
Intelligent Systems Research Group

Department of Electronics

Evolvability -
The Missing Link?

Michael Lones

Evolutionary Computation

– Population of random solutions

Evolutionary Computation

– Population of random solutions
– Selection removes relatively poor solutions

selection

Evolutionary Computation

– Population of random solutions
– Selection removes relatively poor solutions
– Reproduction generates the next

generation

selection breeding

Evolutionary Computation

– Population of random solutions
– Selection removes relatively poor solutions
– Reproduction generates the next generation
– Repeat until solved

selection breeding

evaluation

Evolutionary Computation
 Has been used to evolve many things…

– Neural networks
– Robotic controllers
– Bio-sequence motifs
– Electrical circuits
– Quantum circuits
– Aircraft wings
– Beer brewing process

Evolutionary Computation
 Is a heuristic search algorithm

– assumes that better solutions can be found by
making random changes to or recombining
existing solutions

 Michael Conrad
– Programs can’t be evolved because mutation

would lead to malfunction (…or something to
this effect)

 Genetic programming…!?

Genetic Programming
 has a few problems…

– Scalability
– Program size bloat
– Sub-tree crossover

 …an operator problem?
 …or a representation problem?

Evolvability
 A typical evolutionary computation run:

Fitness

Time (hours/days)

Evolvability
 Altenberg, 1994

– “the ability of a population to produce variants fitter
than any yet existing”

 Kirschner and Gerhart, 1998
– “the capacity to generate heritable selectable

phenotypic variation”

 An evolvable system…
– is organised in such a way that change is more likely

to lead to adaptation than if it were organised
otherwise

Evolution of Evolvability
 In biology?

Fitness

Time (billions of years)

Evolvability
 Michael Conrad, 1990

– the sources of biological evolvability:

 Compartmentalization

 Redundancy

 Multiple weak interactions

Compartmentalisation
 Split a system into compartments

– Many interactions within a compartment
– Few interactions between compartments

Compartmentalisation
 Examples:

– Genetically independent pathways
– Metabolic pathways can evolve separately

– Embryonic fields
– Developmental pathways can evolve separately

– Epistatic clustering
– Improved horizontal gene transfer and crossover

Pleiotropy
 Genes are sometimes expressed in
 more than one biological context

– Can lead to co-adaptation

– Increased variational potential out-weighing
interference between sub-systems?

– A trade-off!

Redundancy
 Functional redundancy

– Redundant copies of functional components

 Structural redundancy
– Redundant structure within components

 Weak linkage
– Redundant connections between components

Functional Redundancy
 A simple recipe:

– Make two copies of a component
– Evolve one of them
– Keep the other as a backup

 Evolution by gene duplication, Ohno 1970
– Gene duplication and divergence is a major

component of molecular evolution

Functional Redundancy
 Examples:

– Gene families and pseudo-genes
– Redundant copies of genes

– Polyploidy
– Redundant copies of chromosomes

– Allozymes
– Functionally equivalent enzymes

Structural Redundancy
 Functionally-unnecessary structure

– e.g. Redundant amino acids in proteins

Structural Redundancy
 E.g. Non-coding DNA

– Segregates genes during crossover
– Allows exon shuffling, Gilbert 1978
– Space for functional redundancy
– Supports mobile elements

A

C

OUTB

Weak Linkage
 Strong linkage: Weak linkage:

– Strongly linked systems are fragile to change
– Weak linkage allows gradual change

AND

A

C

OUTB

Weak Linkage
 Examples:

– Transcription regulation

– Neural networks

– Signalling pathways

– Protein folding

– Binding/active sites

Protein Evolution
 Three axis of evolution

– Duplication and divergence
– Shape change via substitutions
– Changes in folding

 Mutation buffering
– Proteins can undergo many mutations with little

or no functional change
– Introduces new evolutionary paths

Neutral Evolution
 Exploration of neutral variants

– Populations drift within neutral networks until
they find an access point to a higher fitness
network

 Examples:
– RNA Folding
– Protein folding

Biological Evolvability
 De-constraint

– Impact of change is contained
– Allows parts of a system to evolve separately
– Components can evolve gradually

 Adaptability
– Exploration without commitment
– High-level changes are possible

Evolvability

Biological Evolvability

Phenotypic stability +
Genetic malleability

Compartmentalisation +
Redundancy +

Multiple weak interactions

Evolutionary Computation
 But what about me..?

Pleiotropy
 Modular decomposition in GP

– Identify modules and allow reuse
– MA [Angeline ‘94], ARL [Rosca & Ballard ‘96]

 Implicit reuse
– Graph-based representations in GP
– Trade-off can be evolved

Redundancy
 Structural redundancy

– ‘Introns’ in GA and GP solutions

 Coding redundancy
– Many-to-one mappings

 Functional redundancy
– Redundant solution components

NOT

AND

IN2IN1

AND

IN3

OR

TRUE

OR

NOT

IN2

OR

NOT

IN1

IN2

AND

IN1

OR

IN3

OR

GA Introns
 E.g. Wu and Lindsay, 1996:

0 1 0 0 1 1

0 1 1 0 0

P1 P2 P3

0 1 1 1 0 0 1 1 1 1 1 1

P2

0 0 0 0 1 0 1 0 1

P3 P1

start num val

1

GP Introns

NOT

AND

IN2IN1

AND

IN3

OR

TRUE

OR

NOT

IN2

OR

NOT

IN1

IN1

XOR

IN1

OR

IN3

OR Effective code
Semantic intron
Syntactic intron

Coding Redundancy
 Ebner et al., 2001

– Highly neutral mappings are better

Genotype

Phenotype

Random
Boolean
Network

Coding Redundancy
 Knowles and Watson, 2002

– RBN mappings impair performance
– Time is wasted exploring neutral networks

 Rothlauf and Goldberg, 2002
– Complex mappings have poor ‘locality’
– Offspring are unlikely to resemble parents

Coding Redundancy
 Barreau, 2002

0 111 1 101111H

0 110 1 001110G

0 101 1 111101F

0 100 1 100100E

0 011 1 000011D

0 010 1 010010C

0 001 1 011001B

0 000 1 110000A

Redundant codeNon-redundant codeSymbol

Coding Redundancy
 Barreau, 2002

0 111 1 101111H

0 110 1 001110G

0 101 1 111101F

0 100 1 100100E

0 011 1 000011D

0 010 1 010010C

0 001 1 011001B

0 000 1 110000A

Redundant codeNon-redundant codeSymbol

Coding Redundancy
 Barreau, 2002

– High correlation between removal of local
optima and performance gain

– Too much neutrality reduces performance

0 111 1 101111H

0 110 1 001110G

0 101 1 111101F

0 100 1 100100E

0 011 1 100011D

0 010 1 010010C

0 001 1 011001B

0 000 1 110000A

Redundant codeNon-redundant codeSymbol

Functional Redundancy
 Haynes, 1996

– Duplicated coding sub-trees
– More duplication, faster evolution
– Replace syntatic introns with coding regions?

Polyploidy
 Multi-chromosome GA, e.g. Goldberg 1989

– Effective for dynamic fitness functions
– Provides temporal memory - better than mutation
– Benefits for up to 9 chromosomes [Collingwood 1996]

 Structured GA, Dasgupta 1992
– Complex evolved regulation hierarchies
– Effective on dynamic and stationary functions

 Multi-chromosome GP, Cavill 2005
– Redundancy improves performance

Implicit Redundancy

A

B

C

C’

S

 E.g. Cartesian GP, Miller 2000

Implicit Redundancy
 Vassilev and Miller, 2000

– Neutral mutations improve evolution

 Lones and Tyrrell, 2003
– Non-coding components improve evolution

 Oltean and Dumitrescu, 2002
– Expressed the non-expressed bits
– Performed well on standard GP problems

Weak Linkage
 Volkert and Conrad, 1998

– Evolved non-uniform CAs
– With and without weak linkage

 Weak linkage beneficial to…
– Exploratory scope
– Performance of solutions
– Tolerance to mutation

Evolvability
 Concepts are not easily applied

– Existing representations are inflexible
– Strong linkage, no redundancy…

 Possible solutions:
– Genotype to phenotype mappings
– Adopt novel representations

Implicit Context

OR

IN1 AND

NOT

IN2 IN3

Implicit Context

OR

IN1 AND

NOT

IN2 IN3

OR

IN1 AND

NOT

IN2 IN3

Implicit Context

OR

IN1 AND

NOT

IN2 IN3

OR

IN1 AND

NOT

IN2 IN3

OR IN1ANDNOT IN2 IN3

Implicit Context

OR

IN1 AND

NOT

IN2 IN3

OR

IN1 AND

NOT

IN2 IN3

OR IN1ANDNOT IN2 IN3

OR IN1ANDNOT IN2 IN3

Behavioural
context space

Implicit Context
 Variation filtering

– Secondary selection through self-organisation

Representation

Program

Representation’

Program’

Variation operators

Preserved context

Tendency to preserve existing
output behaviour

Addition, removal and
modification of components

Implicit Context

0%

10%

20%

30%

40%

50%

60%

0 20 40 60 80 100

Time (generations)

F
it
te

s
t
c
h
ild

 (
%

 e
v
e
n
ts

)

recombination mutation

Without implicit context

0%

10%

20%

30%

40%

50%

60%

0 20 40 60 80 100

Time (generations)

F
it
te

s
t
c
h
ild

 (
%

 e
v
e
n
ts

)

With implicit context

Conclusions
 Biological systems are evolvable!

– Lots of decoupling

 Many other systems are not
– Not designed to evolve, so why should they?
– Can be made evolvable, to an extent…

 Evolvability is the missing link!

Conclusions
 Is there more to life than the variation-

selection paradigm?
– No
– and Yes

