
Growing processor arrays: 
how and why? 



Development in hardware– What?

Mechanisms inspired by the biological 
process of growth (and healing)
Digital logic using FPGAs
The goal is NOT to mimic biology (or help 
biologists) but to solve problems in 
hardware design
The goal is NOT to grow form, but function! 
i.e., design systems that use development 
to execute an application better/more 
efficiently/with non-standard constraints



Development in hardware– Why?

Complex genotype/phenotype mappings
Improves scalability in evolutionary approaches
Defines initial structure in ANNs



Development in hardware– Why?

Complex genotype/phenotype mappings
Improves scalability in evolutionary approaches
Defines initial structure in ANNs

Model growth and structural adaptation
Self-organization
Environmental adaptation



Self-organization

Let us assume 
that we can make 
“cells” appear 
and disappear at 
will in a surface 
of silicon.



Self-organization

We can then 
apply all sorts of 
nice algorithms:

L-Systems



Self-organization

We can then 
apply all sorts of 
nice algorithms:

L-Systems
Gradients



Self-organization

1,1 1,2

2,1

1,3

2,2

3,1

1,4

2,3

3,2

4,1

1,5

2,4

3,3

4,2

2,5

3,4

4,3

3,5

4,4 4,5We can then 
apply all sorts of 
nice algorithms:

L-Systems
Gradients
Coordinates



Environmental adaptation

Self-organization is hard to justify for silicon! 
…unless growth and structural adaptation 
cannot be represented in a genome: they are 
influenced by environmental variables.



Fault tolerance

Faults at fabrication 
are increasing.
Self-organization is 
back!
Online faults are 
increasing
Self-organization is 
back! 

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X

K

K

Similar mechanisms can be used for development and 
for self-repair (stem cells + differentiation!). 
Fault tolerance = environmental adaptation. 

X



Environmental adaptation

Application self-organizes depending on input 
stream – structural adaptation

×+ ÷≠ FFT +

×
IN

DCT

OUT
FFT2 DCT

×+ ÷≠ FFT +

×

DCT

FFT2 DCT



Multi-cellular paradigm

Structural adaptation at 
the organismic, cellular 
and molecular level can:

Increase performance 
through parallelism.
Ensure scalability 
through homogeneity.
Simplify task partitioning 
through specialization.

But unless you’re IBM it’s 
VERY difficult to prove!



Dynamic hardware

But of course it is 
NOT easy to 
make cells appear 
and disappear at 
will in a surface of 
silicon.

1,1 1,2

2,1

1,3

2,2

3,1

1,4

2,3

3,2

4,1

1,5

2,4

3,3

4,2

2,5

3,4

4,3

3,5

4,4 4,5



Development in hardware– Why?

Complex genotype/phenotype mappings
Improves scalability in evolutionary approaches
Defines initial structure in ANNs

Model growth and structural adaptation
Self-organization
Environmental adaptation

Exploit the multi-cellular paradigm
Scalable and adaptive massively parallel systems
Fault tolerance



Engineering challenges

Several key mechanisms of development are 
extremely difficult (if not impossible) to implement 
using silicon-based devices.

FPGAs have made possible the implementation of 
developmental processes in an informational (rather 
than physical) universe.

But…

Several key mechanisms of development are 
extremely difficult (if not impossible) to implement 
using conventional devices and systems.



J

F

Engineering challenges

Self-organization = self-configuration 

≈ self-replication of a partial configuration

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X



Self-replication

Self-replication by construction



Self-replication

Self-replication by self-inspection



Adaptive systems

Unfortunately, that’s where the real problems 
begin!!!
Very practical issues:

Granularity – what is a “cell”?

Can range from a few logic gates to complex 
processors
Two sub-issues appear:

• Overhead – must be “reasonable”
• Efficiency – must be high



Multi-cellular paradigm
Assumptions:
1. Processor-level cells 

can more easily 
justify and “absorb”
the overhead

2. Mechanisms MUST 
span several levels of 
complexity to 
increase efficiency 
and “spread the cost”



Adaptive systems

Unfortunately, that’s where the real problems 
begin!!!
Very practical issues:

Granularity – what is a “cell”?
Design – how to go from an application to a system 

like this? 

How do you design a system that can exploit a 
developmental approach?



Design

How do you design a system where the application 
self-organizes depending on input stream

×+ ÷≠ FFT +

×
IN

DCT

OUT
FFT2 DCT

×+ ÷≠ FFT +

×

DCT

FFT2 DCT



Design choices

The system can (should?) adapt to application at 
several levels: molecule, cell, organism. E.g.:

Molecule: FPGA self-configuration
Cell: Application-specific processing elements
System: Self-organization of the PEs

Choices:
1) Make them universal, losing some bio-inspired design 

properties and falling back on “conventional” parallel 
processing issues

2) Make them specific (structural adaptation) and try to find 
ways to integrate development in the design (avoiding 
hand-design)



Design

Molecules: unlikely to be specific in silicon
Cells: hard, but can be done as application-specific 
processors (e.g. MOVE processors)

Organism: can be done (I assume), but VERY hard 
(hardware/software codesign, parallel processing)



Design

Design environment
PHENOTYPE

LAYER

MAPPING
LAYER

GENOTYPE
LAYER

TOTIPOTENT CELL
ARCHITECTURE

CELL
CONFIGURATION

BITSTREAM

BOARD
CONFIGURATION

BITSTREAM

RESOURCE LIBRARY

TOPOLOGY LIBRARY

SELF-REPAIR LIBRARY

DEVELOPMENT LIBRARY

EVOLUTION LIBRARY

CELL SIZE

EVOLUTIONARY
CONTROLLER

PROGRAMMING

BOARD LAYOUT

SYSTEM SIZE

SELF-TEST LIBRARY

LIBRARY 
DESIGN

SOFTWARE



Adaptive systems

Unfortunately, that’s where the real problems 
begin!!!
Very practical issues:

Granularity – what is a “cell”?
Design – how to go from an application to a system 

like this? 
Execution – how does it run?

How can an array of processors use this kind of 
mechanisms and do so efficiently?



Execution

A cell self-replicates…
what does that MEAN?

1) Create whole array at 
startup (losing some 
differentiation options)

2) Dynamically create/ 
destroy cells at runtime

X

X

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X

F

FF

Can you justify the time required for self-replication?
A (sequential) cell at runtime has a STATE. Do you 
want to replicate that state or the initial state?
For self-repair, do you recover the state? How?



Adaptive systems

Unfortunately, that’s where the real problems 
begin!!!
Very practical issues:

Granularity – what is a “cell”?
Design – how to go from an application to a system 

like this? 
Execution – how does it run?
Connectivity – how do the cells communicate?

How can you set up and preserve a communication 
network through self-reorganization?



X

X

Connectivity

Growth

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X

F

FF



X

X

Connectivity

Growth

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X

F

FF



X

X

Connectivity

Growth and fault tolerance

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X

F

FF

LX

L



Connectivity

The POEtic approach



Connectivity

The POEtic approach

X

X

A B

E F

C

I

D

G

J

M

X

H

K

N

L

O P X

F

FF



Connectivity



Connectivity

So you CAN do it! 

But what is “it”? 
How does a new cell know WHERE to connect?
Fault tolerance might be easier, but what about 
newly created cells?
How do they know the address of another cell? Do 
they need to know?
How do you foresee a sufficient number of I/O ports 
in your cell design?



Adaptive systems

Unfortunately, that’s where the real problems 
begin!!!
Very practical issues:

Granularity – what is a “cell”?
Design – how to go from an application to a system 

like this? 
Execution – how does it run?
Connectivity – how do the cells communicate?

How can you efficiently fit all this in a circuit?



Conclusions


	Growing processor arrays: �how and why? 
	Development in hardware– What?
	Development in hardware– Why?
	Development in hardware– Why?
	Self-organization
	Self-organization
	Self-organization
	Self-organization
	Environmental adaptation
	Fault tolerance
	Environmental adaptation
	Multi-cellular paradigm
	Dynamic hardware
	Development in hardware– Why?
	Engineering challenges
	Engineering challenges
	Self-replication
	Self-replication
	Adaptive systems
	Multi-cellular paradigm
	Adaptive systems
	Design
	Design choices
	Design
	Design
	Adaptive systems
	Execution
	Adaptive systems
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Adaptive systems
	Conclusions

