Quantum Computing

John A Clark
Dept. of Computer Science
University of York, UK jac@cs.york.ac.uk
York CS Seminar 19 February 2003

Motivation

- To present some important quantum mechanical concepts and illustrate their application to communication and computing
- To summarise important differences with classical computing
- To suggest an avenue for symbiosis
- Not physics
- Not philosophy
. "I've got some grad student. He's thinking about the meaning of quantum mechanics. He's doomed!"
- John McCarthy (quoted in Williams and Clearwater Explorations in Quantum Computing, chapter 3)

Feature

Qubits can exist in superpositions of states

Is it a bird? Is it is a bee? Neither, but it's got potential.

Qubits - Black and White

- In classical computing bits have value 0 or 1 . Eigenstates of quantum systems are the states you can find yourself in if you look.
- Electrons: 0-1 ness encoded using the electron spin:

$$
|0\rangle \quad \text { Spin down }|\downarrow\rangle
$$

$$
|1\rangle \quad \text { Spin up } \quad|\uparrow\rangle
$$

- Whenever you choose to look you will always find yourself in one of the eigenstates of the system

Superposition: Gray Qubits

- But quantum systems can simultaneously exist in a superposition of different states at the same time
- Technically, the is represented as mixture (with complex coefficients a and b)

$$
\begin{aligned}
& |\Psi\rangle=a|0\rangle+b|1\rangle \\
& |a|^{2}+|b|^{2}=1
\end{aligned}
$$

Will represent in matrix form

$$
a|0\rangle+b|1\rangle \quad\binom{a}{b}
$$

Superposition- Walsh Hadamard

- The Walsh Hadamard is a crucially important operation that forms a mixtures according to:

$$
\begin{aligned}
& H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

- Can apply to n individual qubits to get superposition of all 2^{n} states

$$
H^{n}(|000 \ldots 0\rangle)=\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle) \otimes \ldots \otimes(|0\rangle+|1\rangle)=\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} x
$$

Multiple Qubits

- The idea generalises to several qubits. We can now find ourselves in any of 2^{n} eigenstates.
- 2-qubit example (a, b, c, d complex as before)

$$
\begin{aligned}
& |\Psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \\
& |a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}=1
\end{aligned}
$$

- As the number of qubits increases linearly, the number of states increases exponentially. Matrix representation much as before

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

Multiple Qubits

- 2-qubit example

$$
\begin{aligned}
& |\Psi\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle) \\
& a=b=c=d=\frac{1}{2} \\
& |a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}=1
\end{aligned}
$$

Multiple Qubits

- In 2-qubit example - could think of the combined states as the (direct) product of two qubits states

$$
\begin{aligned}
& |\Psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& |\Psi\rangle=\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|0\rangle \frac{1}{\sqrt{2}}|1\rangle+\frac{1}{\sqrt{2}}|1\rangle \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \frac{1}{\sqrt{2}}|1\rangle \\
& |\Psi\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)
\end{aligned}
$$

Feature

Quantum systems act differently when they are observed. They collapse.

Teaching quality assessment may be closer than you think.

Measurements

- A measurement of the system gives a random result. When the system is measured it is found to be in one of its eigenstates.
- The probability of being observed in one of the states depends on the coefficients in the superposition
- We find our system in
$|0\rangle \quad$ With probability $|a|^{2}$
$|1\rangle \quad$ With probability $|b|^{2}$

Multiple Measurement

- On previous system measure qubit 1. If you witness a $\mid 0>$ then the state space of qubit 1 collapses to |0> and the overall state space becomes

$$
\left|\Psi_{0 X}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|{ }_{0} 0\right\rangle+|01\rangle\right) \text { Only 0s now }
$$

- Note that there has been some readjustment of the probabilities - renormalisation.
- We can now observe qubit 2 and see a $|0\rangle$ with probability $1 / 2$ and a $\mid 1>$ with probability $1 / 2$.

Feature

Applying a quantum transformation to a superposition gives a superposition of applying the transformation to its constituent states.

Buy 1, get $\mathbf{2 n}^{\mathbf{n}} \mathbf{- 1}$ free.

Unitary Transformations

- The stuff quantum computations are (mostly) made of (you will make observations too).
- Physically reversible operations.
- Essentially they take amplitude vectors (points in \mathbf{C}^{2}) and park them elsewhere.
- If we can compute a function f then we can find a reversible variant of f too, e.g. by keeping the inputs

$$
|x\rangle|0\rangle \rightarrow|x\rangle|f(x)\rangle
$$

Linearity of Transformations

- NOT N maps

$$
\begin{array}{rlr}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0} & =\binom{0}{1} & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0} \\
\mathrm{~N}|0\rangle & =|1\rangle & \mathrm{N}|1\rangle=|0\rangle
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{a}{b}=\binom{b}{a} \\
& \mathrm{~N}(\mathrm{a}|0\rangle+b|1\rangle)=a \mathrm{~N}|0\rangle+b \mathrm{~N}|1\rangle=a|1\rangle+b|0\rangle
\end{aligned}
$$

Registers and Unitary Transformations

- So far we have worked on a single qubit
- Multiple qubit registers are used for serious computations
- An n-bit register can hold 2^{n} states in superposition
- Unitary transformations can be applied to all superposition states in one go.

$$
U\left(\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} x\right)=\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} U x
$$

Feature

Qubits can get themselves into such a tangle.

You say tomato, I say tomato.

Entanglement

- Now consider the following superposition

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)
$$

- What qubit product would give rise to this?

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=(a|0\rangle+b|1\rangle) \otimes(c|0\rangle+d|1\rangle) ?
$$

Entanglement

- There isn't one! And this has consequences!
- Suppose we now choose to measure Qubit 1 and get a |0> say (which we obtain with probability $1 / 2$). As before the state space collapses

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \xrightarrow{\text { ObserveQ } 1=0}|01\rangle
$$

- If we now measure Qubit 2 we see a $\mid 1>$ with probability 1.
- Similarly, if we had observed a |1> for Qubit 1 we would now be certain to see a $\mid 0>$ for Qubit 2.

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \xrightarrow{\text { Observe } \mathrm{Q}=1}|10\rangle
$$

Entanglement

- So the observational results on Qubit 1 effect the observational results on Qubit 2.
- Question....
- What if Qubit 1 were on earth and Qubit 2 were on Pluto, or worse, in London?
- Odd huh?
- We say that the qubits are entangled
- Possibly the strangest phenomenon in physics.
- We cannot explain the overall system state in terms of the two individual systems states.

Feature

Qubits cannot be cloned.

When Alice met Bob.....

When Alice met Bob

- Communicants will (following tradition) be Alice and Bob, trying to communicate their love...

Alice

Bob

Eve

- Eve isn't happy about this. She wants to listen in and interfere

Basic Scheme

- Basic scheme based on polarisation of photons

Photons are transverse magnetic waves - magnetic and electric fields are perpendicula

Photons

- We will assume that we are dealing with linearly polarised light but other schemes are possible.
- We need to create photons that with an electric field oscillating in the desired magnetic plane.
- One way to do this is by passing light through an appropriate polariser

Only vertically polarised photons emerge

- More sophisticated way is to use a Pockels Cell.

Detecting Photons

- Possible to detect absorption by using a Calcite crystal

Basic Scheme

- Basic scheme assumes that the polarisation of photons can be arranged. For example

Vertical Polarisation denotes 0

Horizontal Polarisation denotes 1

Rectilinear Basis

- Suppose now that Alice sends a 0 in this scheme and that Bob uses a photon detector with the same basis.

Diagonal Basis

- Can also arrange this with a diagonal basis

Basis Mismatch

- What if Alice and Bob choose different bases?

Each result with probability $1 / 2$

Use of Basis Summary

- A sender can encode a 0 or a 1 by choosing the polarisation of the photon with respect to a basis
- Vertical => 0 Horizontal => 1; or
- 45 degrees $=>0,135^{\circ}=>1$
- The receiver Bob can observe (measure) the polarisation with respect to either basis.
- If same basis then bits are correctly received
- If different basis then only 50% of bits are correctly received.
- This notion underpins one of the basic quantum cryptography key distribution schemes.

What's Eve up To?

- Now Eve gets in on the act and chooses to measure the photon against some basis and then retransmit to Bob.

Eve's Dropping In

- Suppose Eve listens in using the same basis as Alice, measures the photon and retransmits a photon as measured (she goes undetected)

Eve's Dropping In

- Suppose Eve listens in using a different basis to Alice

- Similarly if Alice sends a 1 (or if Alice uses diagonal basis and Eve uses rectilinear one)

Summary of Eve's Droppings

- If Eve gets the basis wrong, then even if Bob gets the same basis as Alice his measurements will only be 50 percent correct.
- If Alice and Bob become aware of such a mismatch they will deduce that Eve is at work.
- A scheme can be created to exploit this.

Deutsch's Algorithm

Deutch's Algorithm

- The first real quantum algorithm that showed that things can be done more efficiently on a Quantum Computer than on a classical one.

You have a function $f:\{0,1\} \rightarrow\{0,1\}$ and you want to know whether it is balanced or not (it is balanced if $f(0)=f(1)$)

$$
\begin{aligned}
& f_{1}: f(0)=f(1)=0 \\
& f_{2}: f(0)=f(1)=1 \\
& f_{3}: f(0)=0, f(1)=1 \\
& f_{4}: f(0)=1, f(1)=0
\end{aligned} \longleftrightarrow \text { Not Balanced }
$$

How many function evaluations do this require?

Deutch's Algorithm

- Start with two qubit register in the state $|01\rangle$ and apply the Walsh Hadamard Transformation to each qubit

$$
\begin{aligned}
& H^{(2)}|01\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& H^{(2)}|01\rangle=\frac{1}{2}(|00\rangle+|10\rangle-|01\rangle-|11\rangle)
\end{aligned}
$$

- Now apply the unitary (reversible) transformation defined by

$$
U|i, j\rangle=|i, j \oplus f(i)\rangle \quad \begin{aligned}
& U|00\rangle=|0,0 \oplus f(0)\rangle \\
& U|01\rangle=|0,1 \oplus f(0)\rangle \\
& U|10\rangle=|1,0 \oplus f(1)\rangle \\
& U|11\rangle=|1,1 \oplus f(1)\rangle
\end{aligned}
$$

Deutch's Algorithm

- Applying the transformation to the superposition

$$
\begin{aligned}
& U\left(\frac{1}{2}(|00\rangle+|10\rangle-|01\rangle-|11\rangle)\right)=\frac{1}{2}(U|00\rangle+U|10\rangle-U|01\rangle-U|11\rangle) \\
& =\frac{1}{2}(|0,0 \oplus f(0)\rangle+|1,0 \oplus f(1)\rangle-|0,1 \oplus f(0)\rangle-|1,1 \oplus f(1)\rangle)
\end{aligned}
$$

- Depending on which particular f we have this gives

For $f_{1}: \quad \frac{1}{2}(|0,0\rangle+|1,0\rangle-|0,1\rangle-|1,1\rangle)$
For $f_{2}: \quad \frac{1}{2}(|0,1\rangle+|1,1\rangle-|0,0\rangle-|1,0\rangle)$
For $f_{3}: \quad \frac{1}{2}(|0,0\rangle+|1,1\rangle-|0,1\rangle-|1,0\rangle)$
For $f_{4}: \quad \frac{1}{2}(|0,1\rangle+|1,0\rangle-|0,0\rangle-|1,1\rangle)$

Deutch's Algorithm

- But if we now apply the Walsh Hadamard Transformation to both qubits we get (depending on which particular f we have)

For $\quad f_{1}: \quad \mathrm{W}\left(\frac{1}{2}(|0,0\rangle+|1,0\rangle-|0,1\rangle-|1,1\rangle)\right)=|0,1\rangle$
For $f_{2}: \quad \mathrm{W}\left(\frac{1}{2}(|0,1\rangle+|1,1\rangle-|0,0\rangle-|1,0\rangle)\right)=-|0,1\rangle$

For $f_{3}: \quad \mathrm{W}\left(\frac{1}{2}(|0,0\rangle+|1,1\rangle-|0,1\rangle-|1,0\rangle)\right)=|1,1\rangle$
For $\quad f_{4}: \quad \mathrm{W}\left(\frac{1}{2}(|0,1\rangle+|1,0\rangle-|0,0\rangle-|1,1\rangle)\right)=-|1,1\rangle$

- But we can now simply measure the first qubit and we are guaranteed to see a 0 if the function f is balanced and a 1 if it isn't.
- Note we have learned a global property about the system: we don't actually know the value of any of $f(0)$ or $f(1)$; just that they are (or are not) the same.

Another View

- The following is a perfectly well defined unitary transformation

$$
\begin{aligned}
& |x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \rightarrow|x\rangle \otimes(-1)^{f(x)} \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& |0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \rightarrow|0\rangle \otimes(-1)^{f(0)} \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& \left.|1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \rightarrow|1\rangle \otimes(-1)^{f(1)} \frac{1}{\sqrt{2}}|0\rangle-|1\rangle\right)
\end{aligned}
$$

Superposition gives (followed by WH)

$$
\begin{aligned}
& \left.\left.\left.\frac{1}{\sqrt{2}}(0\rangle+|1\rangle\right) \otimes \frac{1}{\sqrt{2}}(0\rangle-|1\rangle\right) \rightarrow \frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}(0\rangle-|1\rangle\right) \\
& \left.\rightarrow \frac{1}{\sqrt{2}}\left[\left((-1)^{f(0)}+(-1)^{(1)}\right)|0\rangle+\left((-1)^{(0)}-(-1)^{\text {(1) }}\right)|1\rangle\right] \otimes \frac{1}{\sqrt{2}}(0\rangle-|1\rangle\right)
\end{aligned}
$$

Constructive or destructive interference to give result

Grover's Algorithm

Grover's Algorithm

- Grover's algorithm is probably the most important general search algorithm to date.
- It searches a database of 2^{N} values of x to find the element v satisfying a particular predicate, represented below by $C(x)$

$$
\begin{aligned}
& x:\left[0,2^{N}-1\right] \\
& (x=v) \Rightarrow C(v)=1 \\
& (x \neq v) \Rightarrow C(v)=0
\end{aligned}
$$

- A classical search would require on average $2^{(N-1)}$ tests of values of x.

Grover's Algorithm

- Start with the register of N qubits as all zeroes and place that register into a superposition of all possible states using the Hadamard transformation on the register

$$
H^{(N)}|0\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle
$$

- Apply the following loop $O(\sqrt{N})$ times
- Negate the phase of the state component of v (leaving everything else the same)
- Invert about the average
- Measure register. There is a 50% chance of obtaining a result $z=v$.

In practice a bit more complex to form the amplification step

Amplitude Negation

- Negation of the amplitude of v. Suppose we have 8 values of x and $C(3)=1$

Inversion About Average

- Invert about the new average amplitude

- We can see that the magnitude of the amplitude for 3 is getting bigger (more likely to be observed)

Inversion About Average

- The inversion operator is given formally by (with E the average of the $a_{i j}$)

$$
D_{N}: \sum_{i=0}^{2^{N}-1} a_{i}|i\rangle \rightarrow \sum_{i=0}^{2^{N}-1}\left(2 E-a_{i}\right)|i\rangle
$$

- This has matrix

$$
\left(\begin{array}{cccc}
-1+\frac{2}{2^{N}} & \frac{2}{2^{N}} & \ldots & \frac{2}{2^{N}} \\
\frac{2}{2^{N}} & -1+\frac{2}{2^{N}} & \cdots & \frac{2}{2^{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{2}{2^{N}} & \frac{2}{2^{N}} & \ldots & -1+\frac{2}{2^{N}}
\end{array}\right)
$$

Going Too Far

- After some point applying another loop body iteration actually lowers the amplitude of the desired state to be measured.
- It is possible to 'overcook' it.

Generalising

- Grover's search is very important. The original result has been generalised to the case where there are R marked states (i.e. states satisfying the search predicate).
- Not surprisingly, if there are more possible states to find the algorithm one of them can be found quicker. Order of search is now

$$
O\left(\sqrt{\frac{N}{R}}\right)
$$

- Also similar results concerning non-uniform starting states.
- But what if you do not know how many states satisfy the predicate?

Question

- What meaningful problems can be addressed using this technique?

Shor's Algorithm

Shor's Algorithm

- Probably the most high profile of all quantum algorithms.
- Shor made news all over the world when he announced an algorithm that can factor effectively products into primes.

$$
n=p \times q
$$

- Problem: given \mathbf{n} find \mathbf{p} and \mathbf{q}
- Basis of a great deal of cryptographic security, e.g. RSA

Preliminaries

- Shor's factoring algorithm based on finding periodicity of a function f.
- Suppose we want to factor 15 . We pick a value a relatively prime to 15, e.g. 7 and look at values of

$7^{x} \bmod 15$

Preliminaries

- These are given by

$$
\begin{array}{ll}
7^{0} \bmod 15=1 & 7^{4} \bmod 15=1 \\
7^{1} \bmod 15=7 & 7^{5} \bmod 15=7 \\
7^{2} \bmod 15=4 & 7^{6} \bmod 15=4 \\
7^{3} \bmod 15=13 & 7^{7} \bmod 15=13
\end{array}
$$

- The period $R=4$ here.
- But we can use this to factor 15

$$
7^{\frac{4}{2}}=49 \quad \operatorname{gcd}\left(7^{\frac{4}{2}}+1,15\right)=5 \quad \operatorname{gcd}\left(7^{\frac{4}{2}}-1,15\right)=3
$$

- More generally

$$
\operatorname{gcd}\left(a^{\frac{R}{2}}+1, N\right) \quad \operatorname{gcd}\left(a^{\frac{R}{2}}-1, N\right)
$$

Shor's Algorithm

- Using the usual superposition and quantum computation we can calculate all values of $f(x)$ in parallel.

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left|a^{x} \bmod N\right\rangle
$$

- Now we can observe the second register and then the first to obtain particular values of ($x, a^{x} \bmod N$)

Shor's Algorithm

- If we observe the second register then the state collapses to give a superposition in the first register of those values of x consistent with the result obtained.
- Thus if we observed a 4 then the first register is now in a superposition of $3,7,11, \ldots$
- If we could reliably observe a result of 4 then simply sampling the first register to obtain a value (and repeating the process) would be enough to allow us to obtain the period.
- E.g. 0,8,12 would allow us to deduce that $\mathrm{R}=4$
- But we cannot reliably observe the same value for the second register when we repeat.

$$
\begin{aligned}
& (|0\rangle+|4\rangle+|8\rangle+\ldots)|1\rangle \\
& (|3\rangle+|7\rangle+|11\rangle+\ldots)|4\rangle \\
& (|1\rangle+|5\rangle+|9\rangle+\ldots .)|7\rangle \\
& (|2\rangle+|6\rangle+|10\rangle+\ldots)|13\rangle
\end{aligned}
$$

Shor's Algorithm

- Shor's algorithm gets round this problem by applying a Quantum Fourier Transform
- Essentially this encodes the offsets as a phase and you can derive a final state for the x where the x are in superposition but with very high amplitudes at periods of

$$
\frac{2^{N}}{R}
$$

$$
\frac{2^{N}}{R} \quad \frac{2^{N}}{R} \quad \frac{2^{N}}{R}
$$

Phenomena Exploited

- Used superposition as usual but have severely exploited problem structure (periodicity) to break a hugely difficult problem.
- Interference via QDFT.
- And of course, entanglement for collapsing.

Other Algorithms

- Minimum finding algorithm
- Maximum finding algorithm
- Quantum counting algorithm
- Collision detection
- SAT problems

Summary

- Various algorithms have been found.
- But they are not that great in number.
- Basic notion of finding appropriate transformations in order to increase the amplitudes of what we actually want to see.
- Deutch's promise algorithm showed the why we should care.
- Grover's and Shor's algorithms the most influential
- Many new algorithms to be found?????

Where Now?
$+$

Where Now?

- Grover's search may give us square root speed in the state space but is still very limited (it is known to be optimal).
- But it is a search over an unstructured database
- So we really need to exploit problem structure effectively.
- Need to ask smarter questions.

Pointcheval's Perceptron Schemes

- Interactive identification protocols based on NP-complete problem.
- Perceptron Problem.

$$
\begin{aligned}
& \text { Given } \\
& \text { Find } \\
& \text { So That } \\
& A_{m \times n} \quad S_{n \times 1} \quad A_{m \times n} S_{n \times 1} \\
& \left(\begin{array}{ccccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \ldots & \mathrm{a}_{1 \mathrm{n}} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \ldots & \mathrm{a}_{2 \mathrm{n}} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \ldots & \ldots & \mathrm{a}_{\mathrm{mn}}
\end{array}\right)\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
\vdots \\
s_{n}
\end{array}\right)=\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right) \geq\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& \mathrm{a}_{\mathrm{ij}}= \pm 1 \quad s_{j}= \pm 1
\end{aligned}
$$

Pointcheval's Perceptron Schemes

- Permuted Perceptron Problem (PPP). Make Problem harder by imposing extra constraint.
Given
Find So That
$A_{m \times n}$
$S_{n \times 1} \quad A_{m \times n} S_{n \times 1}$
$\left(\begin{array}{ccccc}\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \ldots & \mathrm{a}_{1 \mathrm{n}} \\ \mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \ldots & \mathrm{a}_{2 \mathrm{n}} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \ldots & \ldots & \mathrm{a}_{\mathrm{mn}}\end{array}\right)\left(\begin{array}{c}s_{1} \\ s_{2} \\ : \\ : \\ s_{n}\end{array}\right) \geq\left(\begin{array}{c}w_{1} \\ w_{2} \\ : \\ w_{m}\end{array}\right)$
$\mathrm{a}_{\mathrm{ij}}= \pm 1 \quad s_{j}= \pm 1$

Example: Pointcheval's Scheme

- PP and PPP-example
- Every PPP solution is a PP solution.

$$
\begin{gathered}
\left(\begin{array}{ccccc}
1 & -1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
1 \\
5
\end{array}\right) \\
H=(h(1), h(3), h(5)) \\
=\quad(2,1,1)
\end{gathered}
$$

Has particular histogram H of positive values

Evolutionary Techniques

- You can throw your usual evolutionary techniques at this problem.
- In some cases you can get very good results:
- E.g. for $(101,117)$ matrices, simulated annealing attacks have so far produce instances with 108 bits correct.
- In practice we wouldn't know which 9 bits were incorrect.

Evolutionary Techniques

- However, what if we now ask the question:
- "Which 9 indices have wrong values?"
- Can form a superposition of all possible wrong indices
- |index1,index2,...,index8,index9>
- Of the order $7 * 9=63$ bits.
- And now use Grover-like search to find the correct one with order 2^{32} iterations (will require a good number of scratch qubits).
- In general, use standard crunching techniques to get in the right area and use quantum to give the correcting delta.
- Note: the real first stage problem is to obtain a quantum solvable problem.
- Perhaps directing the initial search with this aim would be useful (i.e. quantum gets quality leftovers, not just leftovers).

Seeding Standard Techniques

Summary

- Features
- Quantum ideas:
- superposition,
- unitary transforms,
- interference,
- state collapse,
- entanglement,
- Exploiting structure.
- What further algorithms are there and what are the smarter questions?

