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Evolutionary Computation

– Population of random solutions
– Selection removes relatively poor solutions
– Reproduction generates the next generation
– Repeat until solved

selection breeding

evaluation



Evolutionary Computation
 Has been used to evolve many things…

– Neural networks
– Robotic controllers
– Bio-sequence motifs
– Electrical circuits
– Quantum circuits
– Aircraft wings
– Beer brewing process



Evolutionary Computation
 Is a heuristic search algorithm

– assumes that better solutions can be found by
making random changes to or recombining
existing solutions

 Michael Conrad
– Programs can’t be evolved because mutation

would lead to malfunction (…or something to
this effect)

 Genetic programming…!?



Genetic Programming
 has a few problems…

– Scalability
– Program size bloat
– Sub-tree crossover

 …an operator problem?
 …or a representation problem?



Evolvability
 A typical evolutionary computation run:

Fitness

Time (hours/days)



Evolvability
 Altenberg, 1994

– “the ability of a population to produce variants fitter
than any yet existing”

 Kirschner and Gerhart, 1998
– “the capacity to generate heritable selectable

phenotypic variation”

 An evolvable system…
– is organised in such a way that change is more likely

to lead to adaptation than if it were organised
otherwise



Evolution of Evolvability
 In biology?

Fitness

Time (billions of years)



Evolvability
 Michael Conrad, 1990

– the sources of biological evolvability:

     Compartmentalization

     Redundancy

     Multiple weak interactions



Compartmentalisation
 Split a system into compartments

– Many interactions within a compartment
– Few interactions between compartments



Compartmentalisation
 Examples:

– Genetically independent pathways
– Metabolic pathways can evolve separately

– Embryonic fields
– Developmental pathways can evolve separately

– Epistatic clustering
– Improved horizontal gene transfer and crossover



Pleiotropy
 Genes are sometimes expressed in
 more than one biological context

– Can lead to co-adaptation

– Increased variational potential out-weighing
interference between sub-systems?

– A trade-off!



Redundancy
 Functional redundancy

– Redundant copies of functional components

 Structural redundancy
– Redundant structure within components

 Weak linkage
– Redundant connections between components



Functional Redundancy
 A simple recipe:

– Make two copies of a component
– Evolve one of them
– Keep the other as a backup

 Evolution by gene duplication, Ohno 1970
– Gene duplication and divergence is a major

component of molecular evolution



Functional Redundancy
 Examples:

– Gene families and pseudo-genes
– Redundant copies of genes

– Polyploidy
– Redundant copies of chromosomes

– Allozymes
– Functionally equivalent enzymes



Structural Redundancy
 Functionally-unnecessary structure

– e.g. Redundant amino acids in proteins



Structural Redundancy
 E.g. Non-coding DNA

– Segregates genes during crossover
– Allows exon shuffling, Gilbert 1978
– Space for functional redundancy
– Supports mobile elements
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 Strong linkage:           Weak linkage:

– Strongly linked systems are fragile to change
– Weak linkage allows gradual change
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Weak Linkage
 Examples:

– Transcription regulation

– Neural networks

– Signalling pathways

– Protein folding

– Binding/active sites



Protein Evolution
 Three axis of evolution

– Duplication and divergence
– Shape change via substitutions
– Changes in folding

 Mutation buffering
– Proteins can undergo many mutations with little

or no functional change
– Introduces new evolutionary paths



Neutral Evolution
 Exploration of neutral variants

– Populations drift within neutral networks until
they find an access point to a higher fitness
network

 Examples:
– RNA Folding
– Protein folding



Biological Evolvability
 De-constraint

– Impact of change is contained
– Allows parts of a system to evolve separately
– Components can evolve gradually

 Adaptability
– Exploration without commitment
– High-level changes are possible



Evolvability

Biological Evolvability

Phenotypic stability +
Genetic malleability

Compartmentalisation +
Redundancy +

Multiple weak interactions



Evolutionary Computation
 But what about me..?



Pleiotropy
 Modular decomposition in GP

– Identify modules and allow reuse
– MA [Angeline ‘94], ARL [Rosca & Ballard ‘96]

 Implicit reuse
– Graph-based representations in GP
– Trade-off can be evolved



Redundancy
 Structural redundancy

– ‘Introns’ in GA and GP solutions

 Coding redundancy
– Many-to-one mappings

 Functional redundancy
– Redundant solution components
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GA Introns
 E.g. Wu and Lindsay, 1996:
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GP Introns
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Coding Redundancy
 Ebner et al., 2001

– Highly neutral mappings are better

Genotype

Phenotype

Random
Boolean
Network



Coding Redundancy
 Knowles and Watson, 2002

– RBN mappings impair performance
– Time is wasted exploring neutral networks

 Rothlauf and Goldberg, 2002
– Complex mappings have poor ‘locality’
– Offspring are unlikely to resemble parents



Coding Redundancy
 Barreau, 2002

0 111        1 101111H

0 110        1 001110G

0 101        1 111101F

0 100        1 100100E

0 011        1 000011D

0 010        1 010010C

0 001        1 011001B

0 000        1 110000A

Redundant codeNon-redundant codeSymbol
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Coding Redundancy
 Barreau, 2002

– High correlation between removal of local
optima and performance gain

– Too much neutrality reduces performance
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Functional Redundancy
 Haynes, 1996

– Duplicated coding sub-trees
– More duplication, faster evolution
– Replace syntatic introns with coding regions?



Polyploidy
 Multi-chromosome GA, e.g. Goldberg 1989

– Effective for dynamic fitness functions
– Provides temporal memory - better than mutation
– Benefits for up to 9 chromosomes [Collingwood 1996]

 Structured GA, Dasgupta 1992
– Complex evolved regulation hierarchies
– Effective on dynamic and stationary functions

 Multi-chromosome GP, Cavill 2005
– Redundancy improves performance



Implicit Redundancy
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 E.g. Cartesian GP, Miller 2000



Implicit Redundancy
 Vassilev and Miller, 2000

– Neutral mutations improve evolution

 Lones and Tyrrell, 2003
– Non-coding components improve evolution

 Oltean and Dumitrescu, 2002
– Expressed the non-expressed bits
– Performed well on standard GP problems



Weak Linkage
 Volkert and Conrad, 1998

– Evolved non-uniform CAs
– With and without weak linkage

 Weak linkage beneficial to…
– Exploratory scope
– Performance of solutions
– Tolerance to mutation



Evolvability
 Concepts are not easily applied

– Existing representations are inflexible
– Strong linkage, no redundancy…

 Possible solutions:
– Genotype to phenotype mappings
– Adopt novel representations
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Implicit Context
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Implicit Context
 Variation filtering

– Secondary selection through self-organisation

Representation

Program

Representation’

Program’

Variation operators

Preserved context

Tendency to preserve existing
output behaviour

Addition, removal and
modification of components



Implicit Context
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Conclusions
 Biological systems are evolvable!

– Lots of decoupling

 Many other systems are not
– Not designed to evolve, so why should they?
– Can be made evolvable, to an extent…

 Evolvability is the missing link!



Conclusions
 Is there more to life than the variation-

selection paradigm?
– No
– and Yes


