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Equilibrium Propagation: a Road for Physics-Based Learning

Damien Querlioz
Université Paris-Saclay, CNRS, C2N, Palaiseau, France

Neuromorphic computing takes inspiration from the brain to create highly 
energy-efficient hardware for information processing, capable of sophisticated 
tasks. The resulting systems are most often preprogrammed: training 
neuromorphic systems on-chip to perform new tasks remains a formidable 
challenge. The flagship algorithm for training neural networks, backpropagation, 
is indeed not hardware-friendly. It requires a mathematical procedure to compute 
gradients, external memories to store them, and an external dedicated circuit to 
change the neural network parameters according to these gradients. The brain, 
by contrast, does not learn this way. It learns intrinsically, and its synapses 
evolve directly through the spikes applied by the neurons they connect, using 
their biophysics. This technique is very advantageous in terms of energy 
efficiency and device density. In this talk, I will introduce our approach towards 
reproducing this brain strategy of intrinsic learning exploiting device physics. I 
will show through simulations how we take advantage of the physical roots of 
an algorithm called Equilibrium Propagation (1) to design dynamical circuits 
that learn intrinsically with high accuracy (2–4).

1. B. Scellier, Y. Bengio, Front. Comput. Neurosci. 11 (2017).
2. M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, B. Scellier, Proc. NeurIPS, pp. 7081 (2019).
3. A. Laborieux et al., Front. Neurosci. 15 (2021).
4. E. Martin et al., iScience. 24 (2021)
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emerging non-volatile memory and other nanodevices, in particular relying on 
inspirations from biology and machine learning. He received his predoctoral education
at Ecole Normale Supérieure, Paris and his PhD from Université Paris-Sud in 2009.
Before his appointment at CNRS, he was a Postdoctoral Scholar at Stanford University 
and at the Commissariat a l'Energie Atomique. Damien Querlioz is the coordinator of 
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aspects of nanodevice physics and technology, from materials to systems. He is a 
member of the bureau of the French Biocomp research network. In 2016, he was the 
recipient of an ERC Starting Grant to develop the concept of natively intelligent 
memory. In 2017, he received the CNRS Bronze medal. He has also been a co-recipient 
of the 2017 IEEE Guillemin-Cauer Best Paper Award and of the 2018 IEEE Biomedical 
Circuits and Systems Best Paper Award.



Experimental test of search range in quantum annealing

Nicholas Chancellor1 and Viv Kendon1

1Department of Physics; Joint Quantum Centre (JQC) Durham-Newcastle,
Durham University, South Road, Durham, DH1 3LE, UK

(Dated: 12th August 2021)

Abstract for TEMC 2021. This work is recently published as Phys. Rev. A 104, 012604 (2021)
DOI:10.1103/PhysRevA.104.012604. – a brief summary is given here.

We construct an Ising Hamiltonian with an engineered
energy landscape such that it has a local energy min-
imum which is near the true global minimum solution
and further away from a false minimum. Using a re-
verse annealing technique established in previous exper-
iments, we design our experiment such that (at least on
timescales relevant to our study) the false minimum is
reached preferentially in forward annealing due to high
levels of quantum fluctuations. This allows us to demon-
strate the key principle of reverse annealing, that the
solution space can be searched locally, preferentially find-
ing nearby solutions, even in the presence of a false min-
imum. The techniques used here are distinct from previ-
ously used experimental techniques and allow us to probe
the fundamental search range of the device in an altern-
ative way.
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Figure 1. (a) Plot of s versus time for a reverse annealing
protocol in which the device is annealed at the maximum
allowed rate (which would take 5 µs to traverse from s = 0
to s = 1), with a hold time τ of 1 µs and s∗ = 0.5. (b) The
A and B energy scales of this protocol performed on the low
noise QPU model. The red (dark gray) curve starting from
around 10 GHz is B and the green (light gray) curve starting
at around 0 GHz is A.

We perform these experiments on two flux qubit
quantum annealers, one with higher noise levels than the
other. We find evidence that the lower noise device is
more likely to find the more distant energy minimum
(the false minimum in this case), suggesting that redu-
cing noise fundamentally increases the range over which
flux qubit quantum annealers are able to search. Our
work explains why reducing the noise leads to improved
performance on these quantum annealers. This supports
the idea that these devices may be able to search over
broad regions of the solution space quickly, one of the
core reasons why quantum annealers are viewed as a po-

tential avenue for a quantum computational advantage.
The experiments use a reverse annealing protocol,

rather than a standard quantum anneal, see figure 1,
where the parameters A and B refer to quantum evol-
ution under the Hamiltonian

Ĥ(t) = A(t)Ĥ0 +B(t)Ĥp.

The two parts of the Hamiltonian Ĥ0 provides dynamics
by rotating the qubits, while Ĥp is the Ising Hamiltonian
we are trying to find the ground state of, shown schem-
atically in figure 2.
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Figure 2. Hamiltonian used in the experiment and the three
relevant sets of states: (a) the true minimum, (b) the starting
state, and (c) the manifold of states which comprise the false
minimum. Solid edges represent ferromagnetic couplings of
unit strength and the dashed edge represents a tunable fer-
romagnetic coupling. The different coloured circles represent
qubits with different fields. Arrows indicate the state of the
qubit, with up (down) arrows representing |0〉 (|1〉) and ho-
rizontal arrows representing superpositions of computational
basis states which may be measured as either |0〉 or |1〉. The
dashed oval is a guide to the eye to show which qubits are
flipped between the starting state and the true minimum-
energy state.
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Delay-Feedback Reservoir Computing using a Field
Programmable Analogue Array (FPAA)

Alexander McDonnell1, Matthew Dale2, and Martin A. Trefzer1

1Department of Electronic Engineering, University of York, United Kingdom
2Department of Computer Science, University of York, United Kingdom

Abstract—Here we outline an early implementation of a
Delay-Feedback Reservoir Computer on a Field Programmable
Analogue Array (FPAA). The FPAA allows integration of real-
time analogue signal processing with traditional digital circuitry
and provides the flexibility to pre-process input data directly on
the chip, on-line reconfigurability of the reservoir, and extended
scalability by chaining devices together.

I. INTRODUCTION

As Moore’s law becomes unsustainable, new computing
concepts and hardware are needed to solve increasingly com-
plex and demanding computational problems. One possibility
is to look towards biological systems for inspiration, such
as Artificial Neural Networks. Recurrent Neural Networks
(RNN), in particular, show great promise due to some unique
properties, including: a non-linear response to input stimuli,
high-dimensionality, and a fading memory of previous inputs.
Unfortunately, RNNs are difficult to train due to the vanishing
and exploding gradient problem [1]. A solution is to exploit the
dynamics of randomly connected RNNs (Echo State Networks
(ESN) [2]) as a “black box” and train only the outputs of the
neurons through a “readout layer”. ESNs have been found
to perform exceptional well even with minimal training. The
concept of training “black boxes” later morphed into exploiting
different input-driven dynamical systems, commonly called
“reservoirs”, leading to the field of Reservoir Computing
(RC) [3]. Various physical systems have been applied to the
RC framework, even a bucket of water (see review [4]).

II. DELAY-FEEDBACK RESERVOIR

A type of RC of particular interest is the delay-feedback
reservoir, where a single non-linear node and a delay line can
be used to generate the complexity of a virtual network when
the input data is time-multiplexed [5]. Consisting only of a
single node and a delay, it boasts an attractive alternative
compared to typical larger physical systems, however, the
downside is that extensive pre-processing is needed on the
input and output data.

The delay-feedback reservoir consists of three main parts: a
pre-processing stage that time-multiplexes the input data with
a higher frequency masking signal; the reservoir network that
contains a single non-linear node and delay line; and a readout
layer that demultiplexes the output of the node and contains
the trained weights of the system. The number of virtual nodes
is defined by the relationship between the time period of the

input signal T and the time period of the masking signal θ.
Typically, the more virtual nodes, the greater the memory of
the system.

Several physical implementations of delay-feedback reser-
voirs exist, these are typically done using digital or opto-
electronic techniques [4], [6]; this has led to digital-analogue
hybrids that use digital processing with an analogue non-
linear node. However, it is possible to utilise both digital
and analogue technology on a single chip using the Field
Programmable Analogue Array (FPAA).

III. FIELD PROGRAMMABLE ANALOGUE ARRAY (FPAA)

The FPAA allows integration of real-time analogue signal
processing with traditional digital circuitry. To realise this,
the FPAA utilises switched capacitor technology allowing for
configurable analogue blocks (CABs) to dynamically imple-
ment configurable analogue modules (CAMs) with a wide
range of functionality. Like its digital counterpart, the Field
Programmable Gate Array (FPGA), the FPAA is fully recon-
figurable; some models even allow for on-line reconfiguration
without any data loss.

A. Implementation

The proposed delay-feedback reservoir is implemented on a
Anadigm QuadApex development board which contains four
FPAA chips [7]. Figure 1 shows the proposed circuit using the
provided CAMs.

The heart of the circuit is the user-defined voltage transfer
function CAM. This CAM allows for any arbitrary function to
be programmed within an 8-bit resolution. Here, the Mackey-
Glass delay differential equation is implemented as it exhibits
many of the desired characteristics for RC. It is also possible
to cascade functions together to create more complex RC
nodes as well. After the non-linear node, the output signal
is integrated with a leaky decay rate. The integration con-
stant, specified within the CAM, determines the connectivity
between the virtual nodes.

The next block is the delay CAM. This digitises the input
values to an 8-bit resolution and stores them within a lookup
table, and outputs the reconstructed analogue signal after a
particular time. Finally, a summation CAM sums the input
signal and delayed feedback.

The FPAA also features CAMs that can generate the mask-
ing signal and time-multiplex on-chip, however this is still
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Fig. 1. Implementation of a Delay-Feedback reservoir using the Anadigm Designer 2 Tool. Here are two interconnected FPAA chips, labelled FPAA1 and
FPAA2. The first chip contains a user-defined voltage transfer function, allowing for an arbitrary function to be implemented, and a summation CAM that
sums the input and delayed feedback. The second chip contains an integrator with a leaky decay rate that defines the connectivity, and a delay CAM that
adds a user defined delay between the input and output.

under investigation. At the moment, the input is pre-processed
externally and loaded onto the FPAA to evaluate feasibility as
a reservoir.

A powerful feature of the FPAA is its dynamic reconfig-
urability. This allows for all of the CAM parameters to be
reconfigured on-line, allowing for a fully adaptable system.
This could allow new RC architectures that change the RC’s
configuration and dynamics in real-time in order to tackle a
wider range of computational problems.

IV. CONCLUSION

Here we outline the initial concept and prospects of a
FPAA-based reservoir computing system. Testing the extended
feasibility of the FPAA device is still underway and task
benchmarking is still needed. The next steps are to evaluate the
system on time series prediction data, such as the Nonlinear
Autoregressive Moving Average (NARMA) tasks to undertake
direct comparisons with other physical and simulated delay-
feedback reservoirs.

A downside to current FPAA technology is that only a
limited number of CABs can be fabricated within a single
chip (typically four). This means the implementation of large
interconnected networks on a single chip is somewhat un-
feasible for now, and why the delay-feedback reservoir is
chosen. However, it is possible to program chips individually
and cascade them together to create increasingly complex RC
systems.
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Sculpting the Spin Ice for Computation

Arthur Penty and Gunnar Tufte
arthur.penty@ntnu.no

Norwegian University of Science and Technology (NTNU)

Ensembles of interacting nanomagnets known as Artificial Spin Ice (ASI) have
become a promising new substrate for computation. Properties such as emergence
and non-linear local interactions make it of particular interest for unconventional
and material computation. Previously, we have proposed a method to represent
and grow new ASI geometries, suited for use in an Evolutionary Algorithm (EA).
Here we use our representation and evolution to further investigate towards
computational properties including memory and classification. The richness
of geometries found with sought computational properties indicates that ASI
geometry is a fruitful tuning parameter for computational ASI systems.

1 Artificial Spin Ice

ASI [5] consist of a collection of nanomagnets, arranged such that they interact
locally. The nanomagnets used are bi-stable, meaning we can represent the state of
each magnet in an ASI as a 0 or 1, and thus the state of an ASI is the ensemble of
these binary values. Though local interactions between the magnets are governed
by a simple yet nonlinear formula, complex patterns form at higher levels. Most
commonly, all the magnets are of the same, thus the different classes of patterns
we can observe in ASI arise from different arrangements of the magnets. We refer
to the arrangement of the nanomagnets as the ASI geometry.

A common approach to computing with ASI is to take some simple well-
studied ASI geometry, excite or perturb it with an external magnetic field and
observe the changes in its state. Work in this area focuses mostly on manipulating
the strength and frequency of the external field, in order to achieve different
computational properties. We take alternative approach, and instead modify the
geometry of the ASI itself to achieve our computational goals.

2 Evolving geometry

In our previous work [3], we described a new representation for ASI geometries
alongside a methodology to evolve these geometries, and demonstrated their
performance on some simple problems via the use of an EA. For brevity, we
do not give a detailed description of the representation here, only state that it
consists of a small number of ‘tile-like’ building blocks which, through an iterative
process, are used to build ASI geometries. Examples of this mapping can be
seen in Fig. 1a and a complete description can be found in the aforementioned
work. Once a geometry has been constructed, it can be passed to the flatspin
ASI simulator [2] to evaluate its behaviour.
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Fig. 1: (a) Examples of ASI building blocks or ‘tiles’, alongside the ASI geometry
they produce under some configuration of the process described in [3].
(b) The final state of a small selection of the geometries found by novelty search,
under after the input "0000". The number above each geometry indicates the
number of distinct final states the 16 inputs can produce.

Our goal in this work is to use evolution to explore the richness of ASI
dynamics in response to a global field input. In a similar vein to Jensen et al.
[1], we observe how many different final states are produced when subjecting the
ASI to different input series. In contrast to Jensen et al., we encode input as the
angle of the sinusoidal global fields we apply. Inputs of 0 or 1 are mapped to a
field applied at 0◦or 90◦respectively. Here we consider input bit strings of length
four (which maps to four consecutive field application). For a given geometry, we
independently perform each of the 16 possible 4-bit bit strings and observe the
final state of the ASI. We can view the number of distinct final states a geometry
can achieve, as a property of the intrinsic computation of the ASI acting on the
input. If all inputs are mapped to one of two possible final states, this can be
viewed as a 2-bin classifier. Conversely, if each input string leads to a unique final
state then the ASI exhibits perfect memory on inputs of this length.

Employing our ASI geometry representation to generate new geometries, and
the flatspin simulator [2] to evaluate them, we perform a novelty search to see
how many geometries we can find that have different numbers of distinct end
states. Fig. 1b shows some of the geometries found in this search. In fact, we
were able to find a geometry for every possible number of distinct end states, i.e.,
for any n ∈ [1, 16] we can supply a geometry that partitions all possible 4-bit
inputs into n bins. We feel this is a very promising starting point for this route of
tuning ASI geometries for specific kinds of computation, and we hope to further
extend this to larger inputs soon.
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