Communicating Mobile Processes

Peter Welch and Fred Barnes
University of Kent at Canterbury
Computing Laboratory

P-.]_nlrlrlQ}"_n \C ., 2 1 ke

cQC . UK

= = 99 s
o:.'-go!.!-l;.

e

= 7 T T, =TT @ & 1= a1
E.Zz.mMm,0arnags@zan

Tuna Kickoff Meeting, York
(12th. November, 2004)

Communicating Sequential
Processes (CSP)

e AN

occam transputers

occam 21 \ Handel-C

7?7

occam 3 occam-m «— JCSP (Java)
\ s
CSP-xt CCS/ ®-calculus: mobile data,

channel-ends and processes

occam-7t

¢ Processes, channels, (PAR) networks
¢ (ALT) choice between multiple events
¢ Mobile data types

¢ Mobile process types

¢ Mobile channel types

¢ Performance

+ channel bundles, alias checking, no race hazards,
dynamic memory, no garbage, recursion, forking,
extended rendezvous, process priorities, ...

]

|

| |

]

Aspirations and Principles
Simplicity
¢ There must be a consistent (denotational) semantics that matches

our intuitive understanding for Communicating Mobile Processes.

¢ There must be as direct a relationship as possible between the
formal theory and the implementation technologies to be used.

¢ Without the above link (e.g. using C++/posix or Java/monitors),
there will be too much uncertainty as to how well the systems we
build correspond to the theoretical design.
Dynamics
¢ Theory and practice must be flexible enough to cope with process
mobility, location awareness, network growth and decay,
disconnect and re-connect and resource sharing.
Performance
¢ Computational overheads for managing (millions of) evolving
processes must be sufficiently low so as not to be a show-stopper.
Safety

4 Massive concurrency — but no race hazards, deadlock, livelock or
process starvation.

Processes and Channel-Ends Processes and Channel-Ends
X in out X X in out X
y X +y y X +y
5 integrate X+y+z 5 integrate X+Yy+z
PROC integrate (CHAN INT in?, out!) PROC integrate (CHAN INT in?, out!)
INITIAL INT total IS O:
An occam process may only use a channel parameter one-way WHILE TRUE
(either for input or for output). That direction is specified (? or 1), ?E“Z x: serial
along with the structure of the messages carried — in this case, in ? x implementation
simple INTs. The compiler checks that channel useage within total := total + x
the body of the PROC conforms to its declared direction. . ors
With an Added Kill Channel Choosing between Multiple Events
—1n ot x _in_] | out
X+y y X+y
integrate.kill X+y+2 z integrate.kill X+y+2z
kill kill
WHILE ok -- main loop
PROC integrate.kill (CHAN INT in?, out!, kill?) INT x:
INITIAL INT total IS O: PRI ALT
INITIAL.BOOL ok IS TRUE: . kill ? x
main loop serial ok := FALSE serial
implementation inS;Qx implementation
total := total + x
out ! total

Parallel Process Networks

In a a out X
X+y
c b
X+ty+z
integrate

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, ec:
PAR

plus (in?, c?, a!)
delta (a?, out!, b!)
prefix (0, b?, c!)

parallel
implementation

With an Added Kill Channel

peison (in?, kill?, d4!)
plus (d?, c?, a!)
delta (a?, out!, b!)

in d - a out »
X+y
c b
X+y+z
kill .

integrate.kill

PROC integrate.kill (CHAN INT in?, out !, kill?)
CHAN INT a, b, ¢, d:
PAR

parallel
implementation

prefix (0, b?, c!)

Copy Data Types

*A ¢ . B

DATA TYPE FOO IS ... :

CHAN FOO c:
PAR

A (e!)

B (c?)

Copy Data Types

. 4 A c Q.- 5

DATA TYPE FOO IS ... :

PROC A (CHAN F0OO c!) PROC B (CHAN FOO c?)
FOO =x: FOO y:
SEQ SEQ

set up x
c ! =x

some stuff

Copy Data Types

°,

.

DATA

PROC A (CHAN FOO c!)

 /

Mobile Data Types

TYPE FOO IS ...

PROC B (CHAN FOO c?)

*A ¢ B

 /

DATA TYPE M.FOO IS MOBILE ...

CHAN M.FOO c:
PAR

A (e!)

B (e?)

FOO x: FOO y:
SEQ SEQ
set up x some stuff
c ! =x c?y
more stuff ... more stuff

x and y reference different pieces of data

Mobile Data Types

* A ¢ |E B

x b4

Mobile

DATA TYPE M.FOO IS MOBILE ...

PROC A (CHAN M.FOO c!) PROC B (CHAN M.FOO c?)

M.FOO x: M.FOO y:
SEQ SEQ
set up x ... some stuff
c ! x

Data Types

DATA TYPE M.

PROC A (CHAN M.FOO c!)
M.FOO x:
SEQ
set up x
c ! x
more stuff

 /

. |

Y

FOO IS MOBILE ...

PROC B (CHAN M.FOO c?)
M.FOO y:
SEQ
some stuff
c?y
more stuff

The data has moved — x cannot be referenced

Mobile Process Types

An occam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local
environment, moved (by channel communication) to a
new environment, reconnected to that new environment
and reactivated.

A|‘\ /’T

Mobile Process Types

An occam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local
environment, moved (by channel communication) to a
new environment, reconnected to that new environment
and reactivated.

- /’T

B c R Q B c R Q
D \:_) S D O - JS
Mobile Process Types Mobile Process Types

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local
environment, moved (by channel communication) to a
new environment, reconnected to that new environment
and reactivated.

A A P

B

An eccam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local
environment, moved (by channel communication) to a
new environment, reconnected to that new environment
and reactivated.

A / P

C R

Mobile Process Types

An occam-n mobile process, embedded anywhere in a
dynamically evolving network, may suspend itself mid-
execution, be safely disconnected from its local
environment, moved (by channel communication) to a
new environment, reconnected to that new environment
and reactivated.

Upon reactivation, the process resumes from the
same state (i.e. data values and code positions) it
held when suspended. Its view of that environment is
unchanged, since that is abstracted by its channel
interface. The environment on the other side of that
abstraction, however, will usually be different.

The mobile process may itself contain any number of
levels of dynamically evolving parallel sub-network.

Mobile Process Types

Mobile processes are entities encapsulating state and
code. They may be active or passive. Initially, they

are passive.
m

passive active

(self)

The state of a mobile process can only be discovered by
interacting with it when active. When passive, its state is
locked — even against reading.

Mobile Process Types

When passive, they may be activated or moved. A
moved process remains passive. An active process
cannot be moved or activated in parallel.

activate

)

passive active

(self)

When an active mobile process suspends, it becomes
passive — retaining its state and code position. When it
moves, its state moves with it. When re-activated, it sees
its previous state and continues from where it left off.

Mobile Process Types

Mobile processes exist in many technologies — such as
applets, agents and in distributed operating systems.

occam-7 offers (will offer) support for them with a
formal denotational semantics, very high security
and very low overheads.

Process mobility semantics follows naturally from that
for mobile data and mobile channel-ends.

We need to introduce a concept of process types and
variables.

Mobile Process Types

Process type declarations give names to eroc header
templates. Mobile processes may implement types
with synchronisation parameters only (i.e. channels,
barriers, buckets, etc.) and records and fixed-size
arrays of the same. For example:

PROC TYPE IN.OUT.SUSPEND (CHAN INT in?, out!, suspend?):

The above declares a process type called zi.ouT. susezED.

Note that the earlier example, integrate.kill, conforms to
this type.

Process types are used in two ways: for the declaration
of process variables and to define the connection
interface to a mobile process.

Mobile Process Example

in

q out
integratesuspend ———

suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND

INITIAL INT total IS O: -- local state
WHILE TRUE
INT x:
PRI ALT
suspend ? x
SUSPEND -- control returns to activator
-- control resumes here when next activated
in ? %
SEQ
total := total + x

out ! total

Mobile Processes and Types

A process type may be implemented by many mobile
processes — each offering different behaviours.

The mobile process from the last slide, integrate.suspend,
implements the process type, 1w.out.suvspenn, defined
earlier. Other processes could implement the same type.

A process variable has a specific process type. Its value
may be undefined or some mobile process implementing
its type. A process variable may be bound to different
mobile processes, offering different behaviours, at
different times in its life. When defined, it can only be
activated according to that type.

Mobile Process Example

process.out

PROC A (CHAN IlN.OUT.SUSPEND process.out!)

IN.OUT.SUSPEND p:

SEQ
-- p is not yet defined (can’t move or activate it)
p := MOBILE integrate.suspend
-- p is now defined (can move and activate)
process.out ! p
-- p is now undefined (can’t move or activate it)

Mobile Process Example

inl lsuspend

process.in process.out

> B >

lout

PROC B (CHAN IN.OUT.SUSPEND process.in?, process.out!,
CHAN INT in?, out!, suspend?)
WHILE TRUE
IN.OUT.SUSPEND q:

Mobile Process Example

inl lsuspend

process.in process.out

& B &
lout

IN.OUT.SUSPEND q:

SEQ

-- g is not yet defined (can’t move or activate it)
process.in ? g

WHILE TRUE

SEQ -- g is now defined (can move and activate)
... input a process to q g (in?, out!, suspend?)
... plug into local channels and activate gq -- q is still defined (can move and activate)
... when finished, send it on its way process.out ! q
: -- g is now undefined (can’t move or activate it)
Thanks to Tony Hoare for the insight allowing for the safe suspension
inl lsuSPend of mobiles that have gone parallel internally
c d Our earlier model handles this by requiring normal termination of a
A > B — . . y q g q . .
mobile before it can be moved —i.e. a multiway synchronisation on
the termination event of all internal processes.

lout

CHAN IN.OUT.SUSPEND c, d:
CHAN INT in, out, suspend:
.. other channels
PAR
A (c!)
B (e¢?, 4!, in?, out!, suspend?)
... other processes

So, treat sUSPEND as a special event bound to all internal processes
of the mobile (and local to them —i.e. hidden from its environment).
The suspeND only completes when all internal processes engage.
Then, the mobile “early terminates” its activation.

For implementation, we just need a CSP event (an occam-7T BARRIER)
reserved in the workspace of any mobile. To reactivate, all its
suspended processes will be on the queue held by that event — easy!

Well, not quite that easy ... but it certainly sorted this problem.

Graceful Suspension

We must still arrange for ‘graceful’ suspension by all the processes
within a mobile.

If one sub-process gets stuck on an internal communication while all @
its sibling processes have suspended, we have deadlock.

Fortunately, there is a standard protocol for safely arranging this
parallel suspend — it's the same as that for ‘graceful’ termination.

This is left for the mobile application to implement. It's a concern
orthogonal to the (language) design and mechanics of mobile
suspension — in the same way that the ‘graceful’ termination protocol
is orthogonal to the mechanics of parallel termination.

Separately, we are considering language support for such distributed
decisions ...

Mobile Network Example

out

X+y

X+y+2z

integrate.suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND
CHAN BOOL.INT a, b, ¢, d:
PAR
freeze (in?, suspend?, d!)
plus.suspend (d?, c?, al!)
delta.suspend (a?, b!, out!)
prefix.suspend (0, b?, c!)

parallel
suspension

Mobile Network Example

X in d)2 out «
y X+y
c b
z X+y+z
~ suspend .

integrate.suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND
CHAN BOOL.INT a, b, ¢, d:
PAR
freeze (in?, suspend?, d!)

parallel
plus.suspend (d?, c?, a!) .
delta.suspend (a?, b!, out!) suspension

prefix.suspend (0, b?, c!)

Graceful Suspension

in out

suspend

PROC freeze (CHAN INT in?, suspend?, CHAN BOOL.INT out!)
WHILE TRUE

PRI ALT
INT any:
suspend ? any
SEQ
out ! FALSE; 0 -- suspend signal
SUSPEND
INT x:
in ? x
out ! TRUE; x -- forward data

Mobile Network Example

out
X
X +y PROC plus.suspend (CHAN BOOL.INT in.0?, in.1?, out!)
WHILE TRUE
X+y+z BOOL b.0, b.1:
INT x.0, x.1:
. SEQ
integr ate.suspend PAR
in.0 ? b.0; x.0 -- b.0 % no suspend
in.1 ? b.1l; x.1 -- b.1 = TRUE
MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?) ¥
IMPLEMENTS IN.OUT.SUSPEND 120 .
CHAN BOOL.INT a, b, c, d: out ! TRUE; x.0 + x.1 -- new running sum
PAR TRUE
freeze (in?, suspend?, d!) para||e| SEQ , ,
plus.suspend (d?, c?, a!) nsion out ! FALSE; x.1 -- suspend signal (with sum)
delta.suspend (a?, b!, out!) =USPENSIO Sl
prefix.suspend (0, b?, c!)
Mobile Network Example
—_—
out.0

X in out «
y X+y
X+y+z
suspend
integrate.suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND
CHAN BOOL.INT a, b, ¢, d:
PAR
freeze (in?, suspend?, d!)
plus.suspend (d?, c?, al!)
delta.suspend (a?, b!, out!)
prefix.suspend (0, b?, c!)

parallel
suspension

PROC delta.suspend (CHAN BOOL.INT in?, out.0!, CHAN INT out.l!)
WHILE TRUE

BOOL b:
INT x:
SEQ
in ? b; x -- b & no suspend
IF
b
PAR
out.0 ! TRUE; x -- feedback running sum
out.l ! x -- output running sum
TRUE
SEQ
out.0 ! FALSE; x -- suspend signal (with sum)
SUSPEND

Mobile Network Example

out

X+y

X+y+2z

integrate.suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND
CHAN BOOL.INT a, b, ¢, d:
PAR
freeze (in?, suspend?, d4!)
plus.suspend (d?, c?, al!)
delta.suspend (a?, b!, out!)
prefix.suspend (0, b?, c!)

parallel
suspension

in out

e
)

PROC prefix.suspend (VAL INT n, CHAN BOOL.INT in?, out!)
SEQ
out ! n
WHILE TRUE
BOOL b:
INT x:
SEQ
in ? b; x -- b & no suspend
IF
b
SKIP
TRUE
SUSPEND
out ! TRUE; x -- feedback running sum (no suspend)

Mobile Network Example

out

X+y

X+y+z

integrate.suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IN.OUT.SUSPEND
CHAN BOOL.INT a, b, ¢, d:
PAR
freeze (in?, suspend?, d!)
plus.suspend (d?, c?, al!)
delta.suspend (a?, b!, out!)
prefix.suspend (0, b?, c!)

parallel
suspension

Graceful Suspension

This parallel version of the integrate.suspend mobile process

promptly suspends when its environment offers its ‘suspend?’ signal. It
does this without deadlocking, without accepting any further ‘in?’ data

and with flushing to ‘out!’ any data owed to its environment — i.e. it g
honours the contract (we intend to associate with Ii.oUT. SUSPEND).

Deadlock would occur if the sequence of output communication and
suspension were reversed in any of its component processes.

parallel by all components, except for prefix.suspend (Where

In fact, the output and suspend operations could safely be run in ®
deadlock would result since the output would never be accepted).

This shows the care that must be taken in applying the ‘graceful
suspension’ protocol — responsibility for which we are leaving, for the
moment, with the application engineer.

Graceful Suspension

Finally, note that the request for a suspEND need not come only from
the environment of a mobile. It could be a unilateral decision by the
mobile itself (subject, of course, to satisfying any behavioural contract
declared by its underlying type). It could be initiated by the mobile and
negotiated with its environment. It could be all of these in parallel!

The ‘graceful’ protocol can deal with such concurrent decisions safely.

]

|

|

Mobile Contracts

Process Type
¢ Currently, the proc TYPE defines only the connections that are
required and offered by a mobile.
¢ The activating process has complete charge over setting up those
connections. They are the only way a mobile can interact with its
hosting environment. Nothing can happen without the knowledge
and active participation of the host.

Contract
¢ This describes how a mobile is prepared to behave with respect
to the synchronisation offers it receives from its environment (as
parametrised by the proc T¥pE of the mobile).
¢ CSP provides a powerful algebra for specifying rich patterns of
such behaviour.

Function
+ This describes how values generated by the mobile relate to
values received.
¢ Z specifications of the mobile as a state machine work here (and
are integrated with CSP in the Circus algebra of Woodcock et al.).

Mobile Contracts
= Safety

¢ A connection (proc TYPE) interface provides a necessary but
not sufficient mechanism for safety.

¢ The host environment needs more assurance of good behaviour
from an arriving mobile — e.g. that it will not cause deadlock or
livelock, will not starve host processes of attention ... and will
suspend when asked.

¢ Of course, reciprocal promises by the host environment are just
as important to the mobile.

= Behavioural Process Types
¢ We are looking to boost the proc TYPE With a contract that
makes (some level of) CSP specification of behaviour.
+ Initially, we are considering just trace specifications that the
compiler can verify against implementing mobiles.
¢ The host environment of each activated mobile also needs to be
checked against the contract (e.g. via FDR).

Mobile Contracts

PROC TYPE IWN.OUT.SUSPEND (CHAN INT in?, out!, suspend?):

in
—p
out
IN.OUT.SUSPEND [——
—p|
suspend

For example, an 1N.0UT.SUSPEND Process is a server on its ‘in?’
and ‘suspend?’ channels, responding to an ‘in?’ with an ‘out!’ and to
a ‘suspend?’ With suspension (“early termination”).

Or this could be strengthened to indicate priorities for service ...
Or weakened to specify just its traces ...

Or weakened further to allow the number of ‘in?’ events to exceed the
‘out!’ events by more than one ... and, of course, that the ‘out!’s
never exceed the ‘in?’s ...

Mobile Contracts

PROC TYPE IN.OUT.SUSPEND (CHAN INT in?, out!, suspend?):

in
———
out
IN.OUT.SUSPEND [—
—_—
suspend

A behaviour we may want to prohibit is that an 1. ouT. suseEND
process will not accept a ‘suspend?’ with an answer outstanding —
i.e. that a ‘suspend?’ may only occur when the number of ‘in?’ and
‘out!’ events are equal.

This may be important both for the hosting environment and the mobile.
Without such a contract, an 1w.out . suspeND mobile could arrive that
always refuses its ‘suspend?’ channel (and could never be removed by
its host!) or activates with an ‘out!’ (and deadlocks its host!).

Note that ‘integrate. suspend’ satisfies all these discussed contracts ...

Mobile Process Example

in

q out
integratesuspend ———

suspend

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)
IMPLEMENTS IIN.OUT.SUSPEND

INITIAL INT total IS O: -- local state
WHILE TRUE
INT x%:
PRI ALT
suspend ? x
SUSPEND -- control returns to activator
-- control resumes here when next activated
in ? %
SEQ
total := total + x

out ! total

Process Performance (occam-m)

Memory overheads per parallel process:
¢ <= 32 bytes (depends on whether the process needs to wait on
timeouts or perform choice (ALT) operations).
Micro-benchmarks (800 MHz. Pentium Ill) show:
process (startup + shutdown): 30 ns (no priorities) > 70 ns (priorites);
¢ change priority (up /A down): 160 ns;
¢ channel communication (INT): 60 ns (no priorities) > 60 ns (priorites);

channel communication (fixed-sized MOBILE data): 120 ns (with
priorities, independent of size of the MOBILE) ;

channel communication (dynamic-sized MOBILE data, MOBILE
channel-ends): 120 ns (with priorities, independent of size of MOBILE) ;

¢ MOBILE process allocation: 450 ns; MOBILE process activate +
terminate: 100 ns; MOBILE process suspend + re-activate: 630 ns;

+ all times independent of number of processes and priorities used — until

cache misses kick in.

Process Performance (occam-m)

Memory overheads per parallel process:

¢ <= 32 bytes (depends on whether the process needs to wait on
timeouts or perform choice (ALT) operations).

Micro-benchmarks (3.4 GHz. Pentium IV) show:

process (startup + shutdown): 00 ns (no priorities) = 50 ns (priorites);

¢ change priority (up /A down): 140 ns;

¢ channel communication (INT): 40 ns (no priorities) > 50 ns (priorites);

channel communication (fixed-sized MOBILE data): 150 ns (with
priorities, independent of size of the MOBILE) ;

channel communication (dynamic-sized MOBILE data, MOBILE
channel-ends): 110 ns (with priorities, independent of size of MOBILE) ;

¢ MOBILE process allocation: 210 ns; MOBILE process activate +
terminate: 020 ns; MOBILE process suspend + re-activate: 260 ns;

¢ all times independent of number of processes and priorities used — until

cache misses kick in.

Process Performance (occam-m)

p process pairs, m messages (INT) per pair
— where (p*m) = 128,000,000.

Process Performance (occam-m)

Channel Communication Times

600

0.8GHz P3 (opt)

. — s
500

0.8GHz P3 (unopt)

400

300

Nanoseconds

200

100 3.4GHz P4 (unopt)

———% S —¢ . . —a
3.4GHz P4 (opt)

T T T T
1 10 100 1000 10000 100000 1000000
Number of pairs of processes

Mobility via Mobile Channels (Tarzan)

To swing down a chain of 1M servers, exchanging one INT
during each visit: 770 nsecs/visit (P3), 280 nsecs/visit (P4)

To swing down a chain of 1M servers, but doing no business:
450 nsecs/visit (P3), 120 nsecs/visit (P4)

Mobility via Mobile Channels (Tarzan)

RECURSIVE CHAN TYPE SERVE
MOBILE RECORD
business channels
CHAN SHARED SERVE! another! :

PROC server (VAL INT id, SERVE? serve,
SHARED SERVE! left, right)
local state and intialisation

WHILE TRUE
SEQ
conduct business (via serve)
IF
send.left
serve[another] ! left
TRUE
serve [another] ! right

Mobility via Mobile Channels (Tarzan)

PROC visitor (VAL INT count, SHARED SERVE! client, INT time)

TIMER tim:
INT tO0, tl:
other local state and intialisation
SEQ .
tim ? t0 client
SEQ i = 0 FOR count
SHARED SERVE! next:

SEQ
CLAIM client
SEQ
conduct business (via client)
client [another] ? next
client := next
tim ? tl1
time := tl MINUS tO

MOBILE[] SHARED SERVE! client:
MOBILE[] SERVE! serve:

SEQ
client := MOBILE [n.servers] SHARED SERVE!

serve := MOBILE [n.servers] SERVE?
SEQ i = 0 FOR n.servers

client[i], serve[i] := MOBILE SERVE
PAR
PAR i = 0 FOR n.servers -- actually set up a ring

server (i, servel[il, client[((i+n.servers)-1)\n.servers],
client[(i+1) \n.servers])
launch visitor and report time

{{{ 1launch visitor and report time
INT time:
SEQ

wait for the servers to set up
visitor (n.servers, client[0], time)
report time

3

Mobility via Mobile Processes (Mole)

To tunnel through a chain of 1M servers, exchanging one INT
during each visit: 1590 nsecs/visit (P3), 620 nsecs/visit (P4)

To tunnel through a chain of 1M servers, but doing no
business: 1340 nsecs/visit (P3), 470 nsecs/visit (P4)

Mobility via Mobile Processes (Mole)

PROC TYPE VISITOR (CHAN INT in?, out!, SHARED SERVE! client):

client

in

PROC butler (CHAN MOBILE VISITOR in?, SHARED SERVE! client)
WHILE TRUE
MOBILE VISITOR harry:
SEQ
in ? harry
FORK platform (client, harry)

Mobility via Mobile Processes (Mole)

CHAN TYPE RAIL
MOBILE RECORD
CHAN MOBILE VISITOR c? :

ent

PROC platform (MOBILE VISITOR visitor, SHARED SERVE! client)
SHARED RAIL! next: -- should be a HOLE parameter

CHAN INT dummy.in, dummy.out: -- this is not nice
SEQ
vigitor (dummy.in?, dummy.out!, client) -- activate
client [another] ? next
CLAIM next
next[c] ! harry

Mobility via Mobile Processes (Mole)

MOBILE PROC wisitor (CHAN INT in?, out!, SHARED SERVE! client)
IMPLEMENTS VISITOR

TIMER tim:

INT count, tO0, tl:

... other state variables

SEQ in client
in ? count out

... dnitialise other state
SUSPEND
tim ? tO
SEQ i = 0 FOR count
SEQ
CLAIM client
.+« do business (using client’s business channels)
SUSPEND
tim ? t1
out ! tl MINUS tO

Mobility via Mobile Processes (Mole)

... declare channels

SEQ
... dnitialise channels
PAR

... Set up server chain
... set up, release, catch, and debrief harry ::1::}-»

Mobility via Mobile Processes (Mole)

MOBILE VISITOR harry:
INT time:
SEQ
harry := MOBILE VISITOR
initialise harry (with number of visits to perform)

Mobility via Mobile Processes (Mole)

release, catch and

SEQ debrief harry
CLAIM rail.client[0]
rail.client[0] ! harry -- release harry
rail.server[n.servers] [c] ? harry -- catch harry
debrief harry (get timing)

... for example ...

Modelling Bio-Mechanisms

= In-vivo & In-silico
¢ One of the UK ‘Grand Challenge’ areas.
¢ Move life-sciences from description to modelling / prediction.
¢ Example: the Nematode worm.
¢ Development: from fertilised cell to adult (with virtual experiments).
¢ Sensors and movement: reaction to stimuli.
¢ Interaction between organisms and other pieces of environment.

= Modelling technologies
¢ Communicating process networks — fundamentally good fit.
¢ Cope with growth/decay, combine / split (evolving topologies).
¢ Mobility and location / neighbour awareness.
¢ Simplicity, dynamics, performance and safety.

= occam-T (and JCSP)
¢ Robust and lightweight — good theoretical support.
¢ ~10,000,000 processes with useful behaviour in useful time.
¢ Enough to make a start ...

Mobility and Location Awareness

= Classical communicating process applications
+ Static network structures.
+ Static memory/ silicon requirements (pre-allocated).
¢ Great for hardware design and software for embedded controllers.
¢ Consistent and rich underlying theory — CSP.

= Dynamic communicating processes — some questions
¢ Mutating topologies: how to keep them safe?
¢ Mobile channel-ends and processes: dual notions?
+ Simple operational semantics: low overhead implementation? Yes.
Process algebra: combine the best of CSP and the n-calculus? Yes.
¢ Refinement: for manageable system verification ... can we keep?

¢ Location awareness: how can mobile processes know where they
are, how can they find each other and link up?

¢ Programmability: at what level — individual processes or clusters?
¢ Overall behaviour: planned or emergent?

Location (Neighbourhood) Awareness

Location (Neighbourhood) Awareness

..................
......
cees
......
.....
ce

.........
seee
.....
.....
.
..

ceu,

..................
......
cees
......
.....
ce

*e

ceu,

Location (Neighbourhood) Awareness

...........
...............
.........
.....
ceu,
o

...

........
.......

......
cee,
Oy

Mobility and Location Awareness

= The Matrix
¢ A network of (mostly passive) server processes.

¢ Responds to client requests from the mobile agents and,
occasionally, from neighbouring server nodes.

¢ Deadlock avoided (in the matrix) either by one-place buffered
server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.

¢ Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).
= The Agents
¢ Attached to one node of the Matrix at a time.
¢ Sense presence of other agents — on local or neighbouring nodes.

Interact with other local agents — must use agent-specific protocol
to avoid deadlock. May decide to reproduce, split or move.

¢ Local (or global) sync barriers to maintain sense of time.

A Thesis and Hypothesis

=« Thesis

¢ Natural systems are concurrent at all levels of scale. Central points of
control do not remain stable for long.

¢ Natural systems are robust, efficient, long-lived and continuously
evolving. We should take the hint!

¢ Natural mechanisms should map on to simple engineering principles
with low cost and high benefit. Concurrency is a natural mechanism.

¢ We should look on concurrency as a core design mechanism — not
as something difficult, used only to boost performance.

¢ Computer science took a wrong turn once. Concurrency should not
introduce the algorithmic distortions and hazards evident in current
practice. It should hasten the construction, commisioning and
maintenance of systems.

= Hypothesis

¢ The wrong turn can be corrected and this correction is needed now.

Summary - 1/4

= occam-T

¢ Combines process and channel mobility (from the n—calculus) with
the discipline and safety of occam and the composeable semantics
of CSP. Even with the new dynamics ... what-you-see-is-what-
you-get.

¢ Minor performance hits for the new dynamics. Overheads for mobiles
are still comparable to those for static processes ... O(100) ns.

¢ Potential security benefits for dynamic peer-to-peer networks and
agent technologies ... to be explored.

¢ Natural for multi-layer modelling of micro-organisms (or nanobots)
and their environments ... to be explored.

¢ Limited support for creating ‘CLONE'’s of (inactive) mobile processes
... to be finished.

¢ Need key aspects of the ‘CLONE’ mechanism to support the
serialisation procedures needed to communicate mobile processes
between machines... to be finished.

¢ Semantics for mobile processes — OK (but need adapting for our new
model). Mobile channels raise new problems ... to be explored.

|

Summary - 2/4

occam-T

*

*

2

*

All dynamic extensions (including mobile processes) implemented
in KRoC 1.3.3 (but 1.3.4-prel has more ©).

Denotational semantics for mobile processes (UToP / Circus) in
print (Jim Woodcock, Xinbei Tang) — supporting refinement.

Hierarchical networks, dynamic topologies, structural integrity, safe
sharing (of data and channels).

Total alias control by compiler : zero aliasing accidents, zero race
hazards, zero nil-pointer exceptions and zero garbage collection.

Zero buffer overruns.

Most concurrency management is unit time — O(100) nanosecs on
modern architecture.

Only implemented for x86 Linux and RMeX — other targets
straightforward (but no time to do them(22)).

Full open source (GPL / L-GPL).
Formal methods: FDR model checker, refinement calculus (CSP
and €SP-Tt ?), Circus (CSP + 2).

Summary - 3/4

= The right stuff

¢ Nature builds robust, complex and successful systems by allowing
independent organisms control of their own lives and letting them
interact. Central points of control do not remain viable for long.

¢ Computer (software) engineers should take the hint! Concurrency
should be a natural way to design any computer system (or
component) above a minimal level of complexity.

¢ It should simplify and hasten the construction, commissioning and
maintenance of systems; it should not introduce the hazards that
are evident in current practice; and it should be employed as a
matter of routine.

¢ Natural mechanisms should map into simple engineering
mechanisms with low cost and high benefit.

¢ To do this requires a paradigm shift in the way we approach
concurrency ... to something much simpler.

Failure to do this will result in failure to meet the ‘Grand
Challenges'’ that the 21st. Century is stacking up for us.

- We Aim to Have Fun ... ©

¢ through the concurrency gateway ...
beat the complexity / scalability rap ...
necessary to start now ...

Summary - 4/4

Any
Questions?

= Google — I'm feeling Lucky ...

& KRoC + ofa - occam-m (official)

¢ KRoC + linux -- occam-m (latest)

& JCSP -- CSP-x for Java

¢ Quickstone -- JCSP Networking Edition (Java / J#)
¢ Grand Challenges + UK -- In-vivo < In-silico

¢ CPA 2004 + Conference - - ‘Communicating Process

- - Architectures’ conference

¢ WoTUG -- Lots of good people ...
= Mailing lists ...

¢ occam-com@kent.ac.uk

¢ java-threads@kent.ac.uk

Putting CSP into practice ...

http://mww.cs.ukc.ac.uk/projects/ofa/kroc/

Putting CSP into practice ... Process Performance

~ =

128 writers (p active), m messages (Int) per

http:/lIwww.cs.ukc.ac.uk/projects/ofal/jcsp/ active writer — where (p*m) = 128,000,000,

Process Performance
= Micro-benchmarks (800 MHz. Pentium Il) show:

‘fair’ ALT

L fixed overhead cost per guard
communication

‘stressed’

(events always (80 + 32) ns 14 ns
being offered)

‘unstressed’
*

(no events on 2000 ns
offer - initially)

63 ns

*for 128 guards (= ‘stressed’ cost when no guards are ready)

