

Scalable, (Non-)Evolvable, Emergent, Developmental ...

Nanotechnology

Susan Stepney

Non-Standard Computation Group
Department of Computer Science
University of York

SEEDS meeting, August 2003

Real nanotechnology

- K. Eric Drexler

- assemblers and disassemblers
 - "nanites", "nanobots"
 - making macroscopic artefacts
 - assembling, from steaks to spaceships
 - making macroscopic changes to the world
 - from disassembling cholesterol in arteries ...
 - to disassembling pollution in the environment
- CS challenges:
 - software, tools, techniques, models, ...
 - hardware/wetware up to physicists, engineers, biologists

Assembling artefacts

- growth and development on two levels
 - bootstrap a small initial nanite population ...
 - pool of raw material (mainly carbon)
 - assemble many nanites, exponential growth
 - ... to large nanite population
 - assemble, or "grows", the artefact

Disassemblers

- as part of assembly
 - disassembly of raw materials for assembly
- medical applications
 - scouring cholesterol from arteries
 - filtering blood toxins
 - removing damaged cells
 - repairing damaged nerves
- environmental applications
 - disassembling toxic chemicals into safe constituents
 - concentrating heavy metals
 - disassembling unwanted artefacts

- assemblers make factories unnecessary

Caveat: when nanites go bad

- “grey goo” scenario
 - rogue nanites disassemble the planet
- safety critical application
 - current approaches totally inadequate
 - vast numbers of nanites, some will go wrong
 - evolution is an inevitable consequence of “reproduction, variation, selection”
 - new safety techniques and tools required
 - requires design of non-viable “adjacent possible”

Utility Fog

- J. Storrs Hall ("Josh")

- “foglets”: programmable micromachines
 - become (inedible!) artefact of choice
 - reconfigure to become new artefact

link up

The design challenge

- assembled artefact is emergent property
 - of actions of vast number of nanites
- design requires “reverse emergence”
 - from desired emergent artefact
 - to behaviour of nanite assemblers

design
assemblers

Beware the Gödel fallacy

- "emergent properties are in general unpredictable, so whole endeavour is flawed"
 - but, not interested in *arbitrary* artefacts
 - cf. Halting Problem *v.* proofs of program termination
 - cf. No Free Lunch theorem
- find classes of emergent properties
 - need only a *sufficient* theory
 - patterns of emergence, inspired by real world
 - We can never hope to predict the exact branchings of the tree of life, but we can uncover powerful laws that predict and explain their general shape.
-- Stuart Kauffman, 1995

Self-Organising Critical System

- large number of component parts
- even more interconnections
- no centralised control (internal or external)
 - large unbounded distributed systems
 - non-linear, positive feedback
 - dynamic, far-from-equilibrium
 - change, growth , adaptation, repair
 - emergent properties
 - higher level properties of interconnected parts
- embodied in and affecting environment

(1) Complex networks theory

- heterogeneous, unstructured - not regular
 - not "fully connected", or "grid", or even "random"
 - small worlds? ...
- open - not fixed topology or components
 - new kinds of nodes and connections arise, disappear
- dynamic - not steady state
 - non-linear, far-from-equilibrium
 - phase space, trajectories, attractors, bifurcations
 - co-evolving phase spaces
 - "gateway events" that change the phase space

(2) Emergent engineering

- design methods for SOCSs
 - including NFRs: safety, robustness, ...
 - growth and development approaches
- new tools for
 - SOCS modelling languages
 - expressing general laws/patterns of emergence
- emergent laws for classes of systems
 - design and predict emergent properties
 - an Emergent Pattern Language
 - scalable hierarchies of emergence

(3) Growth and development

- can't just "switch on" mature far-from-equilibrium systems
 - SOCSs are "poised" systems
 - current behaviour dependent on entire history
 - e.g., can't build ecosystems by throwing together lots of species
- so, "grow" them instead
 - environment changes during / because of growth
 - growth, adaptation, repair occur throughout the system's lifetime
- growth of nanite populations / final artefacts

(4) Nanotech / Fog exemplars

- an assembler design for steak
 - raw, rare, or well-done!
- a disassembler design for destroying a toxin
 - via safe intermediate by-products
 - safe in face of evolutionary pressures
- a Utility Fog design for a chair
 - looks like wood, feels like silk
 - adjustable look-and-feel
 - self-cleaning

Summary

1. Complex networks theory
 - open, dynamic networks
2. Emergent engineering
 - patterns of emergence
3. Growth and development
 - of nanites, of artefacts
4. Nanotech/Fog exemplars
 - with safety critical opportunities