Scalable, (Non-)Evolvable, Emergent, Developmental ...

Nanotechnology

Susan Stepney
Non-Standard Computation Group
Department of Computer Science
University of York

SEEDS meeting, August 2003
Real nanotechnology

- K. Eric Drexler

- assemblers and disassemblers
 - “nanites”, “nanobots”
 - making macroscopic artefacts
 - assembling, from steaks to spaceships
 - making macroscopic changes to the world
 - from disassembling cholesterol in arteries …
 - to disassembling pollution in the environment

- CS challenges:
 - software, tools, techniques, models, …
 - hardware/wetware up to physicists, engineers, biologists
Assembling artefacts

• growth and development on two levels
 - bootstrap a small initial nanite population ...
 - pool of raw material (mainly carbon)
 - assemble many nanites, exponential growth
 - ... to large nanite population
 - assemble, or “grows”, the artefact

http://www.imm.org/

http://www.omahasteaks.com/
Disassemblers

• as part of assembly
 • disassembly of raw materials for assembly

• medical applications
 • scouring cholesterol from arteries
 • filtering blood toxins
 • removing damaged cells
 • repairing damaged nerves

• environmental applications
 • disassembling toxic chemicals into safe constituents
 • concentrating heavy metals
 • disassembling unwanted artefacts
 - assemblers make factories unnecessary
Caveat: when nanites go bad

• “grey goo” scenario
 - rogue nanites disassemble the planet

• safety critical application
 - current approaches totally inadequate
 - vast numbers of nanites, some will go wrong
 • evolution is an inevitable consequence of “reproduction, variation, selection”
 - new safety techniques and tools required
 • requires design of non-viable “adjacent possible”
Utility Fog

- J. Storrs Hall ("Josh")

- "foglets": programmable micromachines
 - become (inedible!) artefact of choice
 - reconfigure to become new artefact

http://discuss.foresight.org/~josh/Ufog.html
The design challenge

• assembled artefact is emergent property
 - of actions of vast number of nanites
• design requires “reverse emergence”
 - from desired emergent artefact
 - to behaviour of nanite assemblers
Beware the Gödel fallacy

• “emergent properties are in general unpredictable, so whole endeavour is flawed”
 - but, not interested in arbitrary artefacts
 • cf. Halting Problem v. proofs of program termination
 • cf. No Free Lunch theorem

• find classes of emergent properties
 - need only a sufficient theory
 • patterns of emergence, inspired by real world
 - We can never hope to predict the exact branchings of the tree of life, but we can uncover powerful laws that predict and explain their general shape. -- Stuart Kaufmann, 1995
Self-Organising Critical System

• large number of component parts
• even more interconnections
• no centralised control (internal or external)
 - large unbounded distributed systems
 - non-linear, positive feedback
 - dynamic, far-from-equilibrium
 • change, growth, adaptation, repair
 - emergent properties
 • higher level properties of interconnected parts
• embodied in and affecting environment
(1) Complex networks theory

• heterogeneous, unstructured – not regular
 - not “fully connected”, or “grid”, or even “random”
 • small worlds? ...

• open – not fixed topology or components
 - new kinds of nodes and connections arise, disappear

• dynamic – not steady state
 - non-linear, far-from-equilibrium
 - phase space, trajectories, attractors, bifurcations
 - co-evolving phase spaces
 - “gateway events” that change the phase space
(2) Emergent engineering

- design methods for SOCSs
 - including NFRs: safety, robustness, ...
 - growth and development approaches

- new tools for
 - SOCS modelling languages
 - expressing general laws/patterns of emergence

- emergent laws for classes of systems
 - design and predict emergent properties
 - an Emergent Pattern Language
 - scalable hierarchies of emergence
(3) Growth and development

• can’t just “switch on” mature far-from-equilibrium systems
 - SOCSs are “poised” systems
 • current behaviour dependent on entire history
 • e.g., can’t build ecosystems by throwing together lots of species

• so, “grow” them instead
 - environment changes during / because of growth
 - growth, adaptation, repair occur throughout the system’s lifetime

• growth of nanite populations / final artefacts
(4) Nanotech / Fog exemplars

• an assembler design for steak
 - raw, rare, or well-done!

• a disassembler design for destroying a toxin
 - via safe intermediate by-products
 - safe in face of evolutionary pressures

• a Utility Fog design for a chair
 - looks like wood, feels like silk
 - adjustable look-and-feel
 - self-cleaning
Summary

1. Complex networks theory
 - open, dynamic networks
2. Emergent engineering
 - patterns of emergence
3. Growth and development
 - of nanites, of artefacts
4. Nanotech/Fog exemplars
 - with safety critical opportunities