Evolutionary Algorithms for Regulatory Motif Discovery

Michael Lones

Intelligent Systems Research Group Department of Electronics University of York

Overview

- What are regulatory motifs?
- Regulatory motif discovery
- Diversity in evolutionary algorithms
- Population clustering
 - Discovering regulatory motifs
- Motif-rule co-evolution
 - Discovering higher-order motifs

Gene Regulation

Protein

Gene

Gene

Gene

Basal Transcription Complex

Basal Transcription Complex

Promoter Proximal Elements

Enhancers

- Enhance the binding of the transcription complex or activators
- May occur up to ~10kb up/down stream
- Can occur in either orientation

Transcription Factor Binding Sites

- ~5-8bp in contact with TF
 - Requires certain nucleotides
- ~10-20bp occluded by TF
 - Constrains nucleotides

- Regulatory motifs describe TF binding sites (TFBSs)
 - Consensus sequences for conserved motifs, e.g. TATAAAA
 - Regular expressions also used, e.g. TATA[AT]A[AT]
 - Frequency matrices often used to capture variation
 - Hidden Markov models also sometimes used

Transcription Factor Binding Sites

Regulatory Motif Discovery

Discovery of patterns of DNA bases which are over-represented in the data set relative to the nucleotide background

Motif Discovery Techniques

Enumerative approaches

- Enumerate every motif up to a certain length
- Generally limited to short motifs and discrete models
- Although always find most significant motifs where applicable

Statistical approaches

- Typically expectation-maximisation and/or Gibbs sampling
- Iteratively refine initial estimate of motif model's parameters
- Other approaches
 - Bayesian modelling, neural networks, dynamic programming
 - Evolutionary computation

Limitations

- Sequence length is the main limiting factor
 - Generally limited to promoter sequences less than ~1kb
- Often discover biologically meaningless motifs
 - Most significant motifs are not necessarily meaningful
- Sensitivity to motif length
 - Poor performance with inappropriate model sizes
- Poor performance on metazoan data sets
 - Background models are biased towards yeast

Evolutionary Algorithms

evaluation

- Generate population of random solutions
- Repeat
 - Remove relatively poor solutions
 - Derive new solutions from relatively fit solutions
- until optimal solution found

Evolutionary Algorithms

Potential benefits for motif discovery

- Global, non-exhaustive search with no specific heuristics
- Representational flexibility
- No dependence between solution derivation and scoring
- Multiple solutions

Niching Methods

Fitness sharing

Reduce the fitness of over-represented solutions

Crowding

Replace over-represented solutions with new ones

Sexual selection

- Limit crossover to similar solutions
- Distributed populations
 - Split the population into multiple sub-populations
 - or spatially-distribute the population

Distributed Populations

Spatially-distributed

Niching Methods

Fitness sharing

Reduce the fitness of over-represented solutions

Crowding

Indirect

Replace over-represented solutions with new ones

Sexual selection

Limit crossover to similar solutions

Distributed populations

- Direct
- Split the population into multiple sub-populations
- or spatially-distribute the population

- Uses a data clustering algorithm
 - Applied to the population prior to reproduction
- Mating takes place solely within clusters
 - Maintaining each cluster's genetic identity
- Number of children proportional to cluster fitness
 - More exploration within fit clusters
- All clusters generate children
 - Maintains overall genetic diversity of population

- Local selection and mating
 - Unlike indirect methods
 - Different selective pressures within and between clusters
- Population is distributed logically
 - Rather than via arbitrary evolutionary history
 - More likely to cover the search space

- Most data clustering algorithms are iterative
 - k-means, ISODATA, Kohonen neural networks
- Incremental clustering algorithms
 - Leader, ART, cobweb, genIC
 - Lower time complexity
 - Leader sequential clustering
 - Single pass through data
 - · Assign each data item to nearest cluster centroid
 - Or, if no nearby cluster, create new cluster and insert item

ACCI SEST ACAT ACAT ACAT **SCS** ACCC GeeG

AC r T AC r T ACAT ACAT ACCC ACCCG r G r G

AC r T AC r T ACAT C r T ACCCG r C r G

ACAT ACAT COT ACCC GOOG

ACAT CQT ACCC GQQG

ACAT CQT ACCC GQQG

Clustering Metric

Distance between tetra-nucleotide distributions

- Sum of probabilities of each 4-tuple of bases
- Normalised by length of profile
- Used to identify TFBS families in Transfac [Grote et al, 1999]

Evaluation

- Promoter sequences can be pretty long (≤ ~10kb)
 - Determine maximum searchable sequence sizes
- They usually contain multiple motifs
 - Look for multiple motifs at once
- Promoter regions are not generally well understood
 - Use synthetic data containing known motifs
 - generated by embedding JASPAR motifs into EPD sequences

Data sets: 100 EPD sequences, 50 of which contain a single instance of the target motif Background set: 1500 EPD sequences

	Motif	Info. content	Sequ. Length	Pop size	Success (20 runs)	Evolved example
HFH-1		14.07	5000	4000	90%	ATIGITTAI
HLF	G TACGTAAT	11.05	1500	3000	95%	GTLACGCAA
C-FOS		10.67	1500	4000	95%	GIGASISA

Target = HLF, Information content = 11.15 Sequence length = 1500bp, Population size = 3000, Background set size = 1500 sequences Success rate = 95% (19/20 runs)

Comparison with other approaches

Maximum sequence length for which motif could be found

	Approach				
Motif	MEME	NestedMICA	PCEA		
	1200bp	1200bp	5000bp		
	150bp	600bp	1500bp		
C-FOS SALEA	300bp	500bp	1500bp		

Comparison with other approaches

Maximum sequence length for which motif could be found

Data set: 100 EPD sequences, length 1000bp, 50 contain one instance of each target motif Background set: 1500 EPD sequences

	Motif	Info. content	Length
SPI-B	As CCAA	9.06	7bp
HLF	<u>G</u> T <u>ACGTAA</u> T	11.15	12bp
FOXI1	R RITI	13.18	12bp
NFKB1	GGGATECCC	15.63	11bp

	Motif	Info. content	Length	
RORA1		17.42	14bp	
RXR	SCGTCA_ SSCTTCA	20.45	15bp	
PPARG	COTCANACOTCA	23.45	20bp	
TP53	CCALIFIC COCCCATCT	26.24	20bp	

Closest match to target

Fitness of closest match

* Data points are the mean of 40 runs of the PCEA

Evolved motifs in 5 consecutive runs

	SPI-B	HLF	FOXI1	NFKB1	RORA1	RXR	PPARG	TP53
Run	AsoCCA	GTACGIAAT		GGGATICCC	TAP TAGON	ACTICAL CAUTICA	SECTEMACTICA	GGAN DOCCOCCATOT
1	AAGGAGG	G COLAT	TRTICT		AA _R TAGRTC		GGTCAAAGGT	ACHTGeOCgoggeAT
2	AGAGGG RA	g TACETAAT	A GI_	GGG_TTCCCC	AA_TACCTCA	AGqTCAA	GGTCAAAGGT	CATGQCCG
3	AqcGGa	TACSTAA	A IGT.		I+GGTCA	AA IGUTCA	GGTCAAAGGT	<u>cacatgcccg</u>
4	A-CCGAAA	TACGIAA			TAGGTCA	TCA, sagitc	GGT_AAAGGT	CATGCCCG
5	GAAGAA	TACETA		GGG_ITCOCC	AA_TAGGT	TCA _x GaGTT	CAAAGGTCA	CATGCCCGGCCAT

Wasserman and Fickett data set

- 43 curated promoter sequences from muscle-specific genes
- Lengths between 197bp and 802bp
- Muscle expression is relatively well understood
- Test set
 - 28 EPD sequences annotated as muscle-specific
- Background set
 - 2348 non-muscle EPD sequences

Best of 5 consecutive runs

#	Sequence Logo	Length	Matches ($\%$ of seqs)			Hypothesised TFBS		
			W&F	EPD	bg	Name	ID	Logo
1	TATAAATAC	10	46.5%	21.4%	3.2%	MEF2	MA0052	
2	CAGCTGACA	10	25.6%	28.6%	5.2%	Myf	MA0055	SESCASCIGSIG
3	GGG ⇔GGG	7	62.8%	57.1%	34.4%	$\operatorname{Sp1}$	M00196	
4	<u>çCataqaTg</u> G	10	16.3%	21.4%	0.9%	SRF	MA0083	GOCCATATATGG
5	C _∞ T _∞ escTGG	9	39.5%	25.0%	7.6%	TEF	MA0090	
6	CACAGGIE	8	20.9%	17.9%	6.3%	MyoD	M00001	EXCACCTG_JR
7	TCT_TGG_CA	10	20.9%	14.3%	5.1%			
8	IG_CACCCC	11	25.6%	14.3%	1.7%			

Best of 5 consecutive runs

#	Sequence Logo	Length	Match	nes (% of	f seqs)		Hypothesised TFBS		
		-	W&F	EPD	bg	Name	ID	Logo	20 Runs
1	TATAAATAC	10	46.5%	21.4%	3.2%	MEF2	MA0052	¢TATIT¢TAG	100%
2	CAGCTRACA	10	25.6%	28.6%	5.2%	Myf	MA0055	seeCAsCIGSIG	75%
3	GGG⇔GGG	7	62.8%	57.1%	34.4%	$\operatorname{Sp1}$	M00196		100%
4		10	16.3%	21.4%	0.9%	\mathbf{SRF}	MA0083	GCCATATATGG	90%
5	C_{T}	9	39.5%	25.0%	7.6%	TEF	MA0090		100%
6	CACAGGIE	8	20.9%	17.9%	6.3%	MyoD	M00001		95%
7	TCT_TGG_CA	10	20.9%	14.3%	5.1%				95%
8	IG-CACCOR	11	25.6%	14.3%	1.7%				100%

Limitations

Finding weak motifs in long promoter sequences

- 1500bp is somewhat less than 10kb
- Finding weak motifs in the presence of strong ones
 - Always room for improvement...
- Finding under-represented motifs
 - Present in only a small part of the data set

Co-Occurrence

Co-occurring motifs present a stronger signal

Could allow identification of weak or under-represented motifs

PCEA discovers motifs concurrently

Could use co-occurrence information during search

Higher-Order Motifs

- Capture interactions between TFBSs
 - The 'rules' of transcription
 - e.g. using Boolean rules:

Co-operative Co-evolution

Decoupled Interactions

Decoupled Interactions

- Rules do not change the fitness of motifs
 - Avoids problem of how to handle unreferenced motifs
- Rules do change the breeding privileges of clusters
 - Number of children generated by a cluster decided by:
 - Relative fitness of its fittest motif
 - · and how much the motif contributed to rule fitness
- Unreferenced motif clusters produce less children
 - But do still produce children, maintaining diversity

Rule Fitness

Determined by Matthews correlation:

$$MC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FN)(TP + FP)(TN + FP)(TN + FN)}}$$

- Measures classification accuracy
- Mapped to [0,1]: 1=optimal, 0.5=random classification

Penalties for:

- Excessive depth (-0.04/level for depth>5)
- Lack of motif diversity (max -0.05)

- Motif population size = 4000; Rule population size = 1000
 - Correctly classifies 19 of 43 positive examples
 - Rejects all but one background sequence

- HLF, sequence length 10,000bp (10kb)
 - 100 sequences in data set, 50 containing motif
 - Background set of 2000 sequences
 - Motif pop = 4000; Rule pop = 4000; 100 generations

Somewhat of an improvement...

Future Directions

- Real/useful biological data sets
 - Different motif/rule representations
 - Profile HMMs, non-standard representations
- Other problem domains
 - Image processing?
- Other levels of regulation