar




Control of Visual Attention

1. Focusing processing resources on task-relevant visual
features and locations

2. Fine tuning performance to the environment

Two distinct problems?

Strategy: Study the latter to get a handle on the former




Attentional Adaptation
(Maljkovic & Nakayama, 1994)

Is odd colored diamond notched on the left or right?
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Attentional Adaptation

(Maljkovic & Nakayama, 1994)
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Attentional Adaptation

(Maljkovic & Nakayama, 1994)

Is odd colored diamond notched on the left or right?
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Attentional Adaptation
(Maljkovic & Nakayama, 1994)
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Why Does Repetition Facilitate Performance?

We view attentional control as optimizing performance to the
environment in which an individual is operating.



Why Does Repetition Facilitate Performance?

We view attentional control as optimizing performance to the
environment in which an individual is operating.

Two-Stage Process

1. Construct predictive (probabilistic) model of the environment based on past
experience.

2. Tune control parameters of attention to optimize performance under the
current environmental model.




Why Does Repetition Facilitate Performance?

e.g., Itti et al. (1998); Koch & Ullman (1985); Mozer (1991); Wolfe (1994)
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Why Does Repetition Facilitate Performance?

1. Construct predictive (probabilistic) model of the environment based on past

experience.
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Modeling the Environment

Characterize environment via a probability distribution over
configurations of target and distractor features

To simplify presentation, assume distractors are homogeneous.

Example

Teolor™ ’
Tsize=

Thotch= ‘
Bcolor:

size™
Dhotch™ ‘

Model

I:)(Tcolor’ Tsize1 Tnotch’ Dcolor’ Dsize’ Dnotch)



Model 1: Independent Features

P(Tcolor Tsizer Thotchs Peolor Psizes Pnotch) =
I:)(Tcolor) I:)(Dcolor) I:)(Tsize) I:)(Tnotch) I:)(Dsize) I:)(Dnotch)

Independence assumption is too strong to characterize
natural environments.



Model 2: Full Joint Distribution

Tcolor Dc:olor Tsize Tnotch Dsize Dnotch P()

With 6 features, 2° — 1 = 63 free parameters

Requires large amount of experience to obtain accurate
probability estimates.



Model 3: Task-Based Architecture




Model 3: Task-Based Architecture

Bayes net

Efficient way of representing high-order probability distributions in terms of

low-order distributions



Bayes net

Model 3: Task-Based Architecture

Efficient way of representing high-order probability distributions in terms of

low-order distributions

Teolor P
0.3
0.7
Tsize | Teolor P

0.2
0.8
0.6
0.4

P(Tcolor Tsizer Thotchs Peolor Psizes Pnotch) =
P(Tcolor) I:)(Dcolor | Tcolor) I:)(Tsize | Tcolor)P(Tnotch | Tcolor) I:)(Dsize | Dcolor)

ID(Dnotch | Dcolor)



Comparing the Architectures

Independence
Architecture

o free
parameters

Task-Based
Architecture

11 free
parameters

Full Joint
Architecture

63 free
parameters



Key Assumptions of Task-Based Architecture

» Defining feature of target is root of tree.



Key Assumptions of Task-Based Architecture

» Defining feature of target dominates defining feature of
distractor.



Key Assumptions of Task-Based Architecture

e Defining feature of target dominates nondefining features
of target, and likewise for distractors.



Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task
description.



Simulation of Attentional Adaptation Paradigms

2. Generate trial sequence that replicates those used in
experimental studies.



Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task
description.

2. Generate trial sequence that replicates those used In
experimental studies.

3. Following each trial, update environment model.

’ should increase
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e.g.,




Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task
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3. Following each trial, update environment model.
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Simulation of Attentional Adaptation Paradigms

1. Set up Bayes net for each experiment based on task

description.

2. Generate trial sequence that replicates those used In

experimental studies.

3. Following each trial, update environment model.

should increase
P(Toior = re0)

e.g.,

Simplest scheme: parameter interpolation

previous updated
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Simulation of Attentional Adaptation Paradigms

4. Following each update, optimize attentional control to the
current environment model.

Rather than explicitly modeling this optimization process, we assume that it
yields RTs that are faster to configurations that have higher probability.

RT ~ —Iog[ I:)(Tcolor’ Tsize’ Tnotch’ Dcolor’ Dsize’ Dnotch) ]

Use this assumption to predict RT on a given trial.



Maljkovic and Nakayama (1994), Experiment 5
Task

Search for color singleton in display of red and green diamonds.

Report whether notch is on left or right.

¢
® 9

How does color k trials back affect RT on current trial?




Maljkovic and Naka
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Maljkovic and Nakayama (1994), Experiment 5
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Maljkovic and Nakayama (1994), Experiment 8

In last experiment, facilitation could be due to repetition of

either target or distractor color.

In this experiment, four distinct colors.

Repeat target color up to 6 trials, changing distractor color.

¢ 0‘ ¢ o ¢
* o o o %4 o
Repeat distractor color up to 6 trials, changing target color.
¢ ¢ o o ¢ &
¢ 6 %o o %4 0




Reaction Time (msec)

Maljkovic and Nakayama (1994), Experiment 8

Human Data
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Maljkovic and Nakayama (1994), Experiment 8

Human Data Simulation
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In model, greater effect for target repetition due to
dominance of target over distractor.



Huang, Holcombe, and Pashler (2004)

Previous experiments studied only one feature dimension.

If stimuli vary on multiple dimensions, how do repetitions on
one dimension interact with repetitions on another?

Task

Search for singleton in size.
Report slant (left or right).

Color and orientation uncorrelated with size.

/7
N
N\




Huang, Holcombe, and Pashler (2004)

Human Data
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g
£
= 950
=
2
2
I 900
=4
Size Repeat
850f
Color Repeat Color Alternate

Repetition of defining feature (size) speeds response.

Repetition of nondefining feature (color) speeds response,
but only if defining feature is repeated.



Huang, Holcombe, and Pashler (2004)

Human Data Simulation
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In model, interaction due to dominance of defining feature
over nondefining feature



Wolfe, Butcher, Lee, & Hyle (2003)
Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.
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Blocks of trials, corresponding to environments of varying complexity.
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Wolfe, Butcher, Lee, & Hyle (2003)
Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.
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Wolfe, Butcher, Lee, & Hyle (2003)

Task

Detect presence/absence of singleton in display of colored, oriented lines.

Blocks of trials, corresponding to environments of varying complexity.

homogeneous
environment
(red, vertical target)

simple
environment
(red or vertical
target)

complex
environment
(target is odd
item)

Measure RT on target-present trials.




Wolfe, Butcher, Lee, & Hyle (2003), Experiment 1
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Wolfe, Butcher, Lee, & Hyle (2003), Experiment 1
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Other Accounts of Attentional Adaptation

Feature-strengthening
account (Maljkovic &
Nakayama, 1994; Wolfe
et al., 2003)

Episodic account
(Hillstrom, 2000;
Huang et al., 2004)



Other Accounts of Attentional Adaptation

Feature-strengthening
account (Maljkovic &
Nakayama, 1994; Wolfe
et al., 2003)

Independence
Architecture

Episodic account
(Hillstrom, 2000;
Huang et al., 2004)

Full Joint
Architecture



Other Accounts of Attentional Adaptation

Task-Based Full Joint
Architecture Architecture

Neither is adequate to explain the range of data



Two Ways to View Architecture

e model of the structure of the environment

e model of attentional control

Rational account

Information processing is optimized to the structure of the environment.

Allows for limitations on information processing
(e.g., structural restrictions on architecture)



Pushing the Rational Account Further

Why does influence of past experience decay rapidly?

Pressures on duration of influence

Adapting quickly to changing environment — short lived influence

Capturing statistics of complex environments — long-lived influence

Is observed memory duration optimal?

Use Bayesian model selection to determine appropriate
memory constant in a given environment.



Posteriors on Memory Constant for
Environments of Wolfe et al.
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original simulation
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Bayesian model averaging
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How Do Verbal Task Descriptions
Influence Control of Attention?




How Do Verbal Task Descriptions

Influence Control of Attention?

1. Task provides a representational framework for encoding
the environment.

2 Task provides weak description of environment that can

be used for determining initial control settings.

e.g., find the red vertical line

O
OIQ
O

Control settings can clearly be refined once environment has been
experienced.




Stimulus-Response Task




Stimulus-Response Task

E.g., simple addition problem
19+ 12

Task: name the sum of the numbers



Stimulus-Response Task

E.g., simple addition problem

19 + 12
Task: name the sum of the numbers
Control issue

When to initiate response?

Speed-accuracy trade off




Stimulus-Response Task

Response latency distribution

frequency

response Iatency

Can explain much response variability via sequence effects.



18 + 23




48 + 26







List-Composition Effect

(Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Pure Easy Block Pure Hard Block Mixed Block
3+2 8+6 3+2
1+4 5+7 5+7
10 +7 9+4 10 +7
5+5 12+ 9 12+ 9




List-Composition Effect
(Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Reaction Time

Easy Hard
Pure Block 635 msec 1059 msec
Error Rate
Easy Hard

Pure Block 0.3% 3.0%




List-Composition Effect
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Reaction Time

Easy Hard
Pure Block 635 msec 1059 msec
Mixed Block 683 msec 1003 msec
Error Rate
Easy Hard
Pure Block 0.3% 3.0%

Mixed Block 0.0% 4.8%




List-Composition Effect
(Lupker, Kinoshita, Coltheart, & Taylor, 2003)

Reaction Time

Easy Hard
Pure Block 635 msec 1059 msec
Mixed Block 683 msec 1003 msec
Difference +48 msec —-56 msec
Error Rate
Easy Hard
Pure Block 0.3% 3.0%
Mixed Block 0.0% 4.8%
Difference —0.3% +1.8%

List composition affects speed-accuracy trade off.



Cognitive Control




Cognitive Control

We interpret cognitive control as optimizing performance to
the environment in which an individual is operating.



Cognitive Control

We interpret cognitive control as optimizing performance to
the environment in which an individual is operating.

Mechanisms

1. construct predictive model of the environment

2. use predictive model to optimize performance




Cognitive Control

We interpret cognitive control as optimizing performance to
the environment in which an individual is operating.

Mechanisms

1. construct predictive model of the environment

2. use predictive model to optimize performance

List-composition effect reflects this control process at work.




Modeling List-Composition Effects




Modeling List-Composition Effects

Assumptions

» At each instant of time during the
processing of a stimulus, the cognitive 0.8
system estimates the probability of
producing an error if a response is
made based on the available evidence.

o
o)

error probability

The estimate Is used for deciding
when to initiate a response.

o
N

Oo

160 260 ] 360 460 560 600 70
time (msec)



Modeling List-Composition Effects

Assumptions

error probability
o o o
O -

o
N

 The estimate is unreliable.

(=)

0 160 260 _ 360 4(50 560 600 70
time (msec)



Modeling List-Composition Effects

Assumptions

error probability
© © o
O -

o
N

0O 100 200 300 400 500 600 70

e Current trial is similar in difficulty to time (msec)

recent trials.



Modeling List-Composition Effects

error probability
o o o
N ()] (00)

o
N

0O 100 200 300 400 500 600 70

time (msec)

Under these assumptions, it is adaptive to use an error
estimate based on current and recent trials.

Thus, recent trial history affects current trial performance.



Model Detalls

Probabilistic information transmission (PIT) framework of
Mozer, Colagrosso, and Huber (2002, 2003)

Dynamic Bayes net

Generalization of sequential sampling
models (random walk, diffusion,
accumulator models)

o
0

o
o

PIT produces probability distribution
OVer responses.

response probability
~

Error probability estimated from this
distribution.

o
[N

(@]

0 50 100 150 200
time

Other models of temporal dynamics work fine.



Model Detalls

Initiate response when error penalty drops below

o
0

2

E

o . error penalty

@)

O

2 04

o

D o2
0 ‘ ‘ ‘ =
0 100 200 300 400 500 600 700

time (msec)

Can be cast in framework of maximizing expected utiliity.

Other decision rules work fine.



o
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error rate
o
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o
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Model Operation
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Taylor & Lupker (2001), Experiment 1

Human Data Simulation
Easy Hard Easy Hard
Pure 919 msec | 631 msec 518 msec | 630 msec
RT Mixed | 548 msec | 610 msec 548 msec | 610 msec
Diff. | +29 msec | —-21 msec +29 msec | —20 msec
Human Data Simulation
Easy Hard Easy Hard
Pure 0.6% 2.9% 2.3% 2.9%
Er;f)er Mixed 0.7% 2.9% 1.6% 3.6%
Diff. 0.1% 0.0% —0.7% 0.7%




Taylor & Lupker (2001, Experiment 1)
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Model Successes

Model has been successful in explaining results from other
experiments.

Asymptotic effects of context (Kinoshita & Mozer, in preparation)

Prime-validity effect (Bodner & Masson, 2001)



Model Successes

We’ve verified predictions of model in further experiments.
Prime-validity effects (Kinoshita, Forster, & Mozer, 2005)

Lexical decision tasks (Kinoshita & Mozer,
2006)

Masked-priming parity tasks (Kinoshita,
Mozer, & Forster, 2006)



Model Successes

Model has been successful in explaining results from other

experiments.

Asymptotic effects of context (Kinoshita & Mozer, in preparation)

Prime-validity effect (Bodner & Masson, 2001)

We’ve verified predictions of model in further experiments.

Prime-validity effects (Kinoshita, Forster, & Mozer, 2005)

Lexical decision tasks (Kinoshita & Mozer, ‘
2006)

w
T

Masked-priming parity tasks (Kinoshita,
Mozer, & Forster, 2006)

n
&
T

magnitude of proportion effect
P ro
T %
X

Model makes strong predictions.

—_

o
3

o

magnitude of priming manipulation




LRP Data (Jentzsch & Sommer, 2002)
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Conventional Perspectives on Cognitive Control

Control involves allocating a limited resource.

Some tasks invoke more control than others (Wolfe et al., 2003)

Accounts often imply homunculus that distributes resource.

Control involves loading a new program into the brain’s CPU
for each task.

Explicit mechanisms



Our Unconventional Perspective

Much of what appears to be cognitive control can be
Interpreted as a conseqgquence of optimizing performance to
the ongoing stream of experience.



Our Unconventional Perspective

Learning on a second-to-second time scale

Over a range of simple tasks, about five experiences are needed to tune
performance. (No measurable speed up in performance beyond that.)

This tuning is obligatory each time the task or environment switches,
regardless of past experience with task or environment.

Performing task is necessary: preparation is not sufficient.

Tuning can occur to abstract features (e.g., target color, stimulus difficulty)



Our Unconventional Perspective

Our claim: Experience allows brain to build a model of the
environment, which is used to optimize performance.

Even a rough model is very helpful.

Compared to direct reinforcement learning techniques, requires much less
Interaction with the environment for learning.






Explanations for List-Composition Effects

Many explanations have been proposed.

e.g., Kello & Plaut (2001); Meyer, Roelofs, & Levelt (2003); Perea, Carreiras,
& Granger (2005); Rastle & Coltheart (1999); Strayer & Kramer (1994)

All have deficiencies.

See Mozer & Kinoshita (in preparation)
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e.g., Kello & Plaut (2001); Meyer, Roelofs, & Levelt (2003); Perea, Carreiras,
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See Mozer & Kinoshita (in preparation)

E.g., adjustment of response criterion
Diffusion model (Ratcliff, 1978)

evidence
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Explanations for List-Composition Effects

E.g., adjustment of response criterion
Diffusion model (Ratcliff, 1978)

List composition affects response
criterion

evidence




Explanations for List-Composition Effects

E.g., adjustment of response criterion
Diffusion model (Ratcliff, 1978)

List composition affects response
criterion

evidence

Experimental evidence contradicts criterion-adjustment accounts (Dorfman &
Glanzer, 1988; Gold & Shadlen, 2003; Jentzsch & Sommer, 2002; Osman et
al., 2000)



Sequential Dependencies

When executing a task repeatedly, experience on one trial
affects performance on subsequent trials.

Performance = RT, accuracy, type of errors, interpretation of stimulus, etc.

Adaptation on the time scale of seconds
Robust and widespread across a range of tasks
Some varieties termed priming

Most are short lived (~ 5 trials)

Some are long lived (> 100 trials)



Sequential Dependencies

component of
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response initiation
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Sequential Dependencies
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Sequential Dependencies

component of
architecture

experimental
paradigm

dimension of
dependency

example
citations

perception

identification

stimulus shape and
identity

Bar & Biederman (1997);
Ratcliff & McKoon (1997)

Intensity
judgement

stimulus magnitude

Lockhead (1984, 2004)

categorization

stimulus features

Jones & Mewhort (2003);
Stewart et al. (2002)

stimulus-response
mapping

task switching

task set
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Summary

Two case studies
1. control of attention and the influence of recent stimulus displays

2. control of response initiation and the influence of recent stimulus difficulty

Sequential dependencies reflect adaptation to the ongoing
stream of experience.

Implicit control

Trial-to-trial adaptation looks like control from the experimenter’s perspective.

But not from the perspective of processing mechanisms
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