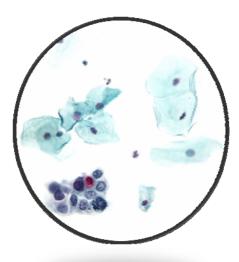
Group Based Classification (GBC) for Medical Diagnostics


A/Prof. Andrew P. Bradley
Biomedical Engineering
The University of Queensland

Overview

- Where does GBC come from?
 - Cervical Cancer Screening
 - Compound Classification
- What is GBC?
- How to implement GBC?
 - Some k-NN based approaches and some results
- Where to apply GBC?
 - Hopefully, a good question

Cervical Cancer Screening

- Based on Pap smear
 - Sample of cervical cells
 - Microscopically analysed
- Aim to detect precancerous changes
- Largest volume cytological test
- One of the "classic" problems in Pattern Recognition

The Challenges

- Image acquisition
 - Automated μscope or slide scanner
- Scene segmentation
 - Detect and segment cell nucleus and cytoplasm
- Features extraction
 - CN ratio, chromatin distribution (nucleus texture), OD etc
- Classification
 - Normal or abnormal

- Giga-pixel image
- ~10,000 cells + debris
- Nucleus small: Ø
 ~20 pixels
- Cell or slide?

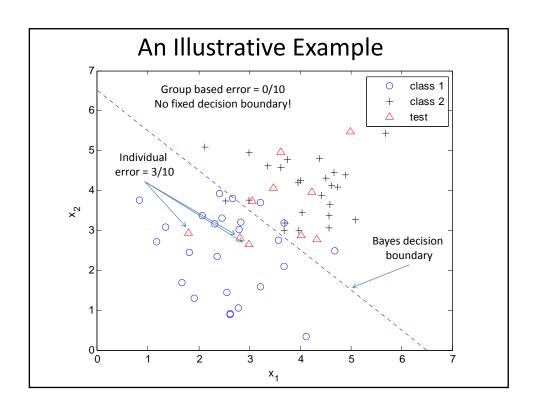
Slide Classification

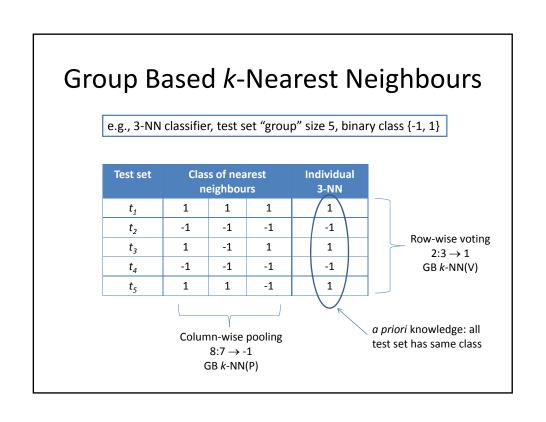
- Rare event (RE)
 - Classify all individual cells
 - Slide ← abnormal, if any abnormal cells
 - Analyse all cells (incl. debris & overlaps)
 - FPR < 0.01% else ~all slides abnormal
- Fixed Proportion
 - As per RE, but two-step: classify cells then
 - Slide ← f(No. abnormal cells)
- Malignancy Associated Changes (MACs)
 - Cancer subtly affects all cells (sub-visual)
 - Analyse a sample of cells (~1000)
 - Summarise cell features (e.g., μ , σ)
 - Slide ← directly based on feature summary statistics
 - Similar to a multi-dimensional Hypothesis test

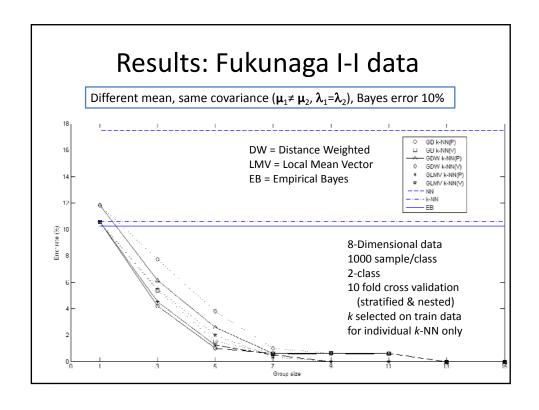
Problems with MACs

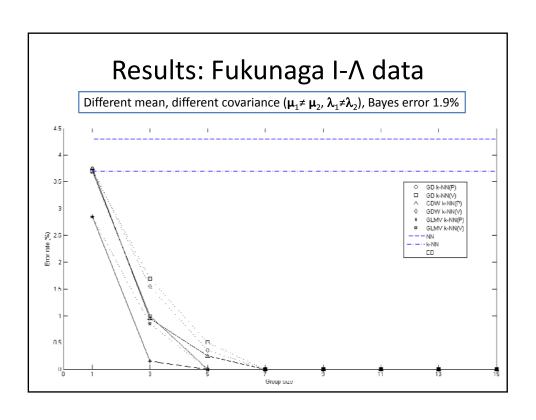
- Curse of dimensionality
 - Given N features and M summary statistics
 - You get N×M feature summaries ⊗
 - Feature space just got a lot more sparse (more data?)
 1000 cells → 1 slide
- Which summary statistic?
 - Mean, variance, skewness, kurtosis...
 - Application dependent (Ugly duckling × 2)
- So, is there a better way?

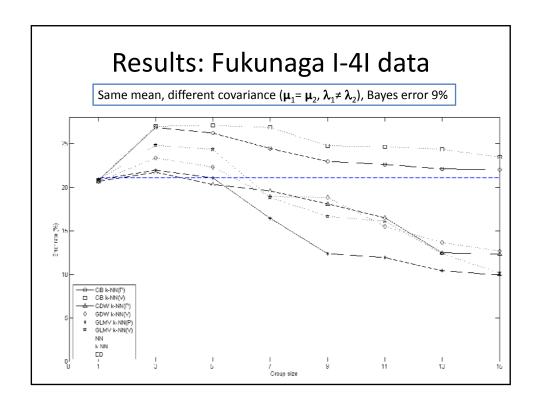
Compound Classification


$$P(\mathbf{c} \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid \mathbf{c})P(\mathbf{c})}{p(\mathbf{X})}$$


- Make N decisions jointly
 - for an *L*-class problem, $\boldsymbol{c} = \{c_l^1, ..., c_l^N\}^t$ and
 - an N sample data set, $\mathbf{X} = \{\mathbf{x}^1, ..., \mathbf{x}^N\}$. i.e., cells on a slide
- Note, this is a non-sequential decision
 - For sequential decisions see Markov models
- However, prohibitive L^N possible class labels for vector, **c** (> 2^{1000} \odot)


Group Based Classification


$$P(c_l \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid c_l)P(c_l)}{p(\mathbf{X})}$$


- Constrain class vector c to have all same label
 - a priori knowledge that all samples belong to the same, but unknown, class
 - Like assumption that all cells are MAC affected
- Only L possible class labels for c₁
 - Hugely simplified Compound Classification ©
- But, does it work? e.g., naïve assumption or
 - Can approach be applied to an arbitrary classifier?

Synthetic Data Summary

- Pooling error is typically < voting error (33:3)
 - Indicates that GBC in 1-step is better than
 - 2-step individual classifier plus voting
- Where classes have different means (I-I, I-Λ)
 - Groups of 3 error rate < (individual) Bayes error
 - Increasing group size, error rate $\rightarrow 0$
- Where classes only differ in variance (I-4I)
 - k-NN not really suited to problem, but
 - Improved by DW and LMV variants
 - Trend of reducing error as group size increases
- But what about real-world data?

Results: Pap Smear Data

- 99 Normal, 40 Abnormal slides (≥ CIN1)
 - 1000 cells per slide, 29 feature vector, MACs (μ , σ)
- Stratified 10 fold cross-validation (test on ~14 slides)
 - Best 3 MACs features (Mahalanobis criterion)
 - k selected on MACs, on training data for k-NN only
 - GBC use raw selected features, test set size 100

Classifier	Accuracy ± STD	AUC ± STD
EB (MACs)	80.950 ±6.293	0.604 ±0.213
k-NN (MACs)	81.264 ±6.132	0.658 ±0.099
GB <i>k</i> -NN (V)	80.659 ±8.194	0.654 ±0.213
GLMV (V)	78.462 ±6.613	0.611 ±0.130
GB <i>k</i> -NN (P)	81.923 ±8.751	0.764 ±0.136
GLMV (P)	79.945 ±8.692	0.693 ±0.220

Pooling > voting Pooling ≈ MACs but biased to MACs

Applications of GBC

- Pathology and cytology
 - Classify slides not cells
- Neurophysiology: evoked responses
 - Classify individual responses not grand average
- Document classification: "Bag-of-words" model
- Others, please...
- Consider the Iris data
 - Sepal length & width, petal length & width → species
 - Group No. leaves/sepals from same plant then → species
 - Group based classification ☺
- So, any application where
 - you can a priori organise your data into groups?
 - Where class unknown, but know group has same class label

Summary

- GBC is inspired by Pap smear screening
 - Not new, just a simplified compound classifier
- Investigated a couple of implementations
 - Variants of k-NN (also hypothesis testing)
 - Promising results on some data sets
 - Lots of possible implementations to try!
- Perhaps of use in other applications?
 - Where you can also group your data

For more details see:

Noor A. Samsudin and Andrew P. Bradley, "Nearest Neighbour Group Based Classification," *Pattern Recognition*, 43 (10), pp 3458-3467, 2010 (DOI: 10.1016/j.patcog.2010.05.010)

Noor A. Samsudin and Andrew P. Bradley, "**Group-based Meta-classification**," *19th International Conference on Pattern Recognition* (ICPR), Tampa Bay, Florida, pp 2256-2259, December 2008 (DOI: 10.1109/ICPR.2008.4761778)

The End

QUESTIONS?