
GPGPU

Peter Laurens
1st-year PhD Student, NSC

Presentation Overview

1. What is it?

2. What can it do for me?

3. How can I get it to do that?

4. What’s the catch?

5. What’s the future?

What is it?
Introducing the GPU

Core

Memory

Bandwidth

Price

250 - 500MHz

128MB - 512MB

10 - 40GB/s

~ £150 GBP

The GPU
A Specialised Hardware Component for Graphical Rendering

 “CryENGINE” Crytek A.G.

19
80

19
85

19
90

19
95

20
00

20
05

C
PU 2D 3D T
&

L

Pr
og

ra
m

m
ab

le
Sh

ad
er

s

Almost all processing to screen done by CPU

Some sprite compositing may be accelerated (BitBLT)
2D Drawing of vector shapes is accelerated

Fixed Function Pipeline

3D Geometry can be passed to the GPU,

rasterised, coloured, and textured.

Effects such as mip-mapping, multi-texturing, bump-mapping, etc. are

possible, but you only get what you are given.

Transform and Lighting

FFP extended to support more features

Pixel and Vertex Shaders

The GPU is now programmable, (almost) arbitrary code may be run on

the GPU which ‘shades’ (affects the colour of) every pixel on a surface.

These shaders are applied in parallel to the pixels.

CPU Texture
Memory

OpenGL/
D3D

Geometry

Rasteriser

CPU GPU

Vertex Shaders

Fragment/Pixel
 Shaders

Bandwidth is
Expensive

But Computation
is very, very, cheap

Shaders
The Core of the Programmable Pipeline

Vertex Processor
Fully programmable

Runs shader programs on world geometry

Write to vertices only (no read)

Fragment Processor
Fully programmable

Takes rasterised pixel ‘fragment’ data from the vertex stage

Affects the output color

Random read from across the texture data, no RA writes

Direct output to texture
Much more applicable to GPGPU

GPGPU
What can the GPU do for me?

Instead of rendering geometry,

render a flat quad with your data on

it, use the pixel shaders to process it.

Pixel shader is applied in parallel to

every pixel, independently.

Several pixel shaders in sequence.

Max 4096x4096 matrix size.

General Purpose GPU
Using the GPU for General Purpose Computing, taking advantage of the
massive parallelism available for scientific processing

Computation

Memory Bandwidth

Price

48 GFLOPS (peak)

21GB/s (peak)

$851 (Apr 16th)

Intel Core 2 Duo @ 3.0GHz

Source: SC06 (GPGPU.org)

Computation

Memory Bandwidth

Price

330 GFLOPS (observed)

55.2GB/s (observed)

$549 (Apr 16th)

nVidia GeForce 8800GTX

Performance
CPU vs. GPU

0

15

30

45

60

GFLOPS/Machine
0

50

100

150

200

TFLOPS

CPU GPU

Source: Folding@Home, April 2007

“Folding@Home”

0

87.5

175.0

262.5

350.0

1H2003 2H2003 1H2004 2H2004 1H2005 2H2005 1H2006 2H2006

CPU GPU
Source: nVidia Corporation

G
FL

O
PS

Raw Multiply Performance vs. CPU

Intel Core 2 Duo
@ 3.0GHz

NV30

NV35
NV40

G70

G71

G80

Cellular Autonoma

Neural Networks

Genetic Algorithms

Genetic Programming

(Harding & Banzhaf)

Chemical Simulation

 Cryptography and Cryptanalysis

Digital Signal Processing (DSP)

Suitability
Convolution (neighbourhoods), Arithmetical Intensity, Data Independence

Fast Fourier Transform

Speech Processing

Computer Vision

Linear Algebra

 Video Processing (Motion

Compensation, De-interlacing etc.)

Image Effects and Processing

(of course)

How
How can I get it to do that?

Pre-requisites
Setting Up An Environment for GPGPU

Hardware

PS 3.0
Control-Structures
Shader length
ATi/nVidia

Driver Shader

Assembly
GLSL
HLSL
Cg

OS Support
Stability

API

Direct3D
OpenGL

App

Data CPU Arrays > GPU Textures
Textures are the fundamental data-structure fragment shaders are used on. Therefore,
arrays on the CPU become 2D-textures on the GPU.

Code
Kernels

CPU Inner Loops > GPU Fragment Programs
On a CPU we would use a loop to iterate over the many elements of an array
sequentially. On a GPU, the inner loop of the code becomes the instructions to be applied
by the fragment program to the stream of texture data.

Output Feedback from the GPU
On a CPU, the unified memory model means we can read and write wherever we choose,
making getting output easy. On the GPU results must be rendered to a texture, which can
then be read off of the GPU, or used in future processing.

Computation CPU Execution > GPU Drawing
Invocation of computation is straight-forward on the CPU. To run a GPU program, the GPU
must ‘draw’ the result.

Programming Paradigms
These Can be Quite Different from the CPU

More Concepts
Ways in Which a Kernel May Operate on a Stream of Data

Mapping One-to-One Function
Mapping, also known as Transformation, describes a one-to-one input/output application
of a function to the texture array data. E.g., multiplication by two.

Reduction Many-to-Fewer
Data may be reduced to a smaller stream, for example, averaging. For this example, the
GPU architecture is best suited to cascading reductions in several stages, using the output
as new input, before arriving at a single element.

Filtering Non-Uniform Reduction
Removing some items based on certain criteria.

Scatter Vertex Operation to “Spread” Data
Spreads the data in a certain manner by enlarging the geometry of the underlying plane.

Source: GPGPU.org, Wikipedia.org/GPGPU

Gather Random Access Read
Refers to the capability of the Fragment Shader to read from a texture in a random fashion

Search Parallel Search
The GPU does not speed up the search for an element, but allows a parallel search
technique

float4 saxpy (
 float2 coords : TEXCOORD0,
 uniform samplerRECT textureY,
 uniform samplerRECT textureX,
 uniform float alpha) : COLOR
{
 float4 result;
 float4 y = texRECT(textureY,coords);
 float4 x = texRECT(textureX,coords);
 result = y + alpha*x;
 return result;
}

Fragment Shader Code
What Does it Look Like?

What’s the Catch?
Well...

Problems
Why We Aren’t Using it Already

Problem must be in the right format for

processing on the GPU

Limited memory access (maximum ~2GB)

Slow transfer across PCIe

Texture sizes limited to 4096x4096

Vendor specific adaptations (think

HTML3.0) limits adoption

Lack of standardisation of features

Drivers can be flakey, unstable, imprecise

Driver availability for Linux

Only Single-Precision Floating-Point

Accuracy

Limited control structures, no recursion

Very poor Multi-GPU support (OS,

Drivers, API)

Immature High-Level Shader Languages

Forced to use Graphics-oriented API and

terminology

“Loose and Fast” attitude toward driver

development

No integers

Software tools are immature, debugging can

be a pain (e.g. running shader on hw)

Unusual programming model

Serial-code with lots of complex data

interdependencies not suitable

Limits on the length of shaders

Future Prospects
They’re Actually Pretty Bright...

New intermediary APIs Brook and Sh

nVidia’s CUDA: A step further than Brooke and Sh (write in C, special drivers,
plus guarantees of future compatibility)

ATi’s CTM: Similar to CUDA (better access to memory etc.)

Maturity will inevitably bring stability and homogeneity to drivers/features

AMD + ATi Stream Processing and CPU Integration (alleviate bus latency and
memory constraint)

Direct3D, OpenGL, and the cards themselves continue to support more
features, double-precision floating point is coming.

The Future of GPGPU
Why We Might be Using it Soon

www.gpgpu.org

www.nvidia.com

www.ati.com

Stream Processing (USA)

Places to Go
Learning More About GPGPU

