
19-Nov-04 Copyright P.H.Welch 1

Communicating Mobile ProcessesCommunicating Mobile ProcessesCommunicating Mobile Processes

Peter Welch and Fred Barnes
University of Kent at Canterbury

Computing Laboratory
p.h.welch@kent.ac.uk

f.r.m.barnes@kent.ac.uk

Peter Welch and Fred BarnesPeter Welch and Fred Barnes

University of Kent at CanterburyUniversity of Kent at Canterbury
Computing LaboratoryComputing Laboratory
p.h.welchp.h.welch@@kent.ac.ukkent.ac.uk

f.r.m.barnesf.r.m.barnes@@kent.ac.ukkent.ac.uk

Tuna Tuna KickoffKickoff Meeting, YorkMeeting, York
(12th. November, 2004)(12th. November, 2004)

19-Nov-04 Copyright P.H.Welch 2

CSP-πCSPCSP--ππ

occam-πoccamoccam--ππ JCSP (Java)JCSPJCSP (Java)(Java)occam 3occam 3occam 3

Handel-CHandelHandel--CCoccam 2.1occam 2.1occam 2.1

occamoccamoccam transputerstransputerstransputers

Communicating Sequential
Processes (CSP)

Communicating Sequential Communicating Sequential
Processes (CSP)Processes (CSP)

CCS / π-calculus: mobile data,
channel-ends and processes

CCS / CCS / ππ--calculus: calculus: mobile data, mobile data,
channelchannel--ends and processesends and processes??????

19-Nov-04 Copyright P.H.Welch 3

occam-πoccamoccam--ππ
� Processes, channels, (PARPAR) networks
� (ALTALT) choice between multiple events

� Mobile data typesMobile data types

�� Mobile process typesMobile process types
� Mobile channel typesMobile channel types
� PerformancePerformance

+ channel bundles, alias checking, no race hazards,
dynamic memory, no garbage, recursion, forking,

extended rendezvous, process priorities, …

+ channel bundles, alias checking, no race hazards, + channel bundles, alias checking, no race hazards,
dynamic memory, no garbage, recursion, forking, dynamic memory, no garbage, recursion, forking,

extended rendezvous, process priorities, extended rendezvous, process priorities, ……

19-Nov-04 Copyright P.H.Welch 4

�� SimplicitySimplicity
� There must be a consistent (denotational) semantics that matches

our intuitive understanding for Communicating Mobile ProcessesCommunicating Mobile Processes.
� There must be as direct a relationship as possible between the

formal theory and the implementation technologies to be used.
� Without the above link (e.g. using C++/posix or Java/monitors),

there will be too much uncertainty as to how well the systems we
build correspond to the theoretical design.

�� DynamicsDynamics
� Theory and practice must be flexible enough to cope with process

mobility, location awareness, network growth and decay,
disconnect and re-connect and resource sharing.

�� PerformancePerformance
� Computational overheads for managing (millions of) evolving

processes must be sufficiently low so as not to be a show-stopper.

�� SafetySafety
�� Massive concurrency Massive concurrency –– but no race hazards, deadlock, but no race hazards, deadlock, livelocklivelock or or

process starvation.process starvation.

Aspirations and PrinciplesAspirations and Principles

19-Nov-04 Copyright P.H.Welch 5

Processes and Channel-EndsProcesses and Channel-Ends

x

x + y

x + y + z

.

.

.

integrateintegrate

outoutininx

y

z

.

.

.

PROC PROC integrateintegrate (CHAN INT (CHAN INT inin?, ?, outout!)!)

An occamoccam process may only use a channel parameter one-way
(either for input or for output). That direction is specified (?? or !!),
along with the structure of the messages carried – in this case,
simple INTINTs. The compiler checks that channel useage within
the body of the PROCPROC conforms to its declared direction.

19-Nov-04 Copyright P.H.Welch 6

PROC PROC integrateintegrate (CHAN INT (CHAN INT inin?, ?, outout!)!)

::

x

x + y

x + y + z

.

.

.

integrateintegrate

outoutininx

y

z

.

.

.

serial
implementation

INITIAL INT INITIAL INT total total IS 0:IS 0:
WHILE TRUEWHILE TRUE
INT INT xx::
SEQSEQ
in in ? ? xx
total total := := total total + + xx
out out ! ! totaltotal

Processes and Channel-EndsProcesses and Channel-Ends

19-Nov-04 Copyright P.H.Welch 7

killkill

x

x + y

x + y + z

.

.

.

integrate.killintegrate.kill

outoutininx

y

z

.

.

.

serial
implementation

PROC PROC integrate.killintegrate.kill (CHAN INT (CHAN INT inin?, ?, outout!, !, killkill?)?)

::

INITIAL INT INITIAL INT total total IS 0:IS 0:
INITIAL BOOL INITIAL BOOL ok ok IS TRUE:IS TRUE:
... main loop... main loop

With an Added Kill ChannelWith an Added Kill Channel

19-Nov-04 Copyright P.H.Welch 8

Choosing between Multiple EventsChoosing between Multiple Events

serial
implementation

WHILE WHILE ok ok ---- main loopmain loop
INT INT xx::
PRI ALTPRI ALT
kill kill ? ? xx
ok ok := FALSE:= FALSE

in in ? ? xx
SEQSEQ
total total := := total total + + xx
out out ! ! totaltotal

killkill

x

x + y

x + y + z

.

.

.

integrate.killintegrate.kill

outoutininx

y

z

.

.

.

19-Nov-04 Copyright P.H.Welch 9

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

integrateintegrate
00

PROC PROC integrateintegrate (CHAN INT (CHAN INT inin?, ?, outout!)!)

::

PARPAR
plusplus ((inin?, ?, cc?, ?, aa!)!)
deltadelta ((aa?, ?, outout!, !, bb!)!)
prefixprefix (0, (0, bb?, ?, cc!)!)

CHAN INT CHAN INT aa, , bb, , cc::

aa

bbcc

parallel
implementation

Parallel Process NetworksParallel Process Networks

19-Nov-04 Copyright P.H.Welch 10

With an Added Kill ChannelWith an Added Kill Channel

PARPAR
poisonpoison ((inin?, ?, killkill?, ?, dd!)!)
plusplus ((dd?, ?, cc?, ?, aa!)!)
deltadelta ((aa?, ?, outout!, !, bb!)!)
prefixprefix (0, (0, bb?, ?, cc!)!)

PROC PROC integrate.killintegrate.kill (CHAN INT (CHAN INT inin?, ?, out out !, !, killkill?)?)

::

CHAN INT CHAN INT aa, , bb, , c, dc, d::

parallel
implementation

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

aa

bbcc

dd

killkill

integrate.killintegrate.kill

19-Nov-04 Copyright P.H.Welch 11

cc

Copy Data TypesCopy Data Types

DATA TYPEDATA TYPE FOO FOO IS ... :IS ... :

CHAN CHAN FOO FOO cc::
PARPAR

A (A (cc!)!)
B (B (cc?)?)

AA BB

19-Nov-04 Copyright P.H.Welch 12

Copy Data TypesCopy Data Types

cc

DATA TYPEDATA TYPE FOO FOO IS ... :IS ... :

AA BB

PROC PROC AA (CHAN (CHAN FOO FOO cc!)!)
FOO FOO xx::
SEQSEQ
... set up ... set up xx
cc ! ! xx

xx

PROC PROC BB (CHAN (CHAN FOO FOO cc?)?)
FOO FOO yy::
SEQSEQ
... some stuff... some stuff

yy

19-Nov-04 Copyright P.H.Welch 13

Copy Data TypesCopy Data Types

cc ? ? yy
... more stuff... more stuff

::
... more stuff... more stuff

::

cc

DATA TYPEDATA TYPE FOO FOO IS ... :IS ... :

AA BB

PROC PROC AA (CHAN (CHAN FOO FOO cc!)!)
FOO FOO xx::
SEQSEQ
... set up ... set up xx
cc ! ! xx

xx

PROC PROC BB (CHAN (CHAN FOO FOO cc?)?)
FOO FOO yy::
SEQSEQ
... some stuff... some stuff

yy

x and y reference different pieces of data
19-Nov-04 Copyright P.H.Welch 14

Mobile Data TypesMobile Data Types

CHAN CHAN M.FOO M.FOO cc::
PARPAR

A (A (cc!)!)
B (B (cc?)?)

cc

DATA TYPEDATA TYPE M.FOO M.FOO IS IS MOBILEMOBILE ... :... :

AA BB

19-Nov-04 Copyright P.H.Welch 15

cc
AA BB

PROC PROC AA (CHAN (CHAN M.FOO M.FOO cc!)!)
M.FOO M.FOO xx::
SEQSEQ
... set up ... set up xx
cc ! ! xx

xx

DATA TYPEDATA TYPE M.FOO M.FOO IS IS MOBILEMOBILE ... :... :

Mobile Data TypesMobile Data Types

PROC PROC BB (CHAN (CHAN M.FOO M.FOO cc?)?)
M.FOO M.FOO yy::
SEQSEQ
... some stuff... some stuff

yy

19-Nov-04 Copyright P.H.Welch 16

Mobile Data TypesMobile Data Types

The data has moved – x cannot be referenced

cc ? ? yy
... more stuff... more stuff

::
... more stuff... more stuff

::

cc
AA BB

PROC PROC AA (CHAN (CHAN M.FOO M.FOO cc!)!)
M.FOO M.FOO xx::
SEQSEQ
... set up ... set up xx
cc ! ! xx

xx

PROC PROC BB (CHAN (CHAN M.FOO M.FOO cc?)?)
M.FOO M.FOO yy::
SEQSEQ
... some stuff... some stuff

yy

DATA TYPEDATA TYPE M.FOO M.FOO IS IS MOBILEMOBILE ... :... :

19-Nov-04 Copyright P.H.Welch 17

A

B

D

E

C

P

Q

S

T

R

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

Mobile Process TypesMobile Process Types

19-Nov-04 Copyright P.H.Welch 18

Mobile Process TypesMobile Process Types
An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

A

B

D

E

C

P

Q

S

T

R

19-Nov-04 Copyright P.H.Welch 19

Mobile Process TypesMobile Process Types
An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

A

B

D

E

C

P

Q

S

T

R

19-Nov-04 Copyright P.H.Welch 20

Mobile Process TypesMobile Process Types
An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

A

B

D

E

C

P

Q

S

T

R

19-Nov-04 Copyright P.H.Welch 21

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

Upon reactivation, the process resumes from the
same state (i.e. data values and code positions)(i.e. data values and code positions) it
held when suspended. Its view of that environment is
unchanged, since that is abstracted by its channel since that is abstracted by its channel
interfaceinterface. The environment on the other side of that
abstraction, however, will usually be different.

The mobile process may itself contain any number of any number of
levelslevels of dynamically evolving parallel sub-network.

Mobile Process TypesMobile Process Types

19-Nov-04 Copyright P.H.Welch 22

Mobile Process TypesMobile Process Types
Mobile processes are entities encapsulating state and
code. They may be activeactive or passivepassive. Initially, they
are passivepassive.

The state of a mobile process can only be discovered by
interacting with it when activeactive. When passive, its state is
locked – even against reading.

passivepassive activeactive

activate

(self)
suspend

move

19-Nov-04 Copyright P.H.Welch 23

Mobile Process TypesMobile Process Types
When passivepassive, they may be activatedactivated or movedmoved. A
movedmoved process remains passivepassive. An activeactive process
cannot be movedmoved or activatedactivated in parallel.

When an activeactive mobile process suspendssuspends, it becomes
passivepassive – retaining its state and code position. When it
moves, its state moves with it. When re-activatedactivated, it sees
its previous state and continues from where it left off.

passivepassive activeactive

activate

(self)
suspend

move

19-Nov-04 Copyright P.H.Welch 24

Mobile processes exist in many technologies – such as
appletsapplets, agentsagents and in distributed operating systems.

occamoccam--ππ offers (will offer) support for them with a
formal denotationaldenotational semantics, very high security
and very low overheads.

Process mobility semantics follows naturally from that
for mobile data and mobile channel-ends.

We need to introduce a concept of process typestypes and
variablesvariables.

Mobile Process TypesMobile Process Types

19-Nov-04 Copyright P.H.Welch 25

Process typetype declarations give names to PROCPROC header
templates. Mobile processes may implement types
with synchronisation parameters only (i.e. channels,
barriers, buckets, etc.) and records and fixed-size
arrays of the same. For example:

Mobile Process TypesMobile Process Types

PROC TYPE PROC TYPE IN.OUT.SUSPENDIN.OUT.SUSPEND (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?):?):

The above declares a process typetype called IN.OUT.SUSPENDIN.OUT.SUSPEND.
Note that the earlier example, integrate.killintegrate.kill, conforms to conforms to
this type.this type.

Process typestypes are used in two ways: for the declaration
of process variablesvariables and to define the connection connection
interfaceinterface to a mobile process.

19-Nov-04 Copyright P.H.Welch 26

Mobile Process ExampleMobile Process Example

WHILE TRUEWHILE TRUE
INT INT xx::
PRI ALTPRI ALT
suspend suspend ? ? xx

in in ? ? xx
SEQSEQ
total total := := total total + + xx
out out ! ! totaltotal

INITIAL INT INITIAL INT total total IS 0: IS 0: ---- local state local state

SUSPENDSUSPEND ---- control returns to activatorcontrol returns to activator
---- control resumes here when next activatedcontrol resumes here when next activated

MOBILEMOBILE PROC PROC integrate.suspend integrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)

::

suspend

in
out

integrate.suspendintegrate.suspend

IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

19-Nov-04 Copyright P.H.Welch 27

Mobile Processes and TypesMobile Processes and Types

A process typetype may be implemented by many mobile
processes – each offering different behaviours.

A process variablevariable has a specific process type. Its value
may be undefinedundefined or some mobile processsome mobile process implementing
its type. A process variable may be bound to different
mobile processes, offering different behaviours, at
different times in its life. When defineddefined, it can only be
activated according to that type.

The mobile process from the last slide, integrate.suspendintegrate.suspend,
implements the process type, IN.OUT.SUSPENDIN.OUT.SUSPEND, defined
earlier. Other processes could implement the same type.

19-Nov-04 Copyright P.H.Welch 28

process.outprocess.out ! ! pp
---- pp is now undefined (canis now undefined (can’’t move or activate it)t move or activate it)

PROC PROC AA (CHAN (CHAN IN.OUT.SUSPEND IN.OUT.SUSPEND process.outprocess.out!)!)

::

p p :=:= MOBILEMOBILE integrate.suspendintegrate.suspend
---- pp is now defined (can move and activate)is now defined (can move and activate)

IN.OUT.SUSPEND IN.OUT.SUSPEND pp::
SEQSEQ
---- pp is not yet defined (canis not yet defined (can’’t move or activate it)t move or activate it)

Mobile Process ExampleMobile Process Example

process.outprocess.out
AA

19-Nov-04 Copyright P.H.Welch 29

PROC PROC BB (CHAN (CHAN IN.OUT.SUSPEND IN.OUT.SUSPEND process.inprocess.in??, , process.outprocess.out!,!,
CHAN INT CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)

::

WHILE TRUEWHILE TRUE
IN.OUT.SUSPEND IN.OUT.SUSPEND qq::
SEQSEQ
... input a process to ... input a process to qq
... plug into local channels and activate ... plug into local channels and activate qq
... when finished, send it on its way... when finished, send it on its way

Mobile Process ExampleMobile Process Example

process.inprocess.in
BB

process.outprocess.out

inin suspendsuspend

outout

19-Nov-04 Copyright P.H.Welch 30

process.outprocess.out ! ! qq
---- q is now undefined (canq is now undefined (can’’t move or activate it)t move or activate it)

process.in process.in ?? qq
---- q is now defined (can move and activate)q is now defined (can move and activate)

WHILE TRUEWHILE TRUE
IN.OUT.SUSPEND IN.OUT.SUSPEND qq::
SEQSEQ
---- q is not yet defined (canq is not yet defined (can’’t move or activate it)t move or activate it)

q (in?, out!, suspend?)q (in?, out!, suspend?)
---- q is still defined (can move and activate)q is still defined (can move and activate)

Mobile Process ExampleMobile Process Example

process.inprocess.in
BB

process.outprocess.out

inin suspendsuspend

outout

19-Nov-04 Copyright P.H.Welch 31

Mobile Process NetworkMobile Process Network

CHAN CHAN IN.OUT.SUSPEND IN.OUT.SUSPEND cc,, dd::
CHAN INT CHAN INT inin, , outout, , suspendsuspend::
... other channels... other channels
PARPAR

AA ((cc!)!)
BB ((cc?, ?, dd!, !, inin?, ?, outout!, !, suspendsuspend?)?)
... other processes... other processes

……cc

inin

outout

suspendsuspend

BB
dd

AA

19-Nov-04 Copyright P.H.Welch 32

Mobile NetworksMobile Networks
Thanks to Tony Hoare for the insight allowing for the safe suspension
of mobiles that have gone parallel internally [bar conversation, GC
conference, Newcastle (29/03/2004)].

So, treat SUSPENDSUSPEND as a special event bound to all internal processes
of the mobile (and local to them – i.e. hidden from its environment).
The SUSPENDSUSPEND only completes when all internal processes engage.
Then, the mobile ““early terminatesearly terminates”” its activation.

Our earlier model handles this by requiring normal termination of a
mobile before it can be moved – i.e. a multiwaymultiway synchronisationsynchronisation on
the termination event of all internal processes.

For implementation, we just need a CSP event (an occamoccam--ππ BARRIERBARRIER)
reserved in the workspace of any mobile. To reactivate, all its
suspended processes will be on the queue held by that event –– easy!easy!

Well, not quite that easy … but it certainly sorted this problem.

19-Nov-04 Copyright P.H.Welch 33

Graceful SuspensionGraceful Suspension
We must still arrange for ‘graceful’ suspension by all the processes
within a mobile.

Fortunately, there is a standard protocol for safely arranging this
parallel suspend – it’s the same as that for ‘graceful’ termination.

If one sub-process gets stuck on an internal communication while all
its sibling processes have suspended, we have deadlock.

This is left for the mobile application to implement. It’s a concern
orthogonal to the (language) design and mechanics of mobile
suspension – in the same way that the ‘graceful’ termination protocol
is orthogonal to the mechanics of parallel termination.

Separately, we are considering language support for such distributed
decisions …

19-Nov-04 Copyright P.H.Welch 34

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

Mobile Network ExampleMobile Network Example

++

0000

++

19-Nov-04 Copyright P.H.Welch 35

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

Mobile Network ExampleMobile Network Example

19-Nov-04 Copyright P.H.Welch 36

outout ! ! TRUETRUE; x ; x ---- forward dataforward data

PROC PROC freezefreeze (CHAN INT (CHAN INT inin?, ?, suspendsuspend?, CHAN BOOL.INT ?, CHAN BOOL.INT outout!)!)

::

inin outout

suspendsuspend

WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
INT any:INT any:
suspend suspend ? any? any

INT x:INT x:
in in ? x? x

SEQSEQ
outout ! ! FALSEFALSE; 0 ; 0 ---- suspend signalsuspend signal
SUSPENDSUSPEND

Graceful SuspensionGraceful Suspension

19-Nov-04 Copyright P.H.Welch 37

Mobile Network ExampleMobile Network Example

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

19-Nov-04 Copyright P.H.Welch 38

outout

in.0in.0

in.1in.1

++

PROC PROC plus.suspend plus.suspend (CHAN BOOL.INT (CHAN BOOL.INT in.0in.0?, ?, in.1in.1?, ?, outout!)!)

::

WHILE TRUEWHILE TRUE
BOOL BOOL b.0b.0, , b.1b.1::
INT x.0, x.1:INT x.0, x.1:
SEQSEQ
PARPAR
in.0in.0 ? ? b.0b.0; x.0 ; x.0 ---- b.0 b.0 ÙÙ no suspendno suspend
in.1in.1 ? ? b.1b.1; x.1 ; x.1 ---- b.1 = TRUEb.1 = TRUE

IFIF
b.0b.0
outout ! ! TRUETRUE; x.0 + x.1 ; x.0 + x.1 ---- new running sumnew running sum

TRUETRUE
SEQSEQ

outout ! ! FALSEFALSE; x.1 ; x.1 ---- suspend signal (with sum)suspend signal (with sum)
SUSPENDSUSPEND

::

19-Nov-04 Copyright P.H.Welch 39

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

Mobile Network ExampleMobile Network Example

++

19-Nov-04 Copyright P.H.Welch 40

PROC PROC delta.suspend delta.suspend (CHAN BOOL.INT (CHAN BOOL.INT inin?, ?, out.0out.0!, CHAN INT !, CHAN INT out.1out.1!)!)

::

WHILE TRUEWHILE TRUE
BOOL BOOL bb::
INT x:INT x:
SEQSEQ
inin ? ? bb; x ; x ---- b b ÙÙ no suspendno suspend
IFIF
bb
PARPAR

out.0out.0 ! ! TRUETRUE; x ; x ---- feedback running sumfeedback running sum
out.1out.1 ! x ! x ---- output running sumoutput running sum

TRUETRUE
SEQSEQ

out.0out.0 ! ! FALSEFALSE; x ; x ---- suspend signal (with sum)suspend signal (with sum)
SUSPENDSUSPEND

::

inin out.1out.1

out.0out.0

19-Nov-04 Copyright P.H.Welch 41

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

++

Mobile Network ExampleMobile Network Example

19-Nov-04 Copyright P.H.Welch 42

SEQSEQ
out out ! ! nn
WHILE TRUEWHILE TRUE
BOOL BOOL bb::
INT x:INT x:
SEQSEQ
inin ? ? bb; x ; x ---- b b ÙÙ no suspendno suspend
IFIF
bb

SKIPSKIP
TRUETRUE

SUSPENDSUSPEND
out out ! ! TRUETRUE; x ; x ---- feedback running sum (feedback running sum (no suspendno suspend))

PROC PROC prefix.suspend prefix.suspend (VAL INT (VAL INT nn, CHAN BOOL.INT , CHAN BOOL.INT inin?, ?, outout!)!)

::

inin outout
nn

19-Nov-04 Copyright P.H.Welch 43

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

++

Mobile Network ExampleMobile Network Example

00

19-Nov-04 Copyright P.H.Welch 44

Graceful SuspensionGraceful Suspension
This parallel version of the integrate.suspendintegrate.suspend mobile process
promptly suspends when its environment offers its ‘suspendsuspend??’ signal. It
does this without deadlocking, without accepting any further ‘inin??’ data
and with flushing to ‘outout!!’ any data owed to its environment – i.e. it
honours the contract (we intend to associate with IN.OUT.SUSPENDIN.OUT.SUSPEND).

Deadlock would occur if the sequence of output communication and
suspension were reversed in any of its component processes.

In fact, the output and suspend operations could safely be run in
parallel by all components, except for prefix.suspend prefix.suspend (where
deadlock would result since the output would never be accepted).

This shows the care that must be taken in applying the ‘graceful
suspension’ protocol – responsibility for which we are leaving, for the
moment, with the application engineer.

19-Nov-04 Copyright P.H.Welch 45

Graceful SuspensionGraceful Suspension
Finally, note that the request for a SUSPENDSUSPEND need not come only from
the environment of a mobile. It could be a unilateral decision by the
mobile itself (subject, of course, to satisfying any behavioural contract
declared by its underlying type). It could be initiated by the mobile and
negotiated with its environment. It could be all of these in parallel!

The ‘graceful’ protocol can deal with such concurrent decisions safely.

19-Nov-04 Copyright P.H.Welch 46

�� Process TypeProcess Type
� Currently, the PROCPROC TYPETYPE defines only the connectionsconnections that are

required and offered by a mobile.
� The activating process has complete charge over setting up those

connections. They are the only way a mobile can interact with its
hosting environment. Nothing can happen without the knowledge
and active participation of the host.

�� ContractContract
� This describes how a mobile is prepared to behavebehave with respect

to the synchronisation offers it receives from its environment (as
parametrised by the PROCPROC TYPETYPE of the mobile).

� CSP provides a powerful algebra for specifying rich patterns of
such behaviour.

�� FunctionFunction
� This describes how values generatedvalues generated by the mobile relate to

values receivedvalues received.
� Z specifications of the mobile as a state machine work here (and

are integrated with CSP in the CircusCircus algebra of Woodcock et al.).

Mobile ContractsMobile Contracts

19-Nov-04 Copyright P.H.Welch 47

�� SafetySafety
� A connectionconnection (PROCPROC TYPETYPE) interface provides a necessary but

not sufficient mechanism for safety.
� The host environment needs more assurance of good behaviour

from an arriving mobile – e.g. that it will not cause deadlock or
livelock, will not starve host processes of attention … and will
suspend when asked.

� Of course, reciprocal promises by the host environment are just
as important to the mobile.

�� Behavioural Process TypesBehavioural Process Types
� We are looking to boost the PROCPROC TYPETYPE with a contractcontract that

makes (some level of) CSP specification of behaviour.
� Initially, we are considering just trace specifications that the

compiler can verify against implementing mobiles.
� The host environment of each activated mobile also needs to be

checked against the contract (e.g. via FDRFDR).

Mobile ContractsMobile Contracts

19-Nov-04 Copyright P.H.Welch 48

suspend

in
out

IN.OUT.SUSPENDIN.OUT.SUSPEND

PROC TYPE PROC TYPE IN.OUT.SUSPENDIN.OUT.SUSPEND (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?):?):

For example, an IN.OUT.SUSPENDIN.OUT.SUSPEND process is a serverserver on its ‘inin??’
and ‘suspendsuspend??’ channels, responding to an ‘inin??’ with an ‘outout!!’ and to
a ‘suspendsuspend??’ with suspensionsuspension (“early termination”).

Or this could be strengthened to indicate priorities for service …

Or weakened to specify just its traces …

Or weakened further to allow the number of ‘inin??’ events to exceed the
‘outout!!’ events by more than one … and, of course, that the ‘outout!!’s
never exceed the ‘inin??’s …

Mobile ContractsMobile Contracts

19-Nov-04 Copyright P.H.Welch 49

This may be important both for the hosting environment and the mobile.
Without such a contract, an IN.OUT.SUSPENDIN.OUT.SUSPEND mobile could arrive that
always refuses its ‘suspendsuspend??’ channel (and could never be removed by
its host!) or activates with an ‘outout!!’ (and deadlocks its host!).

Note that ‘integrate.suspendintegrate.suspend’ satisfies all these discussed contracts …

Mobile ContractsMobile Contracts

A behaviour we may want to prohibit is that an IN.OUT.SUSPENDIN.OUT.SUSPEND

process will not accept a ‘suspendsuspend??’ with an answer outstanding –
i.e. that a ‘suspendsuspend??’ may only occur when the number of ‘inin??’ and
‘outout!!’ events are equal.

suspend

in
out

IN.OUT.SUSPENDIN.OUT.SUSPEND

PROC TYPE PROC TYPE IN.OUT.SUSPENDIN.OUT.SUSPEND (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?):?):

19-Nov-04 Copyright P.H.Welch 50

Mobile Process ExampleMobile Process Example

MOBILEMOBILE PROC PROC integrate.suspend integrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

WHILE TRUEWHILE TRUE
INT INT xx::
PRI ALTPRI ALT
suspend suspend ? ? xx

in in ? ? xx
SEQSEQ
total total := := total total + + xx
out out ! ! totaltotal

INITIAL INT INITIAL INT total total IS 0: IS 0: ---- local state local state

SUSPENDSUSPEND ---- control returns to activatorcontrol returns to activator
---- control resumes here when next activatedcontrol resumes here when next activated

suspend

in
out

integrate.suspendintegrate.suspend

19-Nov-04 Copyright P.H.Welch 51

Process Performance (occam-π)Process Performance (occamoccam--ππ)
� Memory overheads per parallel process:

� <= 32 bytes (depends on whether the process needs to wait on
timeoutstimeouts or perform choicechoice (ALT) operations).

� Micro-benchmarks (800 MHz. Pentium III 800 MHz. Pentium III) show:
� process (startup + shutdown): 30 ns (no priorities) Æ 70 ns (priorites);
� change priority (up /\ down): 160 ns;
� channel communication (INT): 60 ns (no priorities) Æ 60 ns (priorites);
� channel communication (fixedfixed--sizedsized MOBILEMOBILE data): 120 ns (with

priorities, independent of size of the MOBILEMOBILE) ;
� channel communication (dynamicdynamic--sizedsized MOBILEMOBILE data, MOBILEMOBILE

channel-ends): 120 ns (with priorities, independent of size of MOBILEMOBILE) ;
�� MOBILEMOBILE process allocation: 450 ns; MOBILEMOBILE process activate +

terminate: 100 ns; MOBILEMOBILE process suspend + re-activate: 630 ns;
� all times independent of number of processes and priorities used – until until

cache misses kick incache misses kick in.

19-Nov-04 Copyright P.H.Welch 52

Process Performance (occam-π)Process Performance (occamoccam--ππ)
� Memory overheads per parallel process:

� <= 32 bytes (depends on whether the process needs to wait on
timeoutstimeouts or perform choicechoice (ALT) operations).

� Micro-benchmarks (3.4 GHz. Pentium IV 3.4 GHz. Pentium IV) show:
� process (startup + shutdown): 00 ns (no priorities) Æ 50 ns (priorites);
� change priority (up /\ down): 140 ns;
� channel communication (INT): 40 ns (no priorities) Æ 50 ns (priorites);
� channel communication (fixedfixed--sizedsized MOBILEMOBILE data): 150 ns (with

priorities, independent of size of the MOBILEMOBILE) ;
� channel communication (dynamicdynamic--sizedsized MOBILEMOBILE data, MOBILEMOBILE

channel-ends): 110 ns (with priorities, independent of size of MOBILEMOBILE) ;
�� MOBILEMOBILE process allocation: 210 ns; MOBILEMOBILE process activate +

terminate: 020 ns; MOBILEMOBILE process suspend + re-activate: 260 ns;
� all times independent of number of processes and priorities used – until until

cache misses kick incache misses kick in.

19-Nov-04 Copyright P.H.Welch 53

.

....
.

p process pairs, m messages (INT) per pair
– where (p*m) = 128,000,000.

pp process pairs, mm messages (INT) per pair
– where (pp**mm) = 128,000,000.

Process Performance (occam-π)Process Performance (occamoccam--ππ)

19-Nov-04 Copyright P.H.Welch 54

Process Performance (occam-π)Process Performance (occamoccam--ππ)
Channel Communication Times

0

100

200

300

400

500

600

1 2 3 4 5 6 7

Number of pairs of processes

N
an

o
se

co
n

d
s

Series1

Series2

Series3

Series4

10000001000001000010001001 10

0.8GHz P3 (opt)

0.8GHz P3 (unopt)

3.4GHz P4 (unopt)

3.4GHz P4 (opt)

19-Nov-04 Copyright P.H.Welch 55

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)

To swing down a chain of 1M servers, exchanging one INT
during each visit: 770 nsecs/visit (P3), 280 nsecs/visit (P4)
To swing down a chain of 1M1M servers, exchanging one INTINT
during each visit: 770 770 nsecs/visit (P3), 280 280 nsecs/visit (P4)

...

To swing down a chain of 1M servers, but doing no business:
450 nsecs/visit (P3), 120 nsecs/visit (P4)

To swing down a chain of 1M1M servers, but doing no business:
450 450 nsecs/visit (P3), 120 120 nsecs/visit (P4)

19-Nov-04 Copyright P.H.Welch 56

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)
RECURSIVERECURSIVE CHAN TYPE CHAN TYPE SERVESERVE

MOBILEMOBILE RECORDRECORD
... business channels... business channels
CHAN CHAN SHAREDSHARED SERVESERVE! ! anotheranother! :! :

::

PROC PROC serverserver (VAL INT (VAL INT idid, , SERVESERVE? ? serveserve,,
SHAREDSHARED SERVESERVE! ! leftleft, , rightright))

... local state and ... local state and intialisationintialisation
WHILE TRUEWHILE TRUE
SEQSEQ
... conduct business (via... conduct business (via serveserve))
IFIF
send.leftsend.left
serveserve[[anotheranother] !] ! leftleft

TRUETRUE
serveserve[[anotheranother] !] ! rightright

::

serveserve
leftleft

rightright

19-Nov-04 Copyright P.H.Welch 57

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)

PROC PROC visitorvisitor (VAL INT (VAL INT countcount, , SHAREDSHARED SERVESERVE! ! client, client, INTINT timetime))
TIMER TIMER timtim::
INT t0, t1:INT t0, t1:
... other local state and ... other local state and intialisationintialisation
SEQSEQ
timtim ? t0? t0
SEQ i = 0 FOR countSEQ i = 0 FOR count
SHAREDSHARED SERVESERVE! ! next:next:
SEQSEQ
CLAIM CLAIM clientclient
SEQSEQ

... conduct business (via... conduct business (via clientclient))
clientclient[[anotheranother] ?] ? nextnext

client client :=:= nextnext
timtim ? t1? t1
time time := t1 MINUS t0:= t1 MINUS t0

::

clientclient

19-Nov-04 Copyright P.H.Welch 58

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)

MOBILEMOBILE[][]SHAREDSHARED SERVESERVE! ! client:client:
MOBILEMOBILE[][]SERVESERVE! ! serve:serve:
SEQSEQ

client client :=:= MOBILEMOBILE [n.servers][n.servers]SHAREDSHARED SERVESERVE!!
serve serve :=:= MOBILEMOBILE [n.servers][n.servers]SERVESERVE??
SEQ i = 0 FOR n.serversSEQ i = 0 FOR n.servers
client[i], serve[i] := client[i], serve[i] := MOBILEMOBILE SERVESERVE

...

PARPAR
PAR i = 0 FOR n.servers PAR i = 0 FOR n.servers ---- actually set up a ringactually set up a ring
server (i, serve[i], client[((i+n.servers)server (i, serve[i], client[((i+n.servers)--1)1)\\n.servers],n.servers],

client[(i+1)client[(i+1)\\n.servers])n.servers])
... launch visitor and report time... launch visitor and report time

19-Nov-04 Copyright P.H.Welch 59

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)
...

{{{ launch visitor and report time{{{ launch visitor and report time
INT INT timetime::
SEQSEQ
... wait for the servers to set up... wait for the servers to set up
visitor (n.servers, client[0], visitor (n.servers, client[0], timetime))
... report... report timetime

}}}}}}

19-Nov-04 Copyright P.H.Welch 60

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

To tunnel through a chain of 1M servers, exchanging one INT
during each visit: 1590 nsecs/visit (P3), 620 nsecs/visit (P4)

To tunnel through a chain of 1M1M servers, exchanging one INTINT
during each visit: 1590 1590 nsecs/visit (P3), 620 620 nsecs/visit (P4)

To tunnel through a chain of 1M servers, but doing no
business: 1340 nsecs/visit (P3), 470 nsecs/visit (P4)
To tunnel through a chain of 1M1M servers, but doing no
business: 1340 1340 nsecs/visit (P3), 470 470 nsecs/visit (P4)

19-Nov-04 Copyright P.H.Welch 61

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

PROC TYPEPROC TYPE VISITOR VISITOR (CHAN INT in?, out!,(CHAN INT in?, out!, SHAREDSHARED SERVESERVE! ! clientclient):):

PROC PROC butlerbutler (CHAN (CHAN MOBILEMOBILE VISITOR VISITOR in?, in?, SHAREDSHARED SERVESERVE! ! clientclient))
WHILE TRUEWHILE TRUE
MOBILEMOBILE VISITOR VISITOR harryharry::
SEQSEQ
in ? in ? harryharry
FORK FORK platformplatform ((clientclient, , harryharry))

::

inin clientclient

outout

clientclient

inin

19-Nov-04 Copyright P.H.Welch 62

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

PROC PROC platformplatform ((MOBILEMOBILE VISITOR visitorVISITOR visitor, , SHAREDSHARED SERVESERVE! ! clientclient))
SHARED RAIL! next: SHARED RAIL! next: ---- should be ashould be a HOLEHOLE parameterparameter
CHAN INT dummy.in, dummy.out: CHAN INT dummy.in, dummy.out: ---- this is not nicethis is not nice
SEQSEQ
visitor visitor (dummy.in?, dummy.out!, (dummy.in?, dummy.out!, clientclient)) ---- activateactivate
clientclient[[anotheranother] ? next] ? next
CLAIM nextCLAIM next
next[c] ! next[c] ! harryharry

::

CHAN TYPECHAN TYPE RAILRAIL
MOBILEMOBILE RECORDRECORD
CHAN CHAN MOBILEMOBILE VISITOR VISITOR c? :c? :

::

clientclient

19-Nov-04 Copyright P.H.Welch 63

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)
MOBILEMOBILE PROC PROC visitor visitor (CHAN INT in?, out!,(CHAN INT in?, out!, SHAREDSHARED SERVESERVE! ! clientclient))
IMPLEMENTSIMPLEMENTS VISITORVISITOR

TIMER TIMER timtim::
INT count, t0, t1:INT count, t0, t1:
... other state variables... other state variables
SEQSEQ
in ? countin ? count
... ... initialiseinitialise other stateother state
SUSPENDSUSPEND
timtim ? t0? t0
SEQ i = 0 FOR countSEQ i = 0 FOR count
SEQSEQ
CLAIM CLAIM clientclient
... do business (using... do business (using clientclient’’s business channels)s business channels)

SUSPENDSUSPEND
timtim ? t1? t1
out ! t1 MINUS t0out ! t1 MINUS t0

::

inin clientclient

outout

19-Nov-04 Copyright P.H.Welch 64

... declare channels... declare channels
SEQSEQ

... ... initialiseinitialise channelschannels
PARPAR
... set up server chain... set up server chain
... set up, release, catch, and debrief ... set up, release, catch, and debrief harryharry

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

19-Nov-04 Copyright P.H.Welch 65

MOBILEMOBILE VISITORVISITOR harryharry::
INT time:INT time:
SEQSEQ

harryharry := := MOBILEMOBILE VISITORVISITOR

... ... initialiseinitialise harryharry (with number of visits to perform)(with number of visits to perform)

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

set upset up harryharry

19-Nov-04 Copyright P.H.Welch 66

SEQSEQ
CLAIM rail.client[0]CLAIM rail.client[0]
rail.client[0] ! rail.client[0] ! harryharry ---- releaserelease harryharry

rail.server[n.servers][c] ? rail.server[n.servers][c] ? harryharry ---- catchcatch harryharry
... debrief ... debrief harryharry (get timing)(get timing)

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

release, catch and release, catch and
debriefdebrief harryharry

19-Nov-04 Copyright P.H.Welch 67

…… for example for example ……

19-Nov-04 Copyright P.H.Welch 68

�� InIn--vivovivo ÙÙ InIn--silicosilico
� One of the UK ‘‘Grand ChallengeGrand Challenge’’ areas.
� Move lifelife--sciencessciences from descriptiondescription to modellingmodelling // predictionprediction.
� Example: the Nematode worm.the Nematode worm.
� Development: from fertilised cell to adultfrom fertilised cell to adult (with virtual experiments).(with virtual experiments).
� Sensors and movement: reaction to stimuli.reaction to stimuli.
� Interaction between organisms and other pieces of environment.between organisms and other pieces of environment.

�� Modelling technologiesModelling technologies
� Communicating process networks – fundamentally good fit.
� Cope with growth / decay, combine / split (evolving topologies).
� Mobility and location / neighbour awareness.
� Simplicity, dynamics, performance and safety.

�� occamoccam--ππ (and JCSP)(and JCSP)
� Robust and lightweight – good theoretical support.
� ~10,000,000 processes with useful behaviour in useful time.
� Enough to make a start …

Modelling Bio-MechanismsModelling Bio-Mechanisms

19-Nov-04 Copyright P.H.Welch 69

�� Classical communicating process applicationsClassical communicating process applications
� Static network structures.
� Static memory / silicon requirements (pre-allocated).
� Great for hardware design and software for embedded controllers.
� Consistent and rich underlying theory – CSP.

�� Dynamic communicating processes Dynamic communicating processes –– some questionssome questions
�� Mutating topologies:Mutating topologies: how to keep them safe?
�� Mobile channelMobile channel--ends and processes:ends and processes: dual notions?
�� Simple operational semantics:Simple operational semantics: low overhead implementation? Yes.Yes.
�� Process algebra:Process algebra: combine the best of CSP and the π-calculus? YesYes..
�� Refinement:Refinement: for manageable system verification … can we keep?
�� Location awareness:Location awareness: how can mobile processes know where they

are, how can they find each other and link up?
�� Programmability:Programmability: at what level – individual processes or clusters?
�� Overall behaviour:Overall behaviour: planned or emergent?planned or emergent?

Mobility and Location AwarenessMobility and Location Awareness

19-Nov-04 Copyright P.H.Welch 70

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

The
Matrix
The The

MatrixMatrix

Mobile
Agents
Mobile Mobile
AgentsAgents

19-Nov-04 Copyright P.H.Welch 71

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

19-Nov-04 Copyright P.H.Welch 72

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

19-Nov-04 Copyright P.H.Welch 73

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

19-Nov-04 Copyright P.H.Welch 74

�� The MatrixThe Matrix
� A network of (mostly passive) server processes.
� Responds to client requests from the mobile agents and,

occasionally, from neighbouring server nodes.
� Deadlock avoided (in the matrix) either by one-place buffered

server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.

� Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).

�� The AgentsThe Agents
� Attached to one node of the Matrix at a time.
� Sense presence of other agents – on local or neighbouring nodes.
� Interact with other local agents – must use agent-specific protocol

to avoid deadlock. May decide to reproduce, split or move.
� Local (or global) sync barrierssync barriers to maintain sense of time.

Mobility and Location AwarenessMobility and Location Awareness

19-Nov-04 Copyright P.H.Welch 75

A Thesis and HypothesisA Thesis and Hypothesis
�� ThesisThesis

� Natural systems are concurrent at all levels of scale. Central points of
control do not remain stable for long.

� Natural systems are robust, efficient, long-lived and continuously
evolving. We should take the hint! We should take the hint!

� Natural mechanisms should map on to simple engineering principles
with low cost and high benefit. Concurrency is a natural mechanism.

� We should look on concurrencyconcurrency as a core design mechanismcore design mechanism – not
as something difficult, used only to boost performance.

� Computer science took a wrong turn once. Concurrency should not
introduce the algorithmic distortions and hazards evident in current
practice. It should hastenhasten the construction, commisioning and
maintenance of systems.

�� HypothesisHypothesis
� The wrong turn can be corrected and this correction is needed now.

19-Nov-04 Copyright P.H.Welch 76

�� occamoccam--ππ
� Combines process and channel mobility (from the ππ–calculus) with

the discipline and safety of occamoccam and the composeable semantics
of CSP. Even with the new dynamicsEven with the new dynamics …… whatwhat--youyou--seesee--isis--whatwhat--
youyou--getget..

� Minor performance hits for the new dynamics. Overheads for mobiles
are still comparable to those for static processes …… O(100) nsO(100) ns.

� Potential security benefits for dynamic peer-to-peer networks and
agent technologies …… to be exploredto be explored.

�� NaturalNatural for multi-layer modelling of micro-organisms (or nanobots)
and their environments …… to be exploredto be explored.

� Limited support for creating ‘CLONECLONE’s of (inactive) mobile processes
…… to be finishedto be finished.

� Need key aspects of the ‘CLONECLONE’ mechanism to support the
serialisation procedures needed to communicate mobile processes
between machines…… to be finishedto be finished.

� Semantics for mobile processes – OKOK (but need adapting for our new
model). Mobile channels raise new problems …… to be exploredto be explored.

Summary – 1/4Summary – 1/4

19-Nov-04 Copyright P.H.Welch 77

�� occamoccam--ππ
� All dynamic extensions (including mobile processes) implemented

in KRoCKRoC 1.3.3 (but 1.3.4-pre1 has more ☺).
� Denotational semantics for mobile processes (UToPUToP // CircusCircus) in

print (Jim Woodcock, Xinbei Tang) – supporting refinementrefinement.
� Hierarchical networks, dynamic topologies, structural integrity, safe

sharing (of data and channels).
�� Total alias controlTotal alias control by compiler : zero aliasing accidents, zero race

hazards, zero nil-pointer exceptions and zero garbage collection.
� Zero buffer overruns.
� Most concurrency management is unit time – O(100) nanosecs on

modern architecture.
� Only implemented for x86 Linux and RMoXRMoX – other targets

straightforward (but no time to do them).
� Full open source (GPL / L-GPL).
� Formal methods: FDRFDR model checker, refinement calculus (CSP CSP

and CSPCSP--ππ ?), Circus (CSPCSP + ZZ).

Summary – 2/4Summary – 2/4

19-Nov-04 Copyright P.H.Welch 78

�� The right stuffThe right stuff
� Nature builds robust, complex and successful systems by allowing

independent organisms control of their own lives and letting them
interact. Central points of control do not remain viable for longCentral points of control do not remain viable for long.

� Computer (software) engineers should take the hint! Concurrency
should be a natural waynatural way to design any computer system (or
component) above a minimal level of complexity.

� It should simplifysimplify and hastenhasten the construction, commissioning and
maintenance of systems; it should not introduce the hazards that
are evident in current practice; and it should be employed as a and it should be employed as a
matter of routinematter of routine.

�� NaturalNatural mechanisms should map into simplesimple engineering
mechanisms with low cost and high benefitwith low cost and high benefit.

� To do this requires a paradigm shift in the way we approach
concurrency ... to something much simplerto something much simpler.

� Failure to do this will result in failure to meet the ‘‘Grand Grand
ChallengesChallenges’’ that the 21st. Century is stacking up for us.

Summary – 3/4Summary – 3/4

19-Nov-04 Copyright P.H.Welch 79

�� We Aim to Have Fun We Aim to Have Fun ……
� through the concurrency gateway …
� beat the complexity / scalability rap …
� necessary to start now …

�� GoogleGoogle –– II’’m feeling Lucky m feeling Lucky ……
�� KRoCKRoC + + ofaofa -- occamoccam--ππ (official)
�� KRoCKRoC + + linuxlinux -- occamoccam--ππ (latest)
�� JCSPJCSP -- CSP--ππ for Java
�� QuickstoneQuickstone -- JCSP Networking Edition (Java / J#)
�� Grand Challenges + UKGrand Challenges + UK -- In-vivo ÙÙ In-silico
�� CPA 2004 + ConferenceCPA 2004 + Conference -- ‘Communicating Process

-- Architectures’ conference
�� WoTUGWoTUG -- Lots of good people ...

�� Mailing listsMailing lists ……
�� occamoccam--com@kent.ac.ukcom@kent.ac.uk

�� javajava--threads@kent.ac.ukthreads@kent.ac.uk

Summary – 4/4Summary – 4/4

Any Any
Questions?Questions?

19-Nov-04 Copyright P.H.Welch 80

Putting CSP into practice …Putting CSP into practice …

http://http://www.cs.ukc.ac.uk/projects/ofa/krocwww.cs.ukc.ac.uk/projects/ofa/kroc//

19-Nov-04 Copyright P.H.Welch 81

Putting CSP into practice …Putting CSP into practice …

http://http://www.cs.ukc.ac.uk/projects/ofa/jcspwww.cs.ukc.ac.uk/projects/ofa/jcsp//
19-Nov-04 Copyright P.H.Welch 82

Process PerformanceProcess Performance

..

.

128 writers (p active), m messages (INT) per
active writer – where (p*m) = 128,000,000.
128128 writers (pp activeactive), mm messages (INTINT) per
activeactive writer – where (pp**mm) = 128,000,000.

‘‘FAIRFAIR’’ ALTALTinging

19-Nov-04 Copyright P.H.Welch 83

Process PerformanceProcess Performance
�� MicroMicro--benchmarks (800 MHz. Pentium III 800 MHz. Pentium III) show:

‘‘fairfair’’ ALTALT
communicationcommunication

‘‘stressedstressed’’
(events always (events always
being offered)being offered)

‘‘unstressedunstressed’’
(no events on (no events on
offer offer -- initially)initially)

fixed overheadfixed overhead cost per guardcost per guard

63 ns63 ns63 ns2000 ns2000 ns2000 ns

14 ns14 ns14 ns(80 + 32) ns(80 + 32) ns(80 + 32) ns

**

**for 128 guards (= for 128 guards (= ‘‘stressedstressed’’ cost when no guards are ready)cost when no guards are ready)

