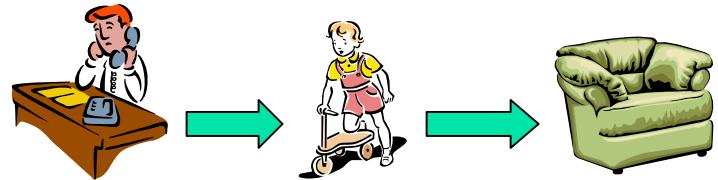

Pervasive Computing

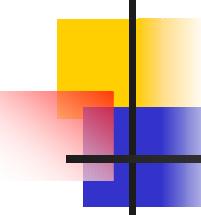
Sensors Galore, Information Warfare and Death in IKEA

John A Clark
Dept. of Computer Science
University of York, UK

jac@cs.york.ac.uk

06.08.02

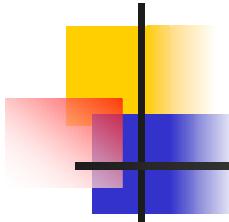

Pervasive Computation



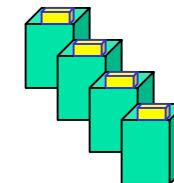
- What is Pervasive Computing?
 - **“Convenient access, through a new class of applications, to relevant information with the ability to easily take action on it when and where you need to” – IBM**
- Weisner's initial vision:
 - **Ubiquity.**
 - **Invisibility.**
- I am going to take a *slightly* non-standard view.
 - **Talk later is about requirements.**
 - **I will take a lower level view but highlight some issues such as security**

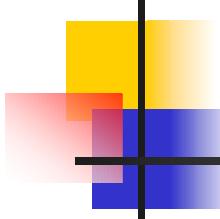
Examples

- Integrated social environments:
 - **Smart workspaces**
 - **Smart kindergartens!**
 - **House of the future.**
 - **Retirement homes.**
- Wearable computers:
 - **Can be used as significant data collection capability.**
 - **Test beds for more integrated living and working.**
- Structural and environmental management systems
 - **Aircraft skins**
 - **Instrumented building structures**
 - **Environmental monitoring and controls systems**
 - **Medical monitoring systems.**



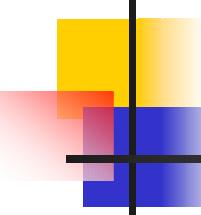
Systems Challenges I




- **Immense Scale:**
 - Vast numbers of devices.
 - Dense instrumentation will require devices to scale down
 - In 5-10 years complete systems with storage computation, communications, sensing and energy storage could be as small as 1mm³.
- *Fidelity and availability will come from the quantity of partially redundant measurements and their correlation, not the individual component's quality and precision.*
- As vastness increases, configuration becomes an issue (i.e. Do-It-Yourself)

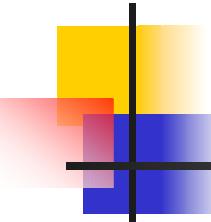
Resources- Energy

- Energy
 - Batteries still primary resource.
 - Fuel based alternatives under research.
 - Fabrication of 1mm³ lead acid batteries.
 - Harvesting is an option:
 - Can allow potentially arbitrary lifetimes but limited action per unit time.
 - Solar
 - Manual, e.g. piezo-electric generation as shoe structure is distorted (by walking)
 - Fluid flow, variants on windmills if you like
 - **Bloodmills?**



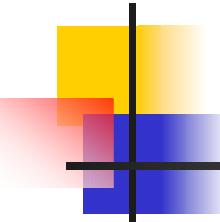
Sensor Technology

- Sensor Technology (Micro-electromechanical systems – MEMS) is making huge progress
 - Millimetre scale accelerometers
 - Pressure sensors etc.
 - Loads testing on aircraft structures etc.
 - Standoff chemical sensors.
 - Smart detonators.
 - Harsh environment MEMS.

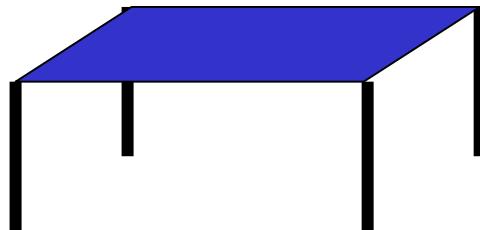


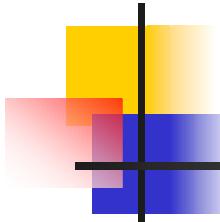
Systems Challenges II

- **Limited Access:**

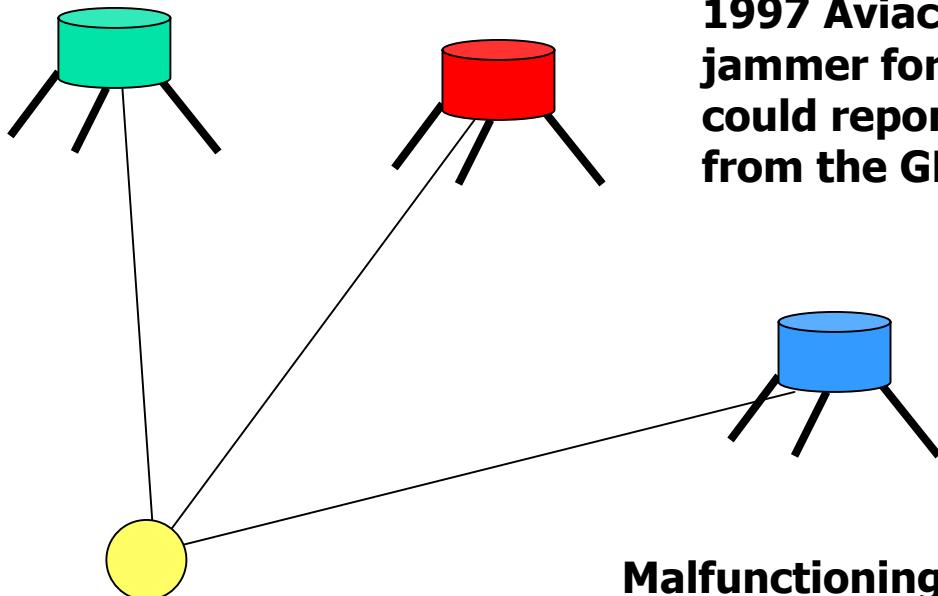

- Embedded devices may be in locations that are expensive to reach with wires, difficult to maintain etc.
- Much communication will be wireless (this has failure implications itself)
- If cannot repair then need for self-organisation to allow flexible and resilient behaviour. '**Partial failure is the norm**'.
- Energy must be harvested from the environment in many cases.

Systems Challenges III

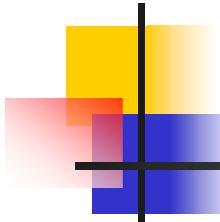

■ Extreme dynamics


- Environmental factors can affect low power RF propagation
- Demand variation. Most of the time nothing happens.
 - Passive vigilance is punctuated by bursts of concurrency?
 - Is this an old fashioned view?
- Systems governed by internal control loops in which components continuously adapt their individual and joint behaviour to resource and stimulus availability.

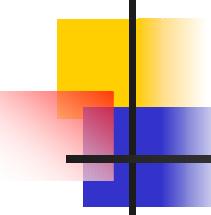
Resilience to the Environment


- Will need to cope with occasionally unhelpful behaviour from the environment:
 - **"There was a flash of lightning and my table dropped dead on its feet"**
 - **May need to cope with occasional jamming or disruption of operation for a while.**
 - **Older household equipment does this already**
 - **Hoover near the TV**
- Far-fetched?

Resilience to the Environment

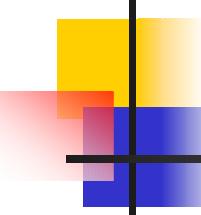

Global Positioning System (GPS)

1997 Aviaconversia announced a 4-Watt jammer for less than \$4000 that could reportedly jam the microwave signals from the GPS over a 200km radius.

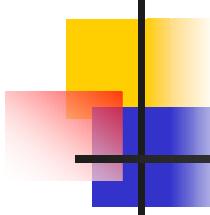

Various uses of GPS ranging from in-car auto-route through to aircraft navigation.

Malfunctioning 5-Watt air force transmitter disrupted GPS over upstate New York for two weeks.

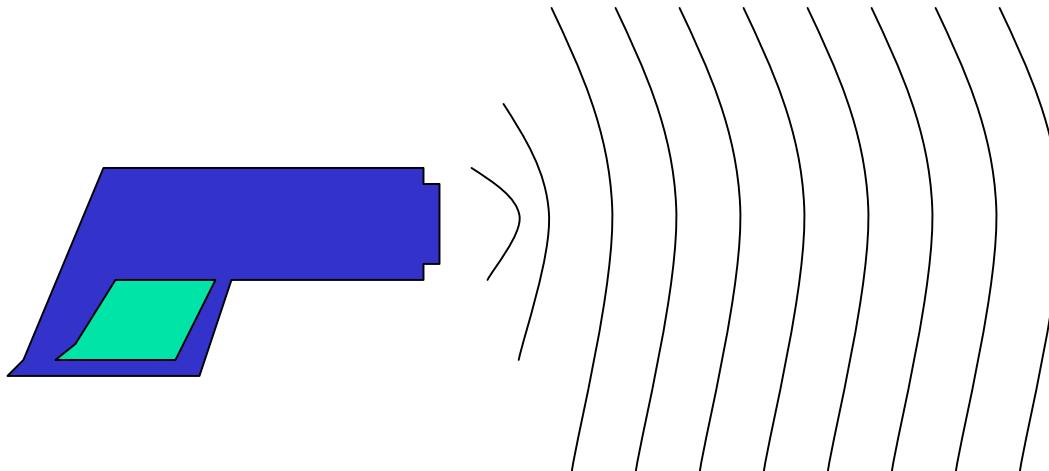
Resilience to the Environment


- More generally failure will be the norm. This differs from the usual distributed systems philosophy.
 - Has impact for protocol development.
- Systems will need to simply accept partial failures and adapt
 - Self-organisation again.

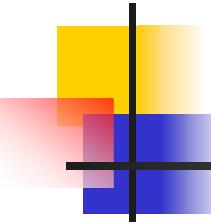
Invasive Computing


- **Large scale**
 - UAV used to give back real-time feedback for the military (and satellite TV subscribers)
- **Mid-scale**
 - Smaller, e.g. six inch experimental equipment flying with cameras:
 - Military and civilian uses.
 - “Fast, Cheap, and Out of Control” (Rodney A. Brooks and Anita M. Flynn.)
- **Small scale:**
 - Rather tedious (hidden cameras).
 - Unhygienic. In 1997 experiments with micro-cameras surgically implanted in cockroaches.
 - Research projects investigating 2 inch flyers with cameras powered by microwave beam.

Invasive Computing

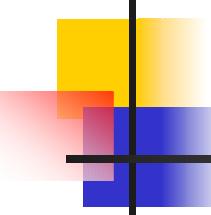


- Invasive computing is already with us
 - Barium meals
- Materials
 - Ultrasonic
 - NMR/MRI Scanning.
- But can imagine micro-devices
 - Typical cited example is cholesterol devouring nanites in the arteries
 - See earlier bloodmills comment.
 - General instrumentation capabilities will radically increase our knowledge.



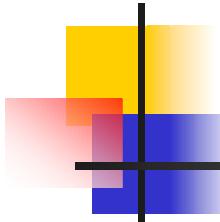
Radio Frequency Weapons

- **Emit electromagnetic radiation somewhere in the radio spectrum.**


- **Drive by RF-shootings? Far fetched?**

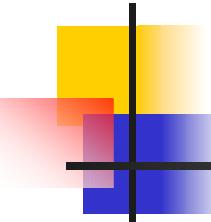
Radio Frequency Weapons

- **Broadband:** produce a sharp, pulsed electro-magnetic transient field.
 - High voltage spike or ringing on exposed cables and wiring – can damage or destroy semi-conductor circuits
 - Nuclear EMP (worst)
 - Flux Generator EMP
 - Spark Gap devices
 - **Swedish army tests – created EMP guns from openly available materials that could permanently damage cars at 30 metres and stop their engines at 90m.**
- **Narrowband:** Produce a carrier wave within a relatively narrow band. VHF, UHF or microwave.
 - Couple into electrical wiring or directly through gaps in chassis to set up high-voltage standing waves that can damage semiconductor circuitry
 - **High Power Microwave (HPM) (1-35 gigahertz generating RF field strengths of tens of kilovolts per metre at distances of hundreds of metres or more)**

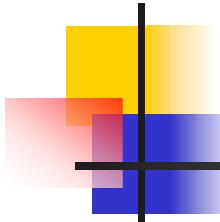

Source: **Information Warfare and Security** by Dorothy Denning.

Inbreeding Shows

- There may well be a trend to reprogrammable reusable building block technologies.
 - **We know from standard digital world that homogeneous systems are susceptible to attack.**
 - **IBM Christmas Tree virus**
 - **Heterogeneous systems may demonstrate natural partial immunity**
 - **Will standardisation lead to susceptibility to biologically-inspired attacks?**
- With the potential for global connectivity the ability for viruses to wreak havoc.
 - **IKEA virus?**
 - **Chintz cushions attack (more popular).**
 - **BMW, Mercedes-Benz, Ford car viruses?**
 - **Or more likely, exploitation of some protocol security weakness**
 - **Can fridges catch colds?**



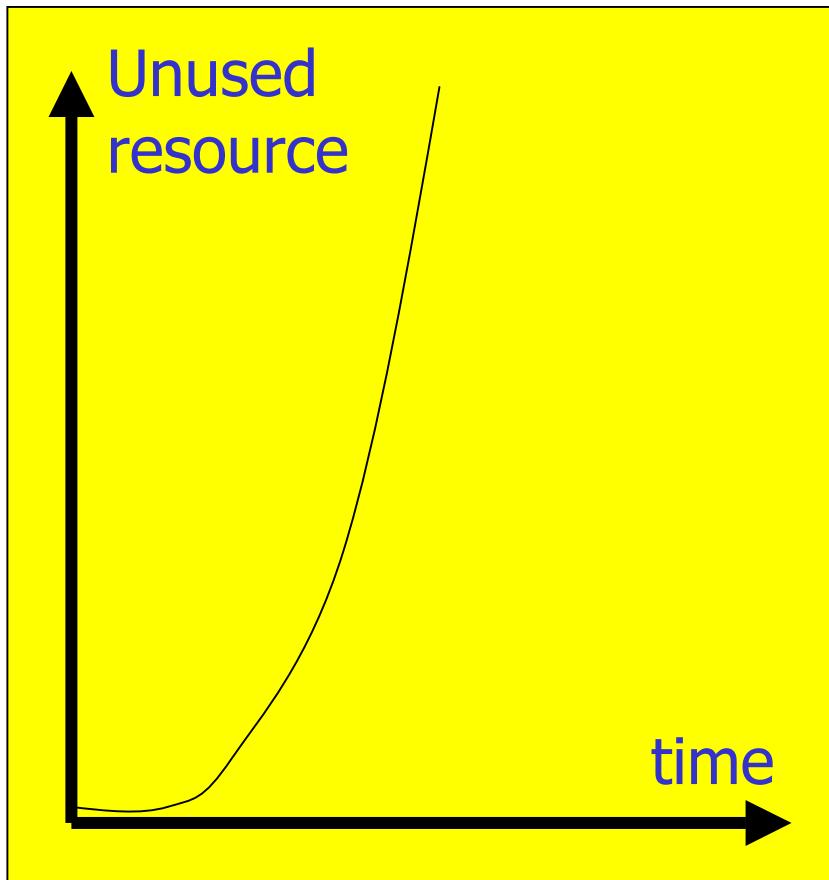
Jabbers


- Bugs in the System:

- Business these days may well choose to sweep offices used for important meetings.
- When the whole environment is a sensing and broadcasting fabric this is likely to prove more troublesome.

Other Security Issues

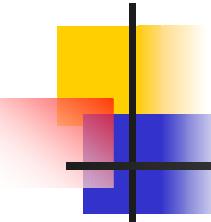
- If we ever get widely available nano-programming environments we are heading for some trouble.
 - Use of a technology=> you approve of it
 - Abuse of a technology=> you don't approve of it
- Have emphasised more info-war types of security issue. But you don't have to go that far:
 - Much security is based on old-fashioned model where you identify everyone in advance and typically enforce subject-access-object models (leads to ACLs etc.)
 - New systems will spontaneously interact and you will need to decide how to cope with this.
- Crucial here is the notion of trust.
 - What is it?
 - How is it gained and regained?
 - Role based access controls will become higher profile than present.



Other Security Issues

- There is the notion of confidentiality which will come under increasing threat.
 - Obvious worries about broadcast media.
 - Things are pinned down anymore
 - In more IT, pervasive computing in the workplace applications, elements containing confidential data may be lost, e.g. PDAs.
 - Could be lots of information flying about generally
 - Legal issues emerging as very important in the US regarding medical data (HIPAA).
 - Stalking or aggressive location?
 - Charging!!!!!!

Pervasive Non-computing



We know about Moore's Law but there would appear to be potential for a "**Idleness Law**" which details the growth of unused resources?

Pervasive computing will for the most part essentially become pervasive non-computing.

Can we do anything about this?

Never mind **The Grid** what about the **Micro-Mesh (nano-mesh, picomesh etc)**?

Finally

- Perhaps a slightly eccentric take on pervasive computing.
- Challenges to deliver appropriate functionality.
- Challenges to stop others stopping you doing it.
- Have not addressed a good number of issues:
 - **What is it that you actually want these systems to do?**
 - **QoS? Utility? Degrees of approximation and tradeoffs? Who or what does what?**
 - **How can you measure/test that.**
 - **Are current systems engineering approaches appropriate?**
 - **How do you specify, design and refine a pervasive system?**
 - **Oh, and if you think pervasive computing is out of this world...**
 - **It is!**
 - **And 'pico-satellites' have already been launched and tested.**