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Motivation
To present some important quantum mechanical 
concepts and illustrate their application to 
communication and computing
To summarise important differences with classical 
computing
To suggest an avenue for symbiosis

Not physics
Not philosophy

“I’ve got some grad student.  He’s thinking about the 
meaning of quantum mechanics.  He’s doomed!” 

— John McCarthy (quoted in Williams and Clearwater
Explorations in Quantum Computing, chapter 3)



Feature

Qubits can exist in 
superpositions of 
states

Is it a bird? Is it is a bee? Neither, 
but it’s got potential.



Qubits – Black and White
In classical computing bits have value 0 or 1. Eigenstates of 
quantum systems are the states you can find yourself in if you 
look.
Electrons:  0-1 ness encoded using the electron spin:

Whenever you choose to look you will always find yourself in 
one of the eigenstates of the system

0

1

Spin down

Spin up

↓

↑



Superposition: Gray Qubits
But quantum systems can simultaneously exist in a 
superposition of different states at the same time
Technically, the is represented as mixture (with 
complex coefficients a and b)

Will represent in matrix form
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Superposition- Walsh Hadamard
The Walsh Hadamard is a crucially important operation that 
forms a mixtures according to:

Can apply to n individual qubits to get superposition of all 2n

states
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Multiple Qubits
The idea generalises to several qubits. We can now find 
ourselves in any of 2n eigenstates.
2-qubit example (a,b,c,d complex as before)

As the number of qubits increases linearly, the number of 
states increases exponentially. Matrix representation much as 
before
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Multiple Qubits
2-qubit example
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Multiple Qubits
In 2-qubit example – could think of the combined 
states as the (direct) product of two qubits states

( ) ( )

( )11100100
2
1

1
2

11
2

10
2

11
2

11
2

10
2

10
2

10
2

1

10
2

110
2

1

+++=Ψ

+++=Ψ

+⊗+=Ψ



Feature

Quantum systems act differently 
when they are observed. They 
collapse.

Teaching quality assessment may be closer than 
you think.



Measurements
A measurement of the system gives a random result. 
When the system is measured it is found to be in one 
of its eigenstates.
The probability of being observed in one of the states 
depends on the coefficients in the superposition
We find our system in 

0 With probability  |a|2

1 With probability  |b|2



Multiple Measurement
On previous system measure qubit 1. If you witness 
a |0>  then the state space of  qubit 1 collapses to 
|0>  and the overall state space becomes

Note that there has been some readjustment of the 
probabilities – renormalisation.
We can now observe qubit 2 and see a |0> with 
probability ½ and a |1> with probability ½.
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Feature

Applying a quantum 
transformation to a superposition 
gives a superposition of applying 
the transformation to its 
constituent states.

Buy 1, get 2n-1 free.



Unitary Transformations
The stuff quantum computations are (mostly) made 
of (you will make observations too). 
Physically reversible operations.
Essentially they take amplitude vectors (points in C2

n
) 

and park them elsewhere.
If we can compute a function f then we can find a 
reversible variant of f too, e.g. by keeping the inputs

)(0 xfxx →



Linearity of Transformations
NOT N maps 
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Registers and Unitary Transformations

So far we have worked on a single qubit
Multiple qubit registers are used for serious computations
An n-bit register can hold 2n states in superposition
Unitary transformations can be applied to all superposition 
states in one go.
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Feature

Qubits can get 
themselves into such a 
tangle.

You say tomato, I say tomato.



Entanglement
Now consider the following superposition

What qubit product would give rise to this?
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Entanglement
There isn’t one! And this has consequences!
Suppose we now choose to measure Qubit 1 and get a |0> 
say (which we obtain with probability ½).  As before the state 
space collapses

If we now measure Qubit 2 we see a |1> with probability 1.
Similarly, if we had observed a |1> for Qubit 1 we would now 
be certain to see a |0> for Qubit 2.
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Entanglement
So the observational results on Qubit 1 effect the 
observational results on Qubit 2.
Question….

What if Qubit 1 were on earth and Qubit 2 were on Pluto, 
or worse, in London?
Odd huh?

We say that the qubits are entangled
Possibly the strangest phenomenon in physics.
We cannot explain the overall system state in terms 
of the two individual systems states.



Feature

Qubits cannot be 
cloned.

When Alice met Bob…..



When Alice met Bob
Communicants will (following tradition) be Alice and Bob, trying
to communicate their love…

Eve isn’t happy about this. She wants to listen in and interfere

Alice Bob

Eve



Basic Scheme
Basic scheme based on polarisation of photons

y

x

z

Photons are transverse magnetic waves – magnetic 
and electric fields are perpendicular to the direction of 
propagation. Also they are perpendicular to each 
other.



Photons
We will assume that we are dealing with linearly polarised light
but other schemes are possible.
We need to create photons that with an electric field oscillating 
in the desired magnetic plane.
One way to do this is by passing light through an appropriate 
polariser

More sophisticated way is to use a Pockels Cell.

Only vertically 
polarised photons 
emerge



Detecting Photons
Possible to detect absorption by using a Calcite crystal

Photon Detector

Photon Detector



Basic Scheme
Basic scheme assumes that the polarisation of 
photons can be arranged. For example

Vertical Polarisation 
denotes 0

Horizontal Polarisation 
denotes 1



Rectilinear Basis
Suppose now that Alice sends a 0 in this scheme and 
that Bob uses a photon detector with the same basis.

Bob 
Receives
0

Alice 
Sends
0

Alice 
Sends
1

Bob 
Receives
1



Diagonal Basis
Can also arrange this with a diagonal basis

Bob 
Receives
0

Alice 
Sends
0

Alice 
Sends
1

Bob 
Receives
1



Basis Mismatch
What if Alice and Bob choose different bases?

Bob 
Receives
0

Alice Sends
0

Bob 
Receives
1

Each result with probability 1/2



Use of Basis Summary
A sender can encode a 0 or a 1 by choosing the 
polarisation of the photon with respect to a basis

Vertical => 0 Horizontal => 1; or
45 degrees => 0, 135o =>1

The receiver Bob can observe (measure) the 
polarisation with respect to either basis.

If same basis then bits are correctly received
If different basis then only 50% of bits are correctly 
received.

This notion underpins one of the basic quantum 
cryptography key distribution schemes.



What’s Eve up To?
Now Eve gets in on the act and chooses to 
measure the photon against some basis and 
then retransmit to Bob.



Eve’s Dropping In
Suppose Eve listens in using the same basis as Alice, 
measures the photon and retransmits a photon as 
measured (she goes undetected)

Alice 
Sends
0

Alice 
Sends
1

To Bob

To Bob

Eve 
Measures
0

Eve 
Measures
1



Eve’s Dropping In
Suppose Eve listens in using a different basis to Alice

Similarly if Alice sends a 1 (or if Alice uses diagonal basis and 
Eve uses rectilinear one)

Alice Sends
0

To Bob

To Bob

Eve Measures
0

Eve Measures
1

0 and 1 
equally 
likely 
results

0 and 1 
equally 
likely 
results



Summary of Eve’s Droppings
If Eve gets the basis wrong, then even if Bob 
gets the same basis as Alice his measurements 
will only be 50 percent correct.
If Alice and Bob become aware of such a 
mismatch they will deduce that Eve is at work.
A scheme can be created to exploit this.



Deutsch’s Algorithm



Deutch’s Algorithm
The first real quantum algorithm that showed that things can be done more 
efficiently on a Quantum Computer than on a classical one.

You have a function f : {0,1} → {0,1} and you 
want to know whether it is balanced or not (it 
is balanced if f(0)=f(1))
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How many function evaluations do this require?



Deutch’s Algorithm
Start with two qubit register in the state            and apply the Walsh 
Hadamard Transformation to each qubit

Now apply the unitary (reversible)  transformation defined by 
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Deutch’s Algorithm
Applying the transformation to the superposition

Depending on which particular f we have this gives
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Deutch’s Algorithm
But if we now apply the Walsh Hadamard Transformation to both qubits we get 
(depending on which particular f we have)

But we can now simply measure the first qubit and we are guaranteed to see a 
0 if the function f is balanced and a 1 if it isn’t.
Note we have learned a global property about the system: we don’t actually 
know the value of any of f (0) or f (1); just that they are (or are not) the same.
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Another View
The following is a perfectly well defined unitary transformation
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Grover’s Algorithm



Grover’s Algorithm
Grover’s algorithm is probably the most important general search algorithm 
to date.
It searches a database of 2N values of x to find the element v satisfying a 
particular predicate, represented below by C(x)

A classical search would require on average 2(N-1)  tests of values of x.
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Grover’s Algorithm
Start with the register of N qubits as all zeroes and place that register into a 
superposition of all possible states using the Hadamard transformation on the 
register

Apply the following loop times

Negate the phase of the state component of v (leaving everything else the same)
Invert about the average

Measure register. There is a 50% chance of obtaining a result z =v.
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In practice a bit more complex to form the 
amplification step



Amplitude Negation
Negation of the amplitude of v. Suppose we have 8 values of x and C(3)=1

4 40 1 2 3 5 6 7 0 1 5 6 72 3



Inversion About Average
Invert about the new average amplitude

We can see that the magnitude of the amplitude for 3 is getting bigger (more 
likely to be observed)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Average



Inversion About Average
The inversion operator is given formally by (with E the average of 
the ai)

This has matrix
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Going Too Far
After some point applying another loop body iteration 
actually lowers the amplitude of the desired state to be 
measured.
It is possible to ‘overcook’ it.



Generalising
Grover’s search is very important. The original result has been generalised 
to the case where there are R marked states (i.e. states satisfying the 
search predicate).
Not surprisingly, if there are more possible states to find the algorithm one 
of them can be found quicker. Order of search is now

Also similar results concerning non-uniform starting states.
But what if you do not know how many states satisfy the predicate?

)( R
NO



Question
What meaningful problems can be addressed using this technique?



Shor’s Algorithm



Shor’s Algorithm
Probably the most high profile of all quantum algorithms.
Shor made news all over the world when he announced an 
algorithm that can factor effectively products into primes.

Problem: given n find p and q
Basis of a great deal of cryptographic security, e.g. RSA

qpn ×=



Preliminaries
Shor’s factoring algorithm based on finding 
periodicity of a function f. 
Suppose we want to factor 15. We pick a value a  
relatively prime to 15, e.g. 7 and look at values of

15mod7 x



Preliminaries
These are given by

The period R=4 here.
But we can use this to factor 15

More generally
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715mod7
115mod7

3

2

1

0

=

=
=

=

1315mod7
415mod7
715mod7
115mod7

7

6

5

4

=

=
=

= K

3)15,17gcd(     5)15,17gcd(    497 2
4

2
4

2
4

=−=+=

RR

),1gcd(     ),1gcd( 22 NaNa −+



Shor’s Algorithm
Using the usual superposition and quantum 
computation we can calculate all values of f (x) in 
parallel.

Now we can observe the second register and then 
the first to obtain particular values of (x, ax mod N)

Nax x
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Shor’s Algorithm
If we observe the second register then the state collapses to give a superposition in the 
first register of those values of x consistent with the result obtained. 
Thus if we observed a 4 then the first register is now in a superposition of 3, 7, 11,…
If we could reliably observe a result of 4 then simply sampling the first register to obtain 
a value (and repeating the process) would be enough to allow us to obtain the period.

E.g. 0,8,12 would allow us to deduce that R=4

But we cannot reliably observe the same value for the second register when we repeat.
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Shor’s Algorithm
Shor’s algorithm gets round this problem by applying a Quantum Fourier
Transform
Essentially this encodes the offsets as a phase and you can derive a final state 
for the x where the x are in superposition but with very high amplitudes at 
periods of 

R
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R
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Phenomena Exploited
Used superposition as usual but have severely 
exploited problem structure (periodicity) to break a 
hugely difficult problem.
Interference via QDFT. 
And of course, entanglement for collapsing.



Other Algorithms
Minimum finding algorithm
Maximum finding algorithm
Quantum counting algorithm
Collision detection
SAT problems



Summary
Various algorithms have been found.

But they are not that great in number.

Basic notion of finding appropriate transformations 
in order to increase the amplitudes of what we 
actually want to see.
Deutch’s promise algorithm showed the why we 
should care.
Grover’s and Shor’s algorithms the most influential

Many new algorithms to be found?????



Where Now?



Where Now?
Grover’s search may give us square root speed in 
the state space but is still very limited (it is known 
to be optimal).
But it is a search over an unstructured database
So we really need to exploit problem structure
effectively.
Need to ask smarter questions.



Pointcheval’s Perceptron Schemes

Given
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Pointcheval’s Perceptron Schemes

Permuted Perceptron Problem (PPP). Make Problem 
harder by imposing extra constraint.
Given
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Example: Pointcheval’s Scheme

PP and PPP-example
Every PPP solution is a PP solution.

Has particular 
histogram H of 
positive values 
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Evolutionary Techniques
You can throw your usual evolutionary techniques 
at this problem. 
In some cases you can get very good results:

E.g. for (101,117) matrices, simulated annealing attacks 
have so far produce instances with 108 bits correct.
In practice we wouldn’t know which 9 bits were incorrect.



Evolutionary Techniques
However, what if we now ask the question: 

“Which 9 indices have wrong values?”
Can form a superposition of all possible wrong indices

|index1,index2,…,index8,index9>
Of the order 7*9=63 bits.
And now use Grover-like search to find the correct one with 
order 232 iterations (will require a good number of scratch 
qubits).
In general, use standard crunching techniques to get in the 
right area and use quantum to give the correcting delta.

Note: the real first stage problem is to obtain a quantum solvable 
problem. 
Perhaps directing the initial search with this aim would be useful 
(i.e. quantum gets quality leftovers, not just leftovers).



Seeding Standard Techniques

z(x)
Get quantum (or other technique) to 
get you ‘in the right area’ for a more 
standard search.

Here find an x such that 
z(x)>98765

x

98765



Summary
Features
Quantum ideas:

superposition,
unitary transforms,
interference,
state collapse, 
entanglement,

Exploiting structure.
What further algorithms are there and what are 
the smarter questions? 
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