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Overview

 What are regulatory motifs?

 Regulatory motif discovery

 Diversity in evolutionary algorithms

 Population clustering
 Discovering regulatory motifs

 Motif-rule co-evolution
 Discovering higher-order motifs
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Enhancers

+
+

+
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+

 Enhance the binding of the transcription complex or activators
 May occur up to ~10kb up/down stream
 Can occur in either orientation

Enhancers
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 ~5-8bp in contact with TF
 Requires certain nucleotides

 ~10-20bp occluded by TF
 Constrains nucleotides

 Regulatory motifs describe TF binding sites (TFBSs)
 Consensus sequences for conserved motifs, e.g. TATAAAA
 Regular expressions also used, e.g. TATA[AT]A[AT]
 Frequency matrices often used to capture variation
 Hidden Markov models also sometimes used

Transcription Factor Binding Sites
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Transcription Factor Binding Sites
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Regulatory Motif Discovery

Promoter
sequences in 

data set

Nucleotide
background model

Over-represented
nucleotide patterns

 Discovery of patterns of DNA bases which are over-represented
in the data set relative to the nucleotide background
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Motif Discovery Techniques

 Enumerative approaches
 Enumerate every motif up to a certain length
 Generally limited to short motifs and discrete models
 Although always find most significant motifs where applicable

 Statistical approaches
 Typically expectation-maximisation and/or Gibbs sampling
 Iteratively refine initial estimate of motif model’s parameters

 Other approaches
 Bayesian modelling, neural networks, dynamic programming
 Evolutionary computation
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 Sequence length is the main limiting factor
 Generally limited to promoter sequences less than ~1kb

 Often discover biologically meaningless motifs
 Most significant motifs are not necessarily meaningful

 Sensitivity to motif length
 Poor performance with inappropriate model sizes

 Poor performance on metazoan data sets
 Background models are biased towards yeast

Limitations
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Evolutionary Algorithms

 Generate population of random solutions
 Repeat

 Remove relatively poor solutions
 Derive new solutions from relatively fit solutions

 until optimal solution found

selection breeding

evaluation
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 Potential benefits for motif discovery
 Global, non-exhaustive search with no specific heuristics
 Representational flexibility
 No dependence between solution derivation and scoring
 Multiple solutions

Evolutionary Algorithms
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Convergence
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Convergence



Michael Lones  /  Evolutionary Algorithms for Regulatory Motif Discovery

Niching Methods

  Fitness sharing
 Reduce the fitness of over-represented solutions

  Crowding
 Replace over-represented solutions with new ones

  Sexual selection
 Limit crossover to similar solutions

  Distributed populations
 Split the population into multiple sub-populations
 or spatially-distribute the population
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Distributed Populations

Island model Spatially-distributed
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Niching Methods

  Fitness sharing
 Reduce the fitness of over-represented solutions

  Crowding
 Replace over-represented solutions with new ones

  Sexual selection
 Limit crossover to similar solutions

  Distributed populations
 Split the population into multiple sub-populations
 or spatially-distribute the population

Indirect

Direct
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Population Clustering

 Uses a data clustering algorithm
 Applied to the population prior to reproduction

 Mating takes place solely within clusters
 Maintaining each cluster’s genetic identity

 Number of children proportional to cluster fitness
 More exploration within fit clusters

 All clusters generate children
 Maintains overall genetic diversity of population
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Population Clustering

Data Clustering Within-cluster Mating
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 Local selection and mating
 Unlike indirect methods
 Different selective pressures within and between clusters

 Population is distributed logically
 Rather than via arbitrary evolutionary history
 More likely to cover the search space

Population Clustering
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 Most data clustering algorithms are iterative
 k-means, ISODATA, Kohonen neural networks

 Incremental clustering algorithms
 Leader, ART, cobweb, genIC
 Lower time complexity

 Leader sequential clustering
 Single pass through data

• Assign each data item to nearest cluster centroid
• Or, if no nearby cluster, create new cluster and insert item

Population Clustering
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Population Clustering
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Population Clustering
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Clustering Metric

 Distance between tetra-nucleotide distributions
 Sum of probabilities of each 4-tuple of bases
 Normalised by length of profile
 Used to identify TFBS families in Transfac [Grote et al, 1999]
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 Promoter sequences can be pretty long (≤ ~10kb)
 Determine maximum searchable sequence sizes

 They usually contain multiple motifs
 Look for multiple motifs at once

 Promoter regions are not generally well understood
 Use synthetic data containing known motifs
 generated by embedding JASPAR motifs into EPD sequences

Evaluation
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Single Motif
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Data sets: 100 EPD sequences, 50 of which contain a single instance of the target motif
Background set: 1500 EPD sequences
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Single Motif
Target = HLF, Information content = 11.15
Sequence length = 1500bp, Population size = 3000, Background set size = 1500 sequences
Success rate = 95% (19/20 runs)
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 Comparison with other approaches
 Maximum sequence length for which motif could be found

Single Motif

Approach

1500bp500bp300bpC-FOS

1500bp600bp150bpHLF

5000bp1200bp1200bpHFH-1

PCEANestedMICAMEMEMotif
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 Comparison with other approaches
 Maximum sequence length for which motif could be found

Single Motif
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Multiple Motifs
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Data set: 100 EPD sequences, length 1000bp, 50 contain one instance of each target motif
Background set: 1500 EPD sequences
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Closest match to target Fitness of closest match

Multiple Motifs

* Data points are the mean of 40 runs of the PCEA
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Multiple Motifs

 Evolved motifs in 5 consecutive runs
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Multiple Motifs
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Muscle Data

 Wasserman and Fickett data set
 43 curated promoter sequences from muscle-specific genes
 Lengths between 197bp and 802bp
 Muscle expression is relatively well understood

 Test set
 28 EPD sequences annotated as muscle-specific

 Background set
 2348 non-muscle EPD sequences
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 Best of 5 consecutive runs

Muscle Data
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 Best of 5 consecutive runs

Muscle Data
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Limitations

 Finding weak motifs in long promoter sequences
 1500bp is somewhat less than 10kb

 Finding weak motifs in the presence of strong ones
 Always room for improvement…

 Finding under-represented motifs
 Present in only a small part of the data set
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Co-Occurrence

 Co-occurring motifs present a stronger signal
 Could allow identification of weak or under-represented motifs

 PCEA discovers motifs concurrently
 Could use co-occurrence information during search

Seq 1
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Higher-Order Motifs

 Capture interactions between TFBSs
 The ‘rules’ of transcription
 e.g. using Boolean rules:

+
+

+
++

Motif 1 Motif 2 Motif 3 Motif 4 Motif 5

ANDOR

AND

OR
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Co-operative Co-evolution

Motifs Rules

Fit motifs

Co-occurrence
information
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Decoupled Interactions

AND AND

OR
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 Rules do not change the fitness of motifs
 Avoids problem of how to handle unreferenced motifs

 Rules do change the breeding privileges of clusters
 Number of children generated by a cluster decided by:

• Relative fitness of its fittest motif
• and how much the motif contributed to rule fitness

 Unreferenced motif clusters produce less children
 But do still produce children, maintaining diversity

Decoupled Interactions
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Rule Fitness

 Determined by Matthews correlation:

 Measures classification accuracy
 Mapped to [0,1]: 1=optimal, 0.5=random classification

 Penalties for:
 Excessive depth (-0.04/level for depth>5)
 Lack of motif diversity (max -0.05)

! 

MC =
TP "TN # FP " FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
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Muscle Data
 Motif population size = 4000; Rule population size = 1000

• Correctly classifies 19 of 43 positive examples
• Rejects all but one background sequence

MyoD

SRF/TEF

MyoD/SP1

MEF2/SRF

SRF

SP1

SRF

SP1
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 HLF, sequence length 10,000bp (10kb)
• 100 sequences in data set, 50 containing motif
• Background set of 2000 sequences
• Motif pop = 4000; Rule pop = 4000; 100 generations

Single Motif

Target:

Evolved:
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Single Motif

HLF

MEME
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PCEA 1500bp

150bp

600bp

10000bpCo-evolution

 Somewhat of an improvement…
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Future Directions

 Real/useful biological data sets

 Different motif/rule representations
 Profile HMMs, non-standard representations

 Other problem domains
 Image processing?

 Other levels of regulation


