What can Computer Science learn from Biology in order to Program Nanobots safely?

Susan Stepney
Non-Standard Computation Group,
Department of Computer Science,
University of York
history

• self-replicating machine
 • John von Neumann, 1950s
 - 29-state Cellular Automaton
 • demonstrates the principle of a “Universal Constructor”
 - abstract design: ignores problems of raw material transport, selection, and manipulation

• “There's Plenty of Room at the Bottom”
 • Richard P. Feynman, 1959
 - manufacture on the atomic scale
 • placing atoms precisely
nanotechnology

• **molecular nanotechnology (MNT)** [K. Eric Drexler, 1986, 1992]
 - molecular scale programmable “robots”, mechanically positioning reactive molecules
 • making macroscopic artefacts
 • potentially revolutionary technology
 - “molecular manufacturing”

• macroscopic nanotechnology
 - electron microscopes moving atoms around
 - very clever, precise fabrication technologies
 • but just incremental improvements?
assemblers

- assemblers, nanites, nanobots
 - molecular scale robots
 - making macroscopic artefacts
 - assembling anything, from steaks to spaceships
- assemblers make conventional factories unnecessary

- **CS challenges:**
 - software, tools, techniques, models, ...
 - hardware/wetware up to physicists, engineers, biologists
 - *but those CS tools will require bio-inspiration*
nanoscale fabrication

• “desktop” fabrication plant, comprising
 – many very small devices
 • trillions of molecular scale robot assemblers, conveyors, manipulators, ...
 – original conception: centralised computer control
 – electrical, mechanical, chemical, ...
 • assembly instructions broadcast to all the robot assemblers
 • each assembler has some local state to customise the instructions

• universal assembler
 – given the right assembly instructions, and the right raw materials, the plant can assemble anything
 – DNA “instructions” + material in cells “assemble” an organism
assembling artefacts

• growth and development on two levels
 - bootstrap a small initial assembler population
 • pool of raw material (mainly carbon)
 • assemble trillions of nanites (exponential growth)
 - eg, to build a new nano-fabrication plant
 • which then assembles, or “grows”, the artefact

http://www.imm.org/
http://www.omahasteaks.com/
disassemblers

• as part of assembly
 • disassembly of raw materials required for assembly
 • disassembly of “scaffolding” required during assembly

• medical applications
 • scouring cholesterol from arteries
 • filtering blood toxins
 • removing damaged cells
 • repairing damaged nerves

• environmental applications
 • disassembling toxic chemicals into safe constituents
 • concentrating heavy metals
 • disassembling unwanted artefacts
when nanites go bad

• "grey goo" scenario
 - where replicating nanites escape, go rogue, and disassemble the planet

• "Some Limits to Global Ecophagy by Biovorous Nanoreplicators" -- Robert A. Freitas

http://www.foresight.org/NanoRev/Ecophagy.html
Foresight Institute guidelines (excerpt)

- Artificial replicators must not be capable of replication in a natural, uncontrolled environment.
- Evolution within the context of a self-replicating manufacturing system is discouraged.
- Any replicated information should be error free.
- Any self-replicating device which has sufficient onboard information to describe its own manufacture should encrypt it such that any replication error will randomize its blueprint.
- Mutation (autonomous and otherwise) outside of sealed laboratory conditions, should be discouraged.
- MNT device designs should incorporate provisions for built-in safety mechanisms, such as: 1) absolute dependence on a single artificial fuel source or artificial "vitamins" that don't exist in any natural environment; ...
evolution happens

• given vast numbers of nanites, some will go wrong
 - if they are self-replicating, they will evolve
 • evolution is an inevitable consequence of
 “reproduction, variation, selection”
• safety critical application
 - current approaches totally inadequate
 • “proof of correctness” doesn’t help with a mutant
 - new safety techniques and tools required
 • design of non-viable “adjacent possible”
 - Foresight Institute guidelines are an excellent start
 • evolution will exploit anything
 - even (especially) things outside your abstract model
is MNT possible?

• “it violates fundamental laws of physics/chemistry …”
 - thermal noise
 - 2nd Law of Thermodynamics
 - quantum effects
 - chemical reaction pathways
 - ...

• but we have an existence proof: us!
 - living organisms are “assembled” (grown) from the molecular level up
 - we need to understand these bio-processes
 • how does DNA “instruct” for “building” an organism?
 • what more than just DNA is necessary?
 - raw materials, signalling mechanisms, dynamics, …
wet v. dry chemistry

• the organic assembly process uses “wet chemistry”
 - proteins, enzymes, etc, in aqueous medium
 - this wet chemistry is difficult to control precisely
 • water has incredibly complicated chemistry
 • proteins are “floppy”
 • ...

• molecular nanotechnologists propose “dry chemistry”
 • eg, molecular vapour deposition, used in semiconductor manufacture
 - dry chemistry is (probably) much more controllable than wet chemistry
 - able to build things that biology would find difficult
 • look to material science
 • “diamondoid” constructions, from manipulating carbon atoms
planetary gear (simulation)

- transfer a rotational impulse from the input to the output unit, one input cycle in 12 picoseconds (0.012 ns)

http://www.wag.caltech.edu/gallery/gallery_nanotec.html
the MNT design challenge

• assembled artefact is *emergent property*
 - of actions of vast number of nanites
• design requires “reverse emergence”
 - from desired emergent artefact
 - to behaviour of nanite assemblers

Design appropriate assemblers
is MNT feasible?

• “emergent properties are in general unpredictable, so the whole endeavour is flawed”

• ... but, not interested in arbitrary artefacts
 - beware a Gödel fallacy
 • cf. Halting Problem v. proofs of program termination
 • cf. No Free Lunch theorem

• find classes of emergent properties
 - need only a sufficient theory
 • patterns of emergence, inspired by real world

We can never hope to predict the exact branchings of the tree of life, but we can uncover powerful laws that predict and explain their general shape. -- Stuart Kauffman, 1995
transferable technology?

• do we have any reason to believe bio-inspired algorithms will be any good for designs for assembling artificial constructs?

• observation: we, the designers, are also (an evolved) part of the biological world

• conjecture: because of this, maybe our “artificial” problems are not totally arbitrary, but sufficiently “close” to real biology that the insights are transferable?
CS/bio understanding for MNT (1)

- **complex systems**
 - simple rules give complex behaviour
 - but which simple rules give the desired complex behaviour?
 - designing the desired emergent properties
 - designing the lack of undesired emergent properties
 - thorough understanding of complex systems
 - biology provides many exemplars, from gene regulatory networks, via organisms, to ecosystems

- searching for suitable designs
 - large complex search space
 - bio-inspired evolutionary search algorithms
CS/bio understanding for MNT (2)

• growth and development
 - self-replicating nanites
 - assembly as “growing” the final artefact
 • how and what local growth rules result in what global structure
 • embryonics
 • development of infant to adult
 • use of “scaffolding”
 • role / necessity of death
 - self-repair as a feature of continual growth?

• growth of safe designs
 - “design out” the grey goo
 • errors, mutation, progress of evolution
 • pathogens, attacks and defences
• embodied nanites
 - strange physics at very small sizes
 • friction, flow, etc all very different
 - constraints of embodiment on structure and growth
 • viability at all development stages too constraining?
 - inevitability of evolution
 • evolution exploiting physical embodied properties
two way trade

• what biology don’t we know about that could be useful?
 - what biology might *look* useful, but is actually too “bio-centric”?

• could our work help biology?
 - provide insight into necessity v. contingence?
 • what biology is necessary for correct robust functioning
 • what is necessary only for the particular physical realisation
 - organic, carbon-based lifeforms
 • what is merely contingent evolutionary aspects?
 - “playing the tape twice”
 - provide insight from different complex systems?