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Motivation

Follows on from Susan Stepney’s talk two weeks ago on “Material 
Computation”

– as I understood it, this was a plea to choose computation tasks appropriate to 
the properties of the material substrate used for unconventional computation

– rather than to “force” the substrate to conform to the “classical” logic-based 
computation paradigm

Andy Tyrrell also suggested that silicon might be such a material

In any case, we still need a fairly general paradigm to describe the 
computation that a given material can perform

– even if it is not the classical paradigm
– otherwise our system may only be able to do one task

Accordingly I’d like to describe a paradigm that I believe is sufficiently 
general

– and which can be neatly implemented by exploiting the properties of the PN 
junction in silicon

None of this is particularly new!
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Belief Propagation

a.k.a message passing, the sum-product algorithm

It can be regarded as a general method for statistical inference

We can use it to find the probabilities of a set of dependent (discrete-
valued) variables, 

– given some probabilities
– and functions describing their relationship

Allows a potentially very complicated problem to be decomposed into a set 
of, very simple, interlinked problems which can be solved in a distributed 
fashion

Will begin with a very simple, completely abstract example
– then proceed to some more concrete application examples
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Example

Function values f1, f2, f3, give probabilities of x1, x2, x3

Function f4 gives a constraint on the values:
– if x1 and x2 are the same, then x3 must be zero
– if different, x3 must be one
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Factor graph

We can conveniently describe the relationship between these variables by 
means of a simple graph, 

known as a factor graph: 

This also defines how the
belief propagation 
algorithm operates
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Belief propagation

The principle of belief propagation is 
that each node passes messages based 
on its knowledge of the variables 
along the edges of the factor graph

Messages start at “leaf” nodes (nodes 
with only one branch connecting to 
them)

Other nodes forward messages on the 
remaining connecting branch as soon 
as they have received messages on all 
the other branches

Where a node has n branches, and it 
receives messages on all of them, it 
then sends a message on each, about 
the relevant variable, computed from 
the other n-1 messages
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Calculating messages

“Leaf” nodes: send the values of the corresponding function 
(i.e. the probabilities)
– e.g. f1 sends P(x1=‘1’) = P1 = 0.1

Variable nodes: in this case just forward the message received 
on the incoming branch
– if there is more than one incoming branch, forward the product 

of the messages on them

Function nodes (other than leaves): on each branch send the 
probability of each variable calculated given the probabilities 
of the other variables incoming on the other branches
– e.g. 

x1

f4

f1

P1 = 0.1

P1 = 0.1

P1 = 0.1

P2 = 0.9 P3 = 0.82
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Example: stage 1
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Example: stage 2
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Example: stage 3
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12

Termination

x2 x3

x1

f4

f2 f3

f1

P1=0.82

P2=0.18 P3=0.82

We can then read off the marginal probability distributions of x1, x2 and x3:
– P(x1 = 1) = 0.82; P(x2 = 1) = 0.18; 

P(x3 = 1) = 0.82; 
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Log probabilities

In general the forwarding rule at factor nodes involves the sum and product 
of probabilities 
– hence the name sum-product algorithm

However products are relatively complex to calculate
– also probabilities typically require a large precision to represent small 

probabilities
– hence it is convenient to use log probability in the messages:

Li = log(Pi)

This means that products become sums:

However sums become log of sum of exponentials:
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Error correction decoding

This is the application I know about!

Here the variables are data and code bits

The constraints are set by the code
– in that only certain combinations of code bits (i.e. certain codewords) are 

permissible

The task of the decoder is to find the most likely data, given a received 
codeword
– which might contain errors
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The example

The example is a particularly simple code, defined by f4:
– this constraint means that there is 

always an even number of ‘1’s 
among the variables x1, x2 and x3

– i.e. this is an even parity code, 
in which x3 is the parity check on the 
data bits x1, x2

Functions f1, f2 and f3 assume that:
– the received word is 010
– the channel has an error probability of 0.1

The result of the belief propagation algorithm (P1 = 0.18, P2 = 0.82) says 
that the most likely data bits are 0, 1 (not surprisingly)
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More complicated codes

Real error control codes used in modern communication systems (e.g. 
turbo-codes and LDPC codes used in 3G, WiFi, digital broadcast) are much 
larger
– e.g. may have 10 000 code bits per codeword
– ‘brute force’ decoding algorithms (e.g. exhaustive search) tend to have 

complexity exponential on the code length

However they can still be described in terms of a (large) set of parity 
constraints (like f4), which each involve only a few bits

Belief propagation over the factor graph then provides a solution in feasible 
complexity

Note however that there may be ‘loops’ in the graph
– requires iterative version of belief propagation
– not guaranteed to converge
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Other applications

Variables could have other significance:
– Hypotheses (true/false)
– Entities in a recognition problem (from a restricted set)

• e.g. phonemes/phones
• objects in a picture
• concepts in natural language comprehension

– States of a system
• e.g. represented by a hidden Markov model

Constraints can be generalised
– e.g. to joint probability distributions

Fundamentally a probabilistic technique
– good at coping with uncertainty
– also fundamentally about distributed processing

May be a model for operation of some biological processes, or other 
complex systems

Note that concept initially came from AI
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Implementing log-sum-exp

We have proposed replacing probabilities with logs of probabilities
– converts products to sums
– converts sums to “log-sum-exp”:

This requires exponential conversion: expensive in conventional digital 
computation

However in analogue, we can exploit the characteristics of a silicon PN 
junction:
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More practically

In practice it is better to use a (bipolar) transistor
– the same relationship applies to the collector current versus base-emitter 

voltage characteristic
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Log conversion and sum

Log conversion can be 
implemented using the 
exponential converter within 
the feedback loop of an 
operational amplifier:

and summation with a 
simple op. amp. summer:
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Complexity

Note that an operational amplifier contains in the same order of the number 
of transistors as a logic gate

also that while a digital implementation of the sum-product operation might 
require at least 8 bit precision, this analogue implementation uses only one 
signal

The number of sum terms in a sum-product operation in a factor node 
involving n binary variables is (in general) 2n-1

– and the number of operations is n
– hence total number of terms is n 2n-1

For small n this is manageable
– but it is clearly important to avoid functions of too many variables!
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Conclusions

If we are to perform computation tasks appropriate to the properties of the 
material substrate we are using, we need a fairly general-purpose paradigm 
to define that computation

The purpose of this talk is to describe such a paradigm: belief propagation
– which matches well to the properties of the PN junction in silicon

Belief propagation (a.k.a. message passing, the sum-product algorithm) is a 
method for general statistical inference

– can find the marginal probabilities of a set of linked variables given some 
probabilities and a set of simple functions describing their relationship

– allows a distributed solution

Have described a simple example
– plus applications in error correction decoding
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Conclusions (cont)

Potential applications in various recognition problems, in deducing states of 
an unknown system, inference about hypotheses

Fundamentally a distributed processing technique, and fundamentally about 
coping with uncertainty

– may be a model for operation of some biological processes, or other complex 
systems

If probabilities are represented logarithmically:
– easier to handle the range of probabilities of interest
– products become sums
– however sums become ‘log-sum-exp’

However the I-V characteristic of the PN junction in silicon provides a very 
simple way to implement the exponentiation
– other analogue functions (sum, log. conversion) can also be implemented 

simply in a similar way
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