
1

Unconventional computing paradigms
based on belief propagation

Alister Burr

Communications Research Group,
Dept. of Electronics
University of York

alister@ohm.york.ac.uk

2

Motivation

Follows on from Susan Stepney’s talk two weeks ago on “Material
Computation”

– as I understood it, this was a plea to choose computation tasks appropriate to
the properties of the material substrate used for unconventional computation

– rather than to “force” the substrate to conform to the “classical” logic-based
computation paradigm

Andy Tyrrell also suggested that silicon might be such a material

In any case, we still need a fairly general paradigm to describe the
computation that a given material can perform

– even if it is not the classical paradigm
– otherwise our system may only be able to do one task

Accordingly I’d like to describe a paradigm that I believe is sufficiently
general

– and which can be neatly implemented by exploiting the properties of the PN
junction in silicon

None of this is particularly new!

3

Outline

Motivation

Introduction to “belief propagation”

Applications of belief propagation

Implementation in silico

Conclusions

Bibliography

4

Belief Propagation

a.k.a message passing, the sum-product algorithm

It can be regarded as a general method for statistical inference

We can use it to find the probabilities of a set of dependent (discrete-
valued) variables,

– given some probabilities
– and functions describing their relationship

Allows a potentially very complicated problem to be decomposed into a set
of, very simple, interlinked problems which can be solved in a distributed
fashion

Will begin with a very simple, completely abstract example
– then proceed to some more concrete application examples

5

Example

Function values f1, f2, f3, give probabilities of x1, x2, x3

Function f4 gives a constraint on the values:
– if x1 and x2 are the same, then x3 must be zero
– if different, x3 must be one

() () () () ()

() () ()

()







=≠
==

=





=
=

=








=
=

=
=
=

=

=

otherwise0
0&1
1&1

,,

11.0
09.0

19.0
01.0

11.0
09.0

,,,,

321

321

3214

2

2
33

2

2
22

1

1
11

3214332211321

xxx
xxx

xxxf

x
x

xf
x
x

xf
x
x

xf

xxxfxfxfxfxxxP

6

Factor graph

We can conveniently describe the relationship between these variables by
means of a simple graph,

known as a factor graph:

This also defines how the
belief propagation
algorithm operates

x2 x3

x1

f4

f2 f3

f1

() () () ()3214332211 ,, xxxfxfxfxf

7

Belief propagation

The principle of belief propagation is
that each node passes messages based
on its knowledge of the variables
along the edges of the factor graph

Messages start at “leaf” nodes (nodes
with only one branch connecting to
them)

Other nodes forward messages on the
remaining connecting branch as soon
as they have received messages on all
the other branches

Where a node has n branches, and it
receives messages on all of them, it
then sends a message on each, about
the relevant variable, computed from
the other n-1 messages

8

() () ()()
() ()

() ()∑ ∏
′′ =

′=′′=
=×+×=

−+−=
======

21, 2,1
214

1221

21213

,
82.09.09.01.01.0

11
1&0||0&11

xx i
ii xxPxxf

PPPP
xxxxPxP

Calculating messages

“Leaf” nodes: send the values of the corresponding function
(i.e. the probabilities)
– e.g. f1 sends P(x1=‘1’) = P1 = 0.1

Variable nodes: in this case just forward the message received
on the incoming branch
– if there is more than one incoming branch, forward the product

of the messages on them

Function nodes (other than leaves): on each branch send the
probability of each variable calculated given the probabilities
of the other variables incoming on the other branches
– e.g.

x1

f4

f1

P1 = 0.1

P1 = 0.1

P1 = 0.1

P2 = 0.9 P3 = 0.82

9

Example: stage 1

x2 x3

x1

f4

f2 f3

f1

P1=0.1

P2=0.9 P3=0.1

10

Example: stage 2

x2 x3

x1

f4

f2 f3

f1

P1=0.1

P2=0.9 P3=0.1

11

Example: stage 3

x2 x3

x1

f4

f2 f3

f1

P1=0.82

P2=0.18 P3=0.82

12

Termination

x2 x3

x1

f4

f2 f3

f1

P1=0.82

P2=0.18 P3=0.82

We can then read off the marginal probability distributions of x1, x2 and x3:
– P(x1 = 1) = 0.82; P(x2 = 1) = 0.18;

P(x3 = 1) = 0.82;

13

Log probabilities

In general the forwarding rule at factor nodes involves the sum and product
of probabilities
– hence the name sum-product algorithm

However products are relatively complex to calculate
– also probabilities typically require a large precision to represent small

probabilities
– hence it is convenient to use log probability in the messages:

Li = log(Pi)

This means that products become sums:

However sums become log of sum of exponentials:

∑∏ ⇒
i

i
i

i LP









⇒ ∑∑

i

L

i
i

ieP log

14

Outline

Motivation

Introduction to “belief propagation”

Applications of belief propagation

Implementation in silico

Conclusions

Bibliography

15

Error correction decoding

This is the application I know about!

Here the variables are data and code bits

The constraints are set by the code
– in that only certain combinations of code bits (i.e. certain codewords) are

permissible

The task of the decoder is to find the most likely data, given a received
codeword
– which might contain errors

16

The example

The example is a particularly simple code, defined by f4:
– this constraint means that there is

always an even number of ‘1’s
among the variables x1, x2 and x3

– i.e. this is an even parity code,
in which x3 is the parity check on the
data bits x1, x2

Functions f1, f2 and f3 assume that:
– the received word is 010
– the channel has an error probability of 0.1

The result of the belief propagation algorithm (P1 = 0.18, P2 = 0.82) says
that the most likely data bits are 0, 1 (not surprisingly)

()







=≠
==

=
otherwise0

0&1
1&1

,, 321

321

3214 xxx
xxx

xxxf

17

More complicated codes

Real error control codes used in modern communication systems (e.g.
turbo-codes and LDPC codes used in 3G, WiFi, digital broadcast) are much
larger
– e.g. may have 10 000 code bits per codeword
– ‘brute force’ decoding algorithms (e.g. exhaustive search) tend to have

complexity exponential on the code length

However they can still be described in terms of a (large) set of parity
constraints (like f4), which each involve only a few bits

Belief propagation over the factor graph then provides a solution in feasible
complexity

Note however that there may be ‘loops’ in the graph
– requires iterative version of belief propagation
– not guaranteed to converge

18

Other applications

Variables could have other significance:
– Hypotheses (true/false)
– Entities in a recognition problem (from a restricted set)

• e.g. phonemes/phones
• objects in a picture
• concepts in natural language comprehension

– States of a system
• e.g. represented by a hidden Markov model

Constraints can be generalised
– e.g. to joint probability distributions

Fundamentally a probabilistic technique
– good at coping with uncertainty
– also fundamentally about distributed processing

May be a model for operation of some biological processes, or other
complex systems

Note that concept initially came from AI

19

Outline

Motivation

Introduction to “belief propagation”

Applications of belief propagation

Implementation in silico

Conclusions

Bibliography

20

Implementing log-sum-exp

We have proposed replacing probabilities with logs of probabilities
– converts products to sums
– converts sums to “log-sum-exp”:

This requires exponential conversion: expensive in conventional digital
computation

However in analogue, we can exploit the characteristics of a silicon PN
junction:









⇒ ∑∑

i

L

i
i

ieP log

+

+
+

+

+

+

-

-
-

- -

V

I

I

V

()1−= TVV
S eII

21

More practically

In practice it is better to use a (bipolar) transistor
– the same relationship applies to the collector current versus base-emitter

voltage characteristic

+VCC

-VEE

L1

L2

21 LL ee +

22

Log conversion and sum

Log conversion can be
implemented using the
exponential converter within
the feedback loop of an
operational amplifier:

and summation with a
simple op. amp. summer:

+

-

Le

L

+

-

23

Complexity

Note that an operational amplifier contains in the same order of the number
of transistors as a logic gate

also that while a digital implementation of the sum-product operation might
require at least 8 bit precision, this analogue implementation uses only one
signal

The number of sum terms in a sum-product operation in a factor node
involving n binary variables is (in general) 2n-1

– and the number of operations is n
– hence total number of terms is n 2n-1

For small n this is manageable
– but it is clearly important to avoid functions of too many variables!

24

Conclusions

If we are to perform computation tasks appropriate to the properties of the
material substrate we are using, we need a fairly general-purpose paradigm
to define that computation

The purpose of this talk is to describe such a paradigm: belief propagation
– which matches well to the properties of the PN junction in silicon

Belief propagation (a.k.a. message passing, the sum-product algorithm) is a
method for general statistical inference

– can find the marginal probabilities of a set of linked variables given some
probabilities and a set of simple functions describing their relationship

– allows a distributed solution

Have described a simple example
– plus applications in error correction decoding

25

Conclusions (cont)

Potential applications in various recognition problems, in deducing states of
an unknown system, inference about hypotheses

Fundamentally a distributed processing technique, and fundamentally about
coping with uncertainty

– may be a model for operation of some biological processes, or other complex
systems

If probabilities are represented logarithmically:
– easier to handle the range of probabilities of interest
– products become sums
– however sums become ‘log-sum-exp’

However the I-V characteristic of the PN junction in silicon provides a very
simple way to implement the exponentiation
– other analogue functions (sum, log. conversion) can also be implemented

simply in a similar way

26

Bibliography

Kschischang, F.R, Frey, B.J. and Loeliger, H.-A., "Factor graphs and the
sum-product algorithm," Information Theory, IEEE Transactions on ,
vol.47, no.2, pp.498-519, Feb 2001

McEliece, R.J.; MacKay, D.J.C.; Jung-Fu Cheng, "Turbo decoding as an
instance of Pearl's “belief propagation” algorithm," Selected Areas in
Communications, IEEE Journal on , vol.16, no.2, pp.140-152, Feb 1998

J. Pearl Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

David J. C. MacKay “Information theory, inference and learning
algorithms” Cambridge University Press, 2003

