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Overview

 What are regulatory motifs?

 Regulatory motif discovery

 Diversity in evolutionary algorithms

 Population clustering
 Discovering regulatory motifs

 Motif-rule co-evolution
 Discovering higher-order motifs
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Enhancers
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 Enhance the binding of the transcription complex or activators
 May occur up to ~10kb up/down stream
 Can occur in either orientation

Enhancers
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 ~5-8bp in contact with TF
 Requires certain nucleotides

 ~10-20bp occluded by TF
 Constrains nucleotides

 Regulatory motifs describe TF binding sites (TFBSs)
 Consensus sequences for conserved motifs, e.g. TATAAAA
 Regular expressions also used, e.g. TATA[AT]A[AT]
 Frequency matrices often used to capture variation
 Hidden Markov models also sometimes used

Transcription Factor Binding Sites



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Transcription Factor Binding Sites
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Regulatory Motif Discovery

Promoter
sequences in 

data set
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Over-represented
nucleotide patterns

 Discovery of patterns of DNA bases which are over-represented
in the data set relative to the nucleotide background
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Motif Discovery Techniques

 Enumerative approaches
 Enumerate every motif up to a certain length
 Generally limited to short motifs and discrete models
 Although always find most significant motifs where applicable

 Statistical approaches
 Typically expectation-maximisation and/or Gibbs sampling
 Iteratively refine initial estimate of motif model’s parameters

 Other approaches
 Bayesian modelling, neural networks, dynamic programming
 Evolutionary computation
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 Sequence length is the main limiting factor
 Generally limited to promoter sequences less than ~1kb

 Often discover biologically meaningless motifs
 Most significant motifs are not necessarily meaningful

 Sensitivity to motif length
 Poor performance with inappropriate model sizes

 Poor performance on metazoan data sets
 Background models are biased towards yeast

Limitations
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Evolutionary Algorithms

 Generate population of random solutions
 Repeat

 Remove relatively poor solutions
 Derive new solutions from relatively fit solutions

 until optimal solution found

selection breeding

evaluation
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 Potential benefits for motif discovery
 Global, non-exhaustive search with no specific heuristics
 Representational flexibility
 No dependence between solution derivation and scoring
 Multiple solutions

Evolutionary Algorithms
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Convergence
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Niching Methods

  Fitness sharing
 Reduce the fitness of over-represented solutions

  Crowding
 Replace over-represented solutions with new ones

  Sexual selection
 Limit crossover to similar solutions

  Distributed populations
 Split the population into multiple sub-populations
 or spatially-distribute the population



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Distributed Populations

Island model Spatially-distributed



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Niching Methods

  Fitness sharing
 Reduce the fitness of over-represented solutions

  Crowding
 Replace over-represented solutions with new ones

  Sexual selection
 Limit crossover to similar solutions

  Distributed populations
 Split the population into multiple sub-populations
 or spatially-distribute the population

Indirect

Direct
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Population Clustering

 Uses a data clustering algorithm
 Applied to the population prior to reproduction

 Mating takes place solely within clusters
 Maintaining each cluster’s genetic identity

 Number of children proportional to cluster fitness
 More exploration within fit clusters

 All clusters generate children
 Maintains overall genetic diversity of population
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Population Clustering

Data Clustering Within-cluster Mating
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 Local selection and mating
 Unlike indirect methods
 Different selective pressures within and between clusters

 Population is distributed logically
 Rather than via arbitrary evolutionary history
 More likely to cover the search space

Population Clustering
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 Most data clustering algorithms are iterative
 k-means, ISODATA, Kohonen neural networks

 Incremental clustering algorithms
 Leader, ART, cobweb, genIC
 Lower time complexity

 Leader sequential clustering
 Single pass through data

• Assign each data item to nearest cluster centroid
• Or, if no nearby cluster, create new cluster and insert item

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Population Clustering
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Population Clustering
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Clustering Metric

 Distance between tetra-nucleotide distributions
 Sum of probabilities of each 4-tuple of bases
 Normalised by length of profile
 Used to identify TFBS families in Transfac [Grote et al, 1999]
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 Promoter sequences can be pretty long (≤ ~10kb)
 Determine maximum searchable sequence sizes

 They usually contain multiple motifs
 Look for multiple motifs at once

 Promoter regions are not generally well understood
 Use synthetic data containing known motifs
 generated by embedding JASPAR motifs into EPD sequences

Evaluation
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Single Motif
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Data sets: 100 EPD sequences, 50 of which contain a single instance of the target motif
Background set: 1500 EPD sequences
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Single Motif
Target = HLF, Information content = 11.15
Sequence length = 1500bp, Population size = 3000, Background set size = 1500 sequences
Success rate = 95% (19/20 runs)
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 Comparison with other approaches
 Maximum sequence length for which motif could be found

Single Motif

Approach
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PCEANestedMICAMEMEMotif
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 Comparison with other approaches
 Maximum sequence length for which motif could be found

Single Motif
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Multiple Motifs
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Data set: 100 EPD sequences, length 1000bp, 50 contain one instance of each target motif
Background set: 1500 EPD sequences



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Closest match to target Fitness of closest match

Multiple Motifs

* Data points are the mean of 40 runs of the PCEA
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Multiple Motifs

 Evolved motifs in 5 consecutive runs
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Multiple Motifs
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Muscle Data

 Wasserman and Fickett data set
 43 curated promoter sequences from muscle-specific genes
 Lengths between 197bp and 802bp
 Muscle expression is relatively well understood

 Test set
 28 EPD sequences annotated as muscle-specific

 Background set
 2348 non-muscle EPD sequences
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 Best of 5 consecutive runs

Muscle Data
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 Best of 5 consecutive runs

Muscle Data
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Limitations

 Finding weak motifs in long promoter sequences
 1500bp is somewhat less than 10kb

 Finding weak motifs in the presence of strong ones
 Always room for improvement…

 Finding under-represented motifs
 Present in only a small part of the data set
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Co-Occurrence

 Co-occurring motifs present a stronger signal
 Could allow identification of weak or under-represented motifs

 PCEA discovers motifs concurrently
 Could use co-occurrence information during search
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Seq 5

Seq 6
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Higher-Order Motifs

 Capture interactions between TFBSs
 The ‘rules’ of transcription
 e.g. using Boolean rules:

+
+

+
++

Motif 1 Motif 2 Motif 3 Motif 4 Motif 5

ANDOR

AND

OR
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Co-operative Co-evolution

Motifs Rules

Fit motifs

Co-occurrence
information
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Decoupled Interactions

AND AND

OR
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 Rules do not change the fitness of motifs
 Avoids problem of how to handle unreferenced motifs

 Rules do change the breeding privileges of clusters
 Number of children generated by a cluster decided by:

• Relative fitness of its fittest motif
• and how much the motif contributed to rule fitness

 Unreferenced motif clusters produce less children
 But do still produce children, maintaining diversity

Decoupled Interactions
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Rule Fitness

 Determined by Matthews correlation:

 Measures classification accuracy
 Mapped to [0,1]: 1=optimal, 0.5=random classification

 Penalties for:
 Excessive depth (-0.04/level for depth>5)
 Lack of motif diversity (max -0.05)

! 

MC =
TP "TN # FP " FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
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Muscle Data
 Motif population size = 4000; Rule population size = 1000

• Correctly classifies 19 of 43 positive examples
• Rejects all but one background sequence

MyoD

SRF/TEF

MyoD/SP1

MEF2/SRF

SRF

SP1

SRF

SP1
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 HLF, sequence length 10,000bp (10kb)
• 100 sequences in data set, 50 containing motif
• Background set of 2000 sequences
• Motif pop = 4000; Rule pop = 4000; 100 generations

Single Motif

Target:

Evolved:
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Single Motif
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 Somewhat of an improvement…
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Future Directions

 Real/useful biological data sets

 Different motif/rule representations
 Profile HMMs, non-standard representations

 Other problem domains
 Image processing?

 Other levels of regulation


