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Abstract

In recent years metaheuristic search techniques have been applied successfully

to solve many software engineering problems. One area in particular where these

techniques have gained much attention is search based test data generation. Many

techniques have been applied to generate test data for structural, functional as

well as non-functional testing across different levels of abstractions of a software

system. In this thesis we extend current search based approaches to cover stronger

criteria, extend current work on higher level models to include further optimisation

techniques, enhance current approaches to target “difficult” branches, and show

how to apply current approaches to refine specifications generated automatically

by tools such as Daikon.
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Chapter 1

Introduction

1.1 Introduction

Dynamic testing — “the dynamic verification of the behaviour of a program on

a finite set of test cases, suitably selected from the usually infinite executions do-

main, against the expected behaviour” [90] — is used to gain confidence in almost

all developed software. Various static approaches, such as reviews, walkthroughs

and inspections, can be used to gain further confidence but it is generally felt [22]

that only dynamic testing can provide confidence in the correct functioning of the

software in its intended environment.

We cannot perform exhaustive testing because the domain of program inputs is

usually too large and also there are too many possible execution paths. Therefore,

the software is tested using a suitably selected set of test cases. A variety of

coverage criteria have been proposed to assess how effective test sets are likely to

be. Historically, criteria exercising aspects of control flow, such as statement and

branch coverage [136], have been the most common. Further criteria, such as data

flow [154], or more sophisticated criteria such as MC/DC coverage [162] have been

adopted for specific application domains. Many of these criteria are motivated by

general principles (e.g. you cannot have much confidence in the correctness of a

statement without exercising it); others target specific commonly occurring fault

types (e.g. boundary value coverage).

Finding a set of test data to achieve identified coverage criteria is typically a
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CHAPTER 1. INTRODUCTION

labour-intensive activity consuming a good part of the resources of the software

development process. Automation of this process can greatly reduce the cost

of testing and hence the overall cost of the system. Many automated test data

generation techniques have been proposed by researchers. We can broadly classify

these techniques into three categories: random, static and dynamic [128] [52].

Random approaches generate test input vectors with elements randomly cho-

sen from appropriate domains. Input vectors are generated until some identified

criterion has been satisfied. Random testing may be an effective means of gaining

an adequate test set [56] but may simply fail to generate appropriate data in any

reasonable time-frame for more complex software (or more sophisticated criteria)

[46, 150].

With static techniques an enabling condition is typically generated that is sa-

tisfied by test data achieving the identified goal. For example, symbolic execution

[97] can be used to extract an appropriate path traversal condition for an identi-

fied path. Such enabling conditions are solved by constraint solving techniques.

However, despite much research, these approaches do not scale well, and are pro-

blematic for some important code elements, such as loops, arrays and pointers

[117].

Recently Search Based Software Engineering (SBSE) [36, 77] has evolved as

a major research field in the software engineering community. SBSE has been

applied successfully to many software engineering activities ranging from requi-

rements engineering to software maintenance and quality assessment. One major

area where SBSE has seen intense activity is software testing [77]. McMinn [117]

published an extensive survey in 2004. Since then there has been further activity

in the search based software testing field. Active research is underway to improve

the existing search based test data generation techniques and propose novel ap-

proaches to solve the test generation problem. However, despite much research,

there are still limitations that have hampered the wide acceptance of these tech-

niques. Also many areas are under-explored, and there are distinct possibilities

for the successful use of search based approaches.

The work presented in this thesis aims to show that existing search based
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CHAPTER 1. INTRODUCTION

testing techniques can be extended and shows new applications. We cover both

code and higher-level model testing.

1.2 Hypothesis

The work in this dissertation is based on the following hypothesis:

Search based test data generation techniques can be exten-

ded to satisfy criteria at both code and higher levels with

increasing sophistication.

To address the hypothesis, four topics are considered. Figure 1.1 summarises

these.

Figure 1.1: Thesis Hypothesis
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1.3 Contributions

The contributions of this work are:

• Demonstration of a search based test data generation framework to generate

test data for stronger coverage criteria.

• Extension of the existing work of Zhan and Clark [196] on test data gene-

ration of MATLAB Simulink Models.

• Investigation of program stretching—a novel approach to finding hard-to-get

test data.

• Demonstration that search based test data generation techniques can be

used to refine specifications inferred from dynamic trace data.

1.4 Outline of Thesis

The rest of this thesis is structured as follows.

Chapter 2- Background

Chapter 2 provides the background for this work. The chapter starts with a

general introduction to software testing. A discussion of different coverage criteria

at the code as well as the specification level is given. This is followed by a brief

overview of search algorithms that have been proposed to generate input test data.

Finally, a survey of the search based test data generation techniques is provided.

Chapter 3-Structural Testing: Searching for Fine Grained Test Data

This chapter introduces the framework for test data generation for modified condi-

tion decision coverage (MC/DC) and multiple condition coverage (MCC). All the

important elements are presented with a discussion of how techniques are im-

plemented to generate the required test data. This is followed by a discussion

12



CHAPTER 1. INTRODUCTION

of how the parameters for simulated annealing are tuned to conduct the experi-

mental studies. Finally the results of experiments to evaluate the technique are

presented and discussed.

Chapter 4-Application of Genetic Algorithm to Simulink Models

This chapter provides the work conducted to extend the current work of Zhan

and Clark [196] on test data generation of Simulink models using search based

techniques. A brief introduction to Simulink models is given followed by a dis-

cussion of how SBTDG techniques have been used to generate test data for it. A

comparative study between SA and GA is presented.

Chapter 5-Program Stretching

In this chapter a program transformation based approach, ‘program stretching’,

is introduced to generate test data for difficult branches. A survey of ‘testability’

transformation based approaches to overcome some of the limitations of search

based testing is presented. This is followed by a proof of concept demonstration

of how a ‘program stretching’ technique can be used to obtain test-data to cover

‘difficult’ branches (that is difficult for traditional non-state search based test data

generation approaches).

Chapter 6-Strengthening Inferred Specifications

This chapter proposes the application of search based test data generation tech-

niques to the refinement of automatically generated likely invariants and describes

the development and use of a framework to do this.

Chapter 7-Evaluation, Conclusion and Future Work

Chapter 7 evaluates to what extent the hypothesis has been addressed. Conclu-

sions are drawn and directions for the future work are given.

13



Chapter 2

Literature Review

2.1 Software Testing

Software has become an intrinsic part of human life and it is important that it

should perform its intended function. Otherwise it can cause frustration, loss of

resources and even loss of life.

The main activity that attempts to prevent this and verify software quality

and reliability is software testing. Testing is a dynamic activity, as it requires

execution of program on some finite set of input data. Nevertheless there are other

methods such as static analysis and formal proof of correctness. However, only

testing can be used to gain confidence in the correct functioning of the software

in its intended environment. We cannot perform exhaustive testing because the

domain of program inputs is usually too large and there are too many possible

input paths. Therefore, the software is tested against suitably selected test cases.

The main activities in software testing are test case generation, executing

program using these generated test cases and evaluating the results. A test case

is a set of test input data and the expected results. The test data is a set of input

values to the program, which may be generated from the code or usually derived

from program specifications. Program specifications also help in determining the

expected results.

Program execution is the next important step. A test harness is often construc-

ted by the tester to help in initializing global variables, if any, and to execute the
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CHAPTER 2. LITERATURE REVIEW

program with the test input data. The output of the program is then evaluated

and decisions taken accordingly.

There are many techniques for software testing. We can broadly classify them

in to two main categories, which usually complement each other: black box; and

white box testing.

In black box testing techniques, tests are generated from informal or formal

specifications of the software system. Techniques based on informal specifications

include Boundary Value Analysis (BVA), Category Partition (CP), Classification

Tree Method (CTM), Cause-effect graphs, Equivalence Partitioning (EP) and

random testing etc. Model-based testing which includes test case generation from

formal models such as Z, B or VDM specification and graphical models such as

Finite State Machines (FSM) and statecharts, are techniques based on formal

specifications. Recently semi formal specifications such as UML models have also

been used for software testing.

White box techniques exercise elements of the programs on a given set of data

to observe the behaviour of the software. Techniques such as data-flow testing,

domain testing, mutation testing and path testing are some examples in this

category.

As stated earlier, exhaustive testing i.e., using all inputs values for testing, is

usually computationally impractical. Instead we usually select a small subset of

input data. It is important that this subset is good enough to detect many of

the errors. The notion of an adequacy criterion, the subject of next section, is

usually a measure which gives us an insight about the goodness of the data, i.e.,

how thoroughly does it test the software.

An adequacy criterion is decided which is to be satisfied by a test set. Ge-

neration of a test set then follows. Many approaches can be used for test set, or

more specifically, test data generation. These can be classified into two categories:

static; and dynamic.

In static approaches such as symbolic execution, a model of the source code

is formed and tests are generated from it. The code itself is not executed.

Some of the problems experienced by static approaches are overcome by dy-
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namic approaches. Such approaches involve the execution of the actual code

elements. In such techniques, information obtained from such execution is exploi-

ted for test data generation. Heuristic optimization based techniques are among

such approaches where test data generation is modelled as a search problem and

then some heuristic is used which guides the search to find the test data. Section

2.6 provides an overview of these techniques.

In the context of this dissertation, we consider a program P with an input

vector v = v1, v2, ..., vn belonging to an input domain or search space S, where

vi ∈ Svi and S = Sv1 ×Sv2 × ...×Svn . A test case Ti is any v, used to execute the

P for the purpose of testing. A test set T = T1, T2, ..., Tn is a collection of test

cases.

2.2 Adequacy Criteria

When performing testing, two important questions usually confront a software

tester: when should testing be stopped and how do we decide that the test cases

constituting a test set are adequate for achieving the stated objective. The answer

to the first question is given by test adequacy criteria. Whereas the test case se-

lection criteria give an answer to the second. “However, the fundamental concept

underlying both test case selection criteria and test data adequacy criteria is the

same, which is the notion of test adequacy” [199].

Another term associated with testing is test coverage. Software test coverage

is “any metric of completeness with respect to a test selection criterion” [22]. It

is usually measured by calculating how thoroughly a program is exercised by a

given test suite. In other words, coverage can be used to measure the extent to

which an adequacy criterion is satisfied. Therefore coverage criteria are a type

of adequacy criterion that specify the percentage of requirements that must be

covered [122]. However most of the time the two terms i.e., coverage criteria and

adequacy criteria are used synonymously and we will consider it this way, unless

otherwise specified.

This section discusses the most commonly used software testing coverage cri-
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teria found in the literature. A brief taxonomy of coverage criteria is given, which

is followed by an overview of these criteria.

Coverage measures may be classified in to two main categories: structure-

based; and fault-based coverage criteria. A structure-based coverage criterion

requires the execution of particular components of a program, whilst fault-based

criteria are based on the measurement of ability of test suites designed to demons-

trate the absence of a set of pre-specified faults in the software.

2.3 Structure Based Coverage Criteria

These criteria are in turn are divided into program-based and specification-based

coverage criteria. We begin with program based criteria.

These specify testing requirements in terms of the coverage of a particular set

of elements in the structure of the program and include control-flow based and

data-flow based criteria.

2.3.1 Control Flow Based Testing

The simplest control-flow criteria are known from the 1960s and 70s. The des-

criptions that follow are based on the well-known book by Myers [136].

Statement Coverage (SC)

Every reachable statement Sr in a program P has been executed at least once.

It is possible that some number Si of statements lie on infeasible paths, in which

case they cannot be executed. Thus statement coverage can be defined as

SC = Sc/(St−Si), where Sc is the number of statements covered and St is the

total number of statements in P . Statement coverage is achieved when SC = 1.

Decision Coverage (DC)

DC can be stated as: every reachable decision Dr in P has taken all the possible

outcomes at least once. DC can be defined as DC = Dc/(Dt −Di), where Dc is
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the total number of decisions covered, Dt is the total number of decisions and Di

is the number of unreachable decisions.

DC is popularly known as branch coverage, and may be stated as coverage of

all reachable edges or branches in the flow graph.

Condition Coverage (CC)

This criterion can be stated as: every statement in the program has been executed

at least once, and every condition in each reachable decision has taken all possible

outcomes at least once. Thus CC can be defined as

CC = Cc/(Ct − Ci), where Cc is the number of conditions covered, Ct is the

total number of conditions and Ci is the number of unreachable conditions.

Decision/Condition Coverage (D/CC)

Every statement in the program has been executed at least once, every decision

in the program has taken all possible outcomes at least once, and every condition

in each decision has taken all possible outcomes at least once. It can be defined

as (D/CC = (Dc + Cc)/((Dt −Di) + (Ct − Ci)) [113]

Multiple Condition Coverage (MCC)

Every statement in the program has been executed at least once, and all possible

combinations Cp of condition outcomes in each decision D have been invoked at

least once. This criterion is also called as Extended Branch Coverage Criterion

[199].

In the control flow based coverage criteria subsumption hierarchy as shown in

Figure 2.1 [32], multiple condition coverage is the strongest criterion. It requires

test cases that cover all the conditions in a decision. For example, consider the

truth table in Table 2.1. For a decision containing two conditions as C1 ∧ C2, we

need test cases to exercise all ‘true’ and ‘false’ combination of C1 and C2 i.e., TT ,

TF , FT , and FF . In general, if a decision D contains n conditions C, we require

atleast 2n test cases to satisfy multiple condition coverage.
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Figure 2.1: Control Flow Subsumption Hierarchy

Test Case No C1 ∧ C2 outcome
1 TT T
2 TF F
3 FT F
4 FF F

Table 2.1: Required combination of test case sequences for multiple condition
coverage.

Modified Condition/Decision Coverage (MC/DC)

The number of tests required to satisfy multiple decision coverage increases expo-

nentially with the number of conditions, it can become very expensive for decisions

with large numbers of conditions. There may also be infeasible combinations of

conditions. For example consider the 2nd branch in Figure A, appendix A. With

given conditions, the combinations TTT , TTF , TFT and FTT are all infeasible.

Filtering out such combinations further increases the cost of this criterion and

hence it may not be practical to apply it for large and complex systems.

MC/DC on the other hand is a more practical criterion and hence usually a

testing requirement for critical systems such as those developed in the avionics
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Test case No C1 ∧ C2 outcome
1 TT T
2 TF F
3 FT F

Table 2.2: Required combination of test case sequences for MC/DC.

domain [162]. It is satisfied when (i) every condition in a decision in a program

has taken all possible outcomes at least once, and (ii) each condition has been

shown to independently affect the decision’s outcome. A condition is shown to

independently affect a decision’s outcome by varying just that condition while

holding fixed all other possible conditions. Consider Table 2.2. Requirement (i)

is satisfied by test cases 2 and 3 for condition C1 and by test cases 1 and 2 for

condition C2. Requirement (ii) is satisfied by test cases 1 and 2 for C1 and by 1

and 3 for C2. We can satisfy MC/DC for a decision with a minimal set of n + 1

test cases, where n is the number of conditions in the decision. Considering the

second branch in Figure A in Appendix A, the minimal set also eliminated the

infeasible combinations as were incurred in multiple condition coverage. MC/DC

coverage has gained significant exposure in real world software testing since it is a

mandatory requirement of testing of software of high integrity in the civil avionics

sector [162].

Another criterion, which is somewhat related to the above and based on control

flow is path coverage.

Path Coverage

Path coverage usually covers the requirement of checking of all the combinations

of branches. The path coverage criterion is very strong but may not be practical

as there may be infinite number of paths. But in practice a finite number of

paths, which must include the most important sub paths, are chosen based on

some criteria [149, 116].

Along with the above-mentioned criteria, we also find many other criteria like

relational coverage [112] etc. A long list can be found in [95]. However, most of

these have little value on the grounds and are subsumed by stronger and more
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widely accepted criteria.

2.3.2 Data Flow Based Criteria

In data flow based coverage criteria it is attempted to examine the association

between the definition of a variable and its uses in the program. The exercising of

a definition-use association can be viewed as requiring traversal of a selected sub

path, which originates at the definition, terminates at the use, and is responsible

for establishing the definition-use association. The following terminology based

on each variable occurrence is necessary for understanding these criteria:

Variable Definitions

When a variable is assigned to or contained in an input statement that variable is

said to undergo definition. For example, a statement such as x=10 in a program

is a definition of a variable x.

Def-Use

An occurrence of x in a statement like y = x + 1 is termed a use of x. A use is

either a c − use or a p − use. The definition and use occurrences of a variable

are termed as def − use pairs.

c-use or computation-use

A computational− use occur when the variable forms part of the right hand side

of an assignment statement or is used as an index of an array or contained in an

output statement. For example, y = x+ 1 gives rise to a computational− use of

x.

p-use or predicate use

A predicate use occur when a variable appears in a predicate in a conditional

branch statement, e.g., the use of x in the boolean expression if(x <= n).
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Definition-clear path

A path (i, n1, n2, ..., nm, j) is a definition− clear path, with respect to a variable

x, from the exit of i to entry of j if n1 through nm do not contain a definition

of variable x.

Loop-free path

A path is loop− free if all visited nodes are distinct.

Du-Path

A path (i, n1, n2, ..., nm, j), is a du − path with respect to a variable x if i has a

definition of x, and either j has a c − use of x and the path ((i, n1, n2, ..., nm,j)

is def − clear path with respect to x or (nm, j) has a p− use of x and the path

(i, n1, n2, ..., nm) is both def − clear path and loop− free path with respect to x.

Following are the data flow based coverage criteria proposed by Rapps and

Weyuker[154]:

All-Def Criterion

The all − def or all − definitions criterion requires that an adequate test set

should cover, at least once, all definition occurrences of a variable x in the sense

that, for each definition occurrence, the testing paths should cover a path through

which the definition reaches a use of the definition.

All-uses Criterion

The all−uses criterion requires that all of the uses of a variable x, which includes

the def − use as well p and c− use should be exercised by testing at least once.

This criterion subsumes the all − def criterion.

Similarly based on the use occurrences, i.e., either the predicate or computa-

tional, the following criteria were proposed by Rapps and Weyuker[154]
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p-uses

requires only p− uses of the variable x be exercised.

c-uses

requires only c− uses of the variable x be exercised.

All c-uses/some p-uses criterion

requires that all of the c−uses and at least one p−use of a variable x be exercised.

All p-uses/some c-uses criterion

requires that all of the p−uses and at least one c−use of a variable x be exercised.

All-Du-Paths Criterion

An enhancement to the above criteria has been given by Frankle et al. [63] and

Clarke et al. [37] in the form of All − DU − Paths Criterion, which requires

that every du−path from each variable definition to every use of the definition

be executed at least once. It subsumes the all − uses criterion. However, all the

above criteria have a number of limitations [199] that affect their usage for testing.

These criteria are extended to overcome such limitations, like in the form of

intraprocedural (unit testing) and interprocedural testing techniques (integration

testing) [71].

2.4 Specification Based Coverage Criteria

A specification specifies the properties, i.e., the behaviour, that the software must

satisfy. Since the main purpose of testing is to ensure that the software performs

what it is suppose to do and reveal any abnormal behaviour, specifications play

an important role in software testing. There are two roles that a specification

can play in software testing [199]: to act as a platform for the test oracle [160];

and to act as a base for test case selection and hence measure test adequacy. The
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advantage [13, 10] of using specification is that it allows test creation earlier in

the software development process and helps to catch the errors before they are

too expensive to correct. Test case generation in the early stages may also reveal

inconsistencies and ambiguities in the specification. Similarly, implementation

independent essential test data, output checking and conformance testing are all

based on specification.

There are many approaches to specification based testing [144], i.e., For-

mal Specification based approaches, Algebraic approaches and State-based ap-

proaches. There are also semi-formal specifications such as UML. These have

also been used in testing. In the following section Formal Specification based,

Semi Formal Specification based and State-based coverage approaches are briefly

surveyed.

2.4.1 Formal Specification Based Approaches

Formal specification based approaches use mathematical languages such as B, Z

and VDM for the generation of test data. There is considerable literature on

automatic and semi-automatic test case generation from formal specifications.

See for example [169], [41], [53], [30], [88], [104], [85]. The method developed by

Dick and Faivre [53] has gained significant popularity. This is based on reducing

the specification of operations to Disjunctive Normal Form (DNF). The DNF is

converted into Finite State Machines (FSM), which is used for deriving test suites.

The original method was applied to VDM, but has also been applied to Z [88, 172]

and to B [179].

Since FSMs or statecharts are represented as directed graphs, the program

based coverage criteria can be applied in order to measure the coverage of the

testing suites based on formal specification languages [199].

Ammann and Offutt [17] applied a form of category partition method to the

Z specification to derive a combination of choices to be tested. They proposed

three coverage criteria, which are given below.
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All Combination Criterion

This criterion requires that software be tested on all combinations of choices.

Since there is very large number of possible combinations of choices, this criterion

is not efficient.

Each-choice-used Criterion

This criterion requires that the test set T incorporate each choice at least once.

However, this criterion was also considered ineffective as it can lead to undesirable

test sets because we may be able to select ‘unused’ choices, which are never used

in the normal mode of operation of a system.

Base-Choice-Coverage Criterion

Ammann and Offutt [17] advocated this criterion as the minimum adequate cri-

terion. They argued that each system has a normal mode of operation and that

normal mode corresponds to a particular choice in each category. This particular

choice is called as basechoice. Thus base − choice − coverage criterion requires

that each choice in a category be tested by combining it with the base choice for

all other categories. This causes each non-base choice to be used at least once,

and the base choices to be used several times.

2.4.2 State Based Approaches

State-based specification describes software in terms of state transitions. State-

based specification consists of preconditions defined on transitions, which are va-

lues that specification variables must have for the transition to be enabled, and

triggering events, which are changes in variable values that cause the transition

to be taken [13]. The state machines that are usually used for testing are Finite

State Machines (FSM), Extended Finite State Machine, Abstract State Machine

and statecharts.

State-based testing can be dated back to the late 70’s when Chow [35] proposed

the W-method for finite state machine. However, only in late 1990s was there some
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significant attention to this approach for testing software, e.g., [144],[13], [10],[25],

[87]. Many coverage criteria were proposed which are given as follows.

Offutt [13] introduced several criteria for system level testing. These criteria

include Transition Coverage (TC), Full Predicate Coverage(FP), Transition Pair

Coverage (TP) and Complete Sequence (CS). To apply these, a state-based spe-

cification is viewed as a directed graph, called the specification graph. Each node

represents a state (or mode) in the specification, and edges represent possible

transitions.

Transition Coverage Criterion (TC)

This criterion requires that every precondition in the specification be tested at

least once. In terms of Specification graph it requires that each transition is taken

at least once and can be stated as: “the test set T must satisfy every transition

in the SG,” where SG stands for the specification graph.

Full Predicate Coverage Criterion (FP)

This criterion requires that each clause in each predicate on each transition is

tested independently at least once. Formally this criterion can be stated as: “for

each predicate P on each transition, test set T must include tests that cause each

clause c in P to result in a pair of outcomes where the value of P is directly

correlated with the value of c” .

Transition-Pair Coverage Criterion (TP)

This criterion requires that pairs of adjacent transition be tested. This criterion

can be stated as “for each pair of adjacent transitions Si : Sj and Sj : Sk in

Specification Graph SG, test set T must contain a test that traverse the pair of

transition in sequence.”
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Complete Sequence Criterion

A complete sequence is a sequence of state transitions that form a complete prac-

tical use of the system. This criterion states “test set T must contain tests that

traverses ‘meaningful sequences’ of the transitions on the SG, where these se-

quences are chosen by the test engineer based on experience, domain knowledge,

and other human-based knowledge”.

All the above criteria are mostly motivated by control flow criteria but are

applied to the specification instead of code. TC is similar to branch coverage and

FP is analogous to Modified Condition/Decision Coverage (MC/DC). FP coverage

tests transition independently, but does not test sequence of state transitions. TP

takes this into account and thus tries to identify faults that may arise when

invalid sequence of transitions is allowed, or a valid sequence of transition is not

allowed. Similarly the Complete Sequence criterion can be compared to ‘selected

path coverage’. In literature we also find Abstract State Machine (ASM) based

coverage criteria. Gargantini and Riccobene [12] proposed ASM-based criteria as

rule coverage, rule update coverage, parallel rule coverage, strong parallel rule

coverage and MC/DC.

2.4.3 UML Based Coverage Criteria

Currently there has been growing interest in using UML for software testing.

Many techniques and criteria have been proposed based on UML diagrams and

supporting specification documents. UML has been extended in the form of the

UML 2 Testing profile [7] in order to provide a mean for using UML as test

specifications. Many coverage criteria can be found based on UML diagrams. A

comprehensive survey of these criteria is presented by McQuillan [122]. A brief

account of these criteria is given in the following sections.

Use case based criteria

Use cases are used to model the behaviour of the system from the user’s point of

view. In UML based development they are considered the primary documents for
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capturing requirements and validating the system.

Use cases are diagrammatically represented in the form of use case diagrams. A

use case diagram usually represents all the use cases of the system. The important

elements of the use case diagram are the actor, the use case, and the relationships.

As stated earlier, the main purpose of use cases is to describe the behaviour

of the system and provide a good source of information for testing. Use cases can

be used in two ways for testing depending upon the source of information: either

using the use case textual description or the use case diagram.

Testing based on the use case description is mostly used for exercising identified

scenarios. Heumann [83] gives a three-step approach for generating test cases from

a fully detailed use case. In this approach, first a full set of scenarios is generated

for each use case from its textual description. Then for each scenario at least

one test case is identified along with the necessary conditions that will execute it.

In the final step data values are identified for each of the test cases. The main

drawback of this approach is that the whole process is manual, which is laborious

and prone to error. Also the use cases describe high-level system functionality

and hence the test cases generated also reflect that level. It may not be of much

help if we want to test low-level details of the system.

Briand and Labiche [28] proposed an approach called TOTEM (Testing Object

Oriented systEm with Unified Modelling Language) for system testing. In this

approach use cases are used to derive the corresponding sequence, collaboration

and class diagrams. Requirements for system testing are then derived from these

artefacts, which are then transformed into test cases, test oracles and test drivers.

Ryser and Glinz [163] also proposed an approach for testing based on use cases.

In this approach use case description is used to construct state charts from which

test cases are then generated.

As far as coverage criteria are concerned, to the best of our knowledge, no

work could be found based on use cases textual description. This is because of

the non structured nature of the document. However, they can be useful for

scenario based testing. A number of criteria can be found for use case diagrams.

Reuys [158] pointed out a number of use case diagram based criteria citing Winters
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[188]. These criteria are Use Case Step Coverage, Use Case Branch Coverage, Use

Case Scenario Coverage, Use Case Boundary Body Coverage and Use Case Path

Coverage. However, no detailed work could be found on this. Based on Binder

[24], Hans [69] also proposed a number of distinct coverage criteria, similar to the

traditional test coverage measures that are based on program flow-graphs. These

criteria give coverage of all the nodes and arrows in a use case diagram. The

criteria are Coverage of at least one Use Case, Coverage of at least every Actor’s

Use Case and Coverage of at least Every Fully Expanded Inclusion, Extension

and Uses Combination.

The only defined criteria based on use case diagrams are given by [29]. Two

classes of criteria are proposed. The first based on relationship and the second

based on the combination of the extended relationship. One criterion from each

class is then described. These criteria are similar to that proposed by [69].

These criteria are All-Association-Inclusions-Extensions Criterion (C1) and the

All-extended-combinations Criterion (C2) respectively.

C1 requires that for a test set T and a use case diagram D, T must cause each

association, include and extend relationship in D to be exercised at least once.

Thus this criterion considers the coverage of all type of relationship in a use case.

C2 takes into account the conditions in the extend relationship that must be

satisfied if the extension is to take place. This criterion requires that for a given

test set T and a use case diagram D, for each use case extended by at least two

other use cases, T must cause all the combinations of exercising and non-exercising

the extend relationships to be exercised at least once.

To support the application of the criteria, a testing tool called as UCT (Use

Case Tester) was also developed and a case study conducted on a small applica-

tion, which revealed some scenarios not identified by the functional tests developed

based on Heumann’s [83] approach.

However, the above criteria are still immature and testing tools could not

achieve the complete coverage for a small case study. Besides the criteria only

determine user functionality, but not how to test the functionality itself. The

effectiveness of these criteria cannot be assessed and what value do they hold to
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prevent faults creeping into the implemented system.

Criteria based on Interaction diagrams

The two kinds of interaction diagrams in UML are communication diagrams and

sequence diagrams. A communication diagram, previously called a collaboration

diagram, shows collaboration among objects to achieve a behavioral goal. Se-

quence diagrams are very similar and also show interaction among objects but

emphasize the time ordering of messages that are passed between objects. Many

coverage criteria have been proposed for interaction diagrams. Abdurazik and

Offutt [11] adapted the all definition-uses criterion in the context of UML com-

munication diagrams [167]. They proposed the ‘message sequence path’ criterion.

A message sequence path is an ordered sequence of all messages in a communica-

tion diagram. According to this criterion, a test set must contain tests for each

sequence path in a communication diagram [122]. Andrews et al. [18] propo-

sed many criteria for communication diagram. The condition coverage (Cond)

criterion is similar to branch coverage and requires each condition in the commu-

nication diagram to take both true and false values. When a condition contains

more than one clause then full predicate coverage (FP) needs to be satisfied, which

requires every condition to take both true and false values while all other clauses

in the predicate have values such that the value of the predicate is the same as

the value of the clause being tested. Another criterion defined is each message

on link (EML), which requires that test cases must execute each message on a

link connecting two objects at least once in a communication diagram. They also

defined the all message paths (AMP) criterion, which is similar to all message

sequence paths criterion described earlier. Cond and FP criteria target faults

related to using inadequate conditional control flow structure while EML and

AMP target faults related to interactions between objects [18]. Wu et al. [190]

describe criteria which require each transition and each valid sequence in each

collaboration diagram to be tested at least once.

Rountev et al. [161] suggested three coverage criteria based on the sequence

diagram. These criteria are generalizations of traditional control-flow criteria,
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such as branch and path coverage. They define the interprocedural restricted

control-flow graph(IRCFG), which represents the set of message sequences in a

sequence diagram. An IRCFG contains restricted CFGs (RCFGs), each corres-

ponds to a particular method and similar to the CFG of that method but restricted

to the flow of control relevant to the message sending. The IRCFG is used to de-

fine a set of coverage criteria. The All-IRCFG-Paths criterion requires coverage

of all paths in the IRCFG. It is similar to path coverage for the traditional control

flow graph. Like path coverage, it is possible that the number of start-to-end

message paths can be very large, thus making this criterion infeasible to achieve

[122]. Therefore, Rountev et al. [161] proposed the All-RCFG-Branches crite-

rion, which requires coverage of all RCFG edges. This criterion is weaker but

more achievable. They further proposed a ‘more weaker but easier to achieve’

criterion termed as All-Unique-Branches. Since the same RCFG edge can ap-

pear many times in IRCFG, this criterion requires at least one occurrence of each

RCFG to be covered. In practice these criteria are not easily achieved because of

the number of paths in an IRCFG. The authors themselves concluded that All-

IRCFG-Paths is impractical due to very large start-to-end paths even in a low

depth IRCFG. The other criteria also require substantial efforts to be achieved.

Similar criteria are also proposed by other researchers [24, 28] where paths are

derived from sequence diagrams and then tests are sought to traverse those paths.

Criteria based on Class diagrams

A class diagram shows the classes of the system, their relationships (associa-

tion, aggregation, inheritance) and the operations and attributes of the classes

[16]. Andrews et al. [18] proposed three criteria based on the form of constraints

(association-end-multiplicities, generalisation and OCL statements) present in the

class diagram. The Association-end-multiplicity (AEM) criterion requires tests

that “exercise configurations that contain boundary and non-boundary occur-

rences of links between objects”. The Generalisation(GN) criterion target faults

caused by inheritance relationships. This criterion requires tests that create each

generalisation/specialisation at least once. The third criterion defined by Andrews
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et al. is the Class Attribute(CA) criterion. This criterion targets faults that oc-

cur because of violation of value spaces of attributes that have been restricted by

OCL constraints. Using the category partition method, possible values for each

attribute in a class are produced. The Cartesian product of these values with

the other attributes’ values is taken and a valid aggregated set of attribute value

combinations is identified. CA requires coverage of this set by tests for each class.

Criteria based on other UML diagrams

Many criteria are based on other UML diagrams such as state machines and

activity diagrams. Since UML state machines are specialised FSMs therefore,

the same criteria as described in section 2.4.2 have been proposed (such as those

proposed by Offutt and Abdurazik [146]). Activity diagrams are special cases

of statechart diagrams and so, the same criteria can also be applied to activity

diagrams [122].

2.5 Fault Based Adequacy Criteria

Fault based testing selects tests that would identify whether specific faults are

present in the software. Faults are often injected into the software and tests

developed to detect those injected faults. (Error seeding and mutation testing fall

into this category.) Alternatively, a hypothetical fault may be used to suggest

tests; e.g., boundary value errors.

Many techniques have been developed in this regard which include error see-

ding [131] [99], mutation testing [159], and its variants [89] [189] [49] [48] [135]

and perturbation testing [194]. An adequacy criteria for fault based testing is

measured in terms of its ability to detect the injected fault. Following are the

brief description of fault based testing techniques and their adequacy criteria.

2.5.1 Error Seeding

Error seeding is among the earliest fault based testing techniques [181]. It can

be defined as, “the process of intentionally adding known faults to those already

32



CHAPTER 2. LITERATURE REVIEW

in a computer program for the purpose of monitoring the rate of detection and

removal, and estimating the number of faults remaining in the program” [139].

In error seeding the errors are deliberately introduced into the program and the

program is then tested to find the actual (non-seeded) errors and the seeded errors.

An estimate of the actual errors N remaining in the program is then calculated

from the total number F of seeded errors and the number of actual n and seeded

f errors that are found during testing from the following relation

(F − f)/F = (N − n)/N .

Other forms of the relationship are also given as indicated by [181, 199].

An advantage of the error seeding technique is that we can easily measure the

coverage of the testing process. This also gives us a measure of the testing quality.

If f/F is small then this means that testing quality must be poor [199].

Error seeding is a simple concept and provides a stopping condition for testing,

but it also has many drawbacks, which questions its effectiveness in revealing the

actual software error. It is based on the hypothesis that the proportion of seeded

errors found by the test process is the same as that of the actual (non-seeded)

errors. In other words the seeded faults must be the representative of actual faults.

But in reality it is not the case. Errors introduced deliberately by conscious efforts

are not likely to produce the same faults in the system as those introduced by

the unconscious process [99]. The introduction of errors is also an issue. Usually

faults are planted manually which is a laborious and time consuming activity and

hence cannot be applied for large projects.

2.5.2 Mutation Testing

In order to overcome the weaknesses in error seeding, the concept of Mutation

testing was introduced. The initial concept was proposed by Richard Lipton

in 1971 in a class term paper titled ‘Fault Diagnosis of Computer Programs’

[145]. However [159] is considered the primary reference that explains the method.

Unlike error seeding in which errors are planted in a single program, mutation

testing uses variants of the main program called mutants. The mutants differ

from the main program in a single small way, for example, replacing an instance
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of > with an instance of < or a +, ∗, / for a −. Each mutant is then executed

on a selected set of test cases. Testing is stopped when a mutant produces a

different output on a specific test set than the original program or the test set

is exhausted. The mutant is said to be killed in the former case and alive in

the latter. A mutant may live because either the test set is not adequate or the

mutant is semantically equivalent. An equivalent mutant is the one that produces

the same output as the original program, no matter on whatever test data it is

exercised, thus distinguishing these cases is very hard.

The number of dead and live mutants also gives us an adequacy criteria for

mutation testing usually called mutation adequacy or mutation score and is defi-

ned by the following relationship;

M = K/Z,

Where,

M=Mutation score or Mutation adequacy.

K= Number of killed mutants.

Z=Total number of non-equivalent mutants.

Where as non-equivalent mutants is the difference of total number of mutants

and equivalent mutants.

Mutation testing is based on two assumptions, i.e., the competent programmer

hypothesis and the coupling effect.

The competent programmer hypothesis assumes that the programmer is com-

petent enough and is capable of producing the programs that may slightly deviate

from the correct program. Therefore mutants are created reflecting this variation.

The second assumption is that of coupling effect which define relationship bet-

ween simple and complex faults. Thus according to this hypothesis, a mutation

adequate test set capable of discovering simple mutants from the original, will

also be capable of revealing more sophisticated and complex faults.

Mutants are generated by applying the mutation operators to the original

program. A mutation operator defines a simple transformation rule like replacing

+ with −. These operators are designed on the basis of errors that programmers

usually made in writing programs. We can find mutation operators for most of
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the commonly used high level languages [96, 73].

Mutation testing has many strong points. It allows a greater degree of auto-

mation. Mutant generation by the application of mutation operators, compilation

and execution of mutants as well as comparison of results all can be automated.

Many tools have been developed in this respect starting from PIMS in early 70s

[145]. Similarly the Mothra mutation toolset [33] was developed in 1980s, which is

one of the most widely known mutation system. Recently we find many mutation

testing tools for example, Jave [109] and Jester [134] for Java.

There are also many issues associated with mutation testing. This technique

is based on assumptions as described earlier. These assumptions create doubts

in one’s mind about mutation reliability as these assumptions may not hold. Ho-

wever, empirical and theoretical studies show the validity of these assumptions.

For example [19] conducted empirical studies which supports the ‘competent pro-

grammer’ assumption. Whereas [141] conducted empirical studies on coupling

effect assumption. These studies reveals that the assumption do hold to a great

extent. Wah [182] attempted to give a theoretical explanation of the coupling

effect.

Equivalent mutants are also undesirable in mutation. Equivalence of mutant

itself may be undecidable. However, using automatic detection techniques Offutt

[142] considerably reduces the number of equivalent mutants.

Another main issue which hampered the practical use of mutation is the re-

quirement of large computational resources for generating and executing the large

number of mutants. Estimation shows that an n-line program will produce mu-

tants of the order n2 [199] referring [89]. Other studies [140] shows that the

number of mutants generated for a program is roughly proportional to the pro-

duct of the number of data references and the number of data objects. This gives

an idea of how much computation resources are required for a fairly moderate pro-

gram. In addition to this a significant manual effort is required in this technique

for analysing tests results and examining equivalent mutants.

In order to deal with the above issues many strategies have been used which

resulted into many variants of the mutation. Offutt and Untch [145] classified
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these strategies into three types, i.e. do fewer, do smarter or do faster.

Do fewer approaches attempts to execute fewer mutants without significant

information loss. These approaches include Selective Mutation [143] and Mutant

Sampling. In Selective Mutation, only those mutants are selected which are truly

different from others. This is achieved by using effective mutation operators only,

which are the operators that generates non-redundant mutants. Whereas in Mu-

tant Sampling instead of using a complete mutation set only a subset is used.

Random sampling and Bayesian sequential probability techniques have been ap-

plied [145] and show that we can achieve high performance by using only a subset

of complete set.

Do Smarter approaches, though, attempts to execute the same set of mutants

as that of strong mutation but in a smarter way. These approaches include Weak

Mutation [89] and Firm Mutation [189] techniques. In weak mutation the internal

states of the mutant and original program is compared immediately after the

execution of the mutated portion of the program. If the states differ the mutant

is said to be killed. It is possible though that the external state after complete

execution may be the same as that of the strong mutation. So an adequate test set

for weak mutation may not be so for strong mutation. [189] gave an intermediate

approach, i.e., weaker than strong mutation but stronger than weak mutation.

This technique suggests that instead of making the comparison at some specific

stages it can be made at any stage in the program. However, this approach does

not explain how to select such areas systematically. Along with these approaches

there are many other do smarter approaches for example, adapting the mutation

analysis system to a specific processor [114, 101, 141, 34].

Do faster approaches tried to reduce the execution time. Schema-based muta-

tion analysis [178], in which all mutants are encoded into one metaprogram and

then compiled and run, is one example of such approaches. This technique shows

a performance improvement of 300 percent.

Regardless of the approach one employs, it is often much more expensive to

obtain a high mutation score than to satisfy other criteria, for example, achieving

100 percent decision coverage.
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2.5.3 Conclusion

Coverage refers to the extent to which a given verification activity has satisfied its

objectives. It is a measure not a method or a test. We have got coverage criteria

to get the coverage of a testing process. Since it is not possible to test software

completely, so we choose software process that give ‘certifiable’ coverage. To get

that coverage we use a suitable criterion. Achieving 100 percent coverage by a

criterion does not employ that we have tested the software completely. However,

each of the different coverage criteria attempts to capture some of the important

aspects of a program structure, for example, achieving 100 percent statement

coverage increases our confidence that we have revealed all the error that may

occur due to the execution of statements in a program.

2.6 Search Based Optimsation Techniques

Optimization problems are very common in many fields and especially in engi-

neering. To solve these problems many techniques have been developed. In an

optimisation problem we seek to find a maximum or minimum value of a function.

Generally, an optimisation problem can be stated as [155, 176]

Minimize f(x)

Subject to gi(x) = 0, i=1,2,...,n

where x represents a vector of decision variables, i.e., the variable that require

the assignments of values, f() represents functions such that if X represents all

feasible solutions then f : X → < and gi() represents a constraint that limits the

acceptable values of x. The objective is to find

x∗ ∈ X such that f(x∗) ≤ f(x)∀x ∈ X.

We shall generally be concerned with minimization, but, of course, there is

an equivalent formulation for maximization problems. f() is usually called the

objective, cost or fitness function. Cost is generally minimized; fitness is generally

maximised.

In this section we consider various optimisation techniques that have been

utilized to generate input test data generation.
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Select an initial solution S0;
Repeat

Generate a move S′ ∈ NS0 ;

Where NS0 defines the neighbourhood
of S0

If f(S′) > f(S0)

S0 = S′

Until Sf or max allowed time is reached

Table 2.3: Hill-Climbing algorithm

2.6.1 Hill-Climbing

Hill Climbing is a simple optimisation technique which resembles ‘climbing’ up

a hill to reach the ‘top’. The algorithm starts by selecting an initial candidate

solution S0 as the current solution. (Often this is chosen randomly.) Another

candidate solution S′ is chosen in the neighbourhood of S0 . If S′ is better

than S0 then it is chosen, otherwise it is discarded and the neighbourhood of S0

is searched again for a better solution. The process continues until no further

improvement in the current solution Sf can be made. At this time the algorithm

is considered to have reached a local optimum. The algorithm is given in Table

2.3.

2.6.2 Simulated Annealing

Simulated annealing is a form of neighbourhood search which mimic the process

of annealing in metals. The original algorithm was given by Metropolis et al in

1953 [125]. It was 30 years later that Kirkpatrick [98] suggested its application to

the optimisation problems. Since then SA has been applied successfully to solve

many optimisation problems.

This approach can be taken as a variant of the Hill-Climbing. The problem

with Hill-Climbing is that it can get stuck at a local optimum. Many improve-

ments have been suggested such as starting the algorithm from different points or
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increasing the neighbourhood size etc, but none of these approaches have proved

satisfactory. SA solves the problem to some extent by allowing worsening moves

to be accepted with some probability, as shown below;

P = e−δ/t..........(1)

Where P= Probability of accepting the move.

δ=Change in the Cost function.

t=Control Parameter called as temperature in analogy with the actual annea-

ling process.

Equation (1) shows that the probability of acceptance is a function of both

the change in the cost function and the temperature. Initially temperature is

set to a high value, which allows reasonable acceptance of worse moves. As the

temperature decreases, the probability of accepting a worse move decreases and

when it becomes zero, SA becomes a simple hill climbing technique. The algorithm

has been given in Table 2.4.

There are two types of decisions in SA: the generic decisions; and the problem

specific decisions [157]. The generic decisions mainly include the cooling schedule,

which comprises the initial temperature, final temperature, change in temperature

and the number of moves considered at each temperature. The initial temperature

is set high enough to allow fairly free movement to any neighbourhood state. The

change in temperature is critical to the success of algorithm. It must be changed

systematically in order to avoid becoming trapped in a local optimum.

The problem specific decisions include the cost function, definition of the

neighbourhood and the solution space. The cost function (also called the ob-

jective or fitness function) is used to measure the quality of a solution. It should

be defined in such a way to guide the search process. Neighbourhood structure

defines how the search moves from one solution to another in the solution space,

which itself affects the number of iterations required to reach an optimal solution.

Both categories of decisions have been further discussed in Chapter 3.
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Select an initial solution S0;
Select an initial temperature t0 > 0;
Select a temperature reduction function α;
Repeat

Repeat

Generate a move S′ ∈ NS0 ;

Where NS0 defines the neighbourhood
of S0

δ = f(S′)−f(S0);

If δ < 0

Then S0 = S′;

Else

Generate random x uniformly
in the range (0, 1);

If x < e−δ/t then S0 = S′;

Until innerLpCount = maxInnerLpNo or
fS0satisfies the requirement;

Set t = αt;

Until outerLpCount = maxOuterLpNo or
nonAcceptCount = maxNonAcceptNo or
f(S0) satisfies the requirement.

S0 is the desired solution
if f(S0) satisfies the requirement.

Table 2.4: Standard SA algorithm
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2.6.3 Tabu Search

Tabu Search (TS) is also a neighbourhood search technique first proposed by

Glover in 1986 [65]. However, unlike SA where a randomized search is used, the

searching process is more controlled in TS.

The main feature of the TS is its memory, where it keeps track of the searching

process by recording some of the moves (or their attributes) that have already

been investigated. This helps the search to move forward with out revisiting

a move. Such moves that are not allowed to be revisited are called tabu and

are kept usually in a list. The search process is iterative. The elements in the

neighbourhood of the current state are evaluated and a decision is made as to

where the search should move. The tabu list and the current state are updated.

To prevent the tabu list growing intractably, various memory strategies are

used [67]. Recency functions are used which only keep recent moves in the list

and discard the old ones, giving rise to what are usually referred to as short-

term memory strategies. Similarly, there are a long term memory strategies. In

frequency-based memory, a long-term memory strategy, the frequency with which

a move occurs is stored and is used to penalize frequently visited moves.

There is an important exception to the tabu list. A move may be in a tabu

list but it may still be selected. It may give rise to a better solution than any

considered in the search so far. This is referred to as the aspiration criterion [45].

Other important concepts related to tabu search are intensification and di-

versification of the search. These are used to fine-tune the tabu search and are

achieved by modifying the objective function. During intensification, the neigh-

bourhood of a solution is searched more thoroughly. This is based on the belief

that it may contain a better solution. This is achieved by penalizing the solutions

which are far from the current solution. On the other hand to avoid large areas

of search space remaining completely unexplored, diversification is also used.

Tabu search heuristics has been successfully applied to many optimisation

problems. Current applications of TS span the realms of resource planning, te-

lecommunications, VLSI design, financial analysis, scheduling, space planning,
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energy distribution, molecular engineering, logistics, pattern classification, flexible

manufacturing, waste management, mineral exploration, biomedical analysis, en-

vironmental conservation and scores of others [66].

2.6.4 Population Based Algorithms

Unlike previous methods where search centres around one candidate solution at

a time, in population-based techniques a number of candidate solutions are kept.

Most of these algorithms have been inspired by biological phenomena. Most of the

terminology has been borrowed from there. Evolutionary Algorithms (EAs) form

one group of such algorithms. The most common EAs are Genetic Algorithms

(GAs) and Evolution Strategies (ESs).

Genetic Algorithms

Genetic Algorithms (GAs) were proposed in 1960s and 1970s by Holland [86]

and his associates. These, as evident from the name, are bio-inspired search

techniques, which mimic the principle of natural selection to find near optimal

solutions to many computing problems.

In the natural selection processes, a species evolves by three main processes,

i.e., selection, crossover and mutation over a long period of time. These processes

are ‘mimicked’ in GAs. The basic GA algorithm is given in Table 2.5.

The algorithm begins by generating an initial population of solutions usually

called chromosomes. The chromosome or the phenotype is usually represented

using some encoding scheme, which is then called the genotype. Commonly used

encodings are BCD, Gray encoding and two complement’s etc. Much modern

applications use a natural encoding scheme, i.e., the one closest to the phenotype.

The population is often initialised randomly. However, sometimes the popula-

tion may also be seeded with some good solutions to facilitate the search process.

After initializing population, each chromosome’s fitness is measured with respect

to some objective function that can be derived specific to the problem in context.

Fitness values usually play important role in parent selection, where many me-

thods can be used considering fitness in one way or another. The most popular
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1) Initialise a population of individuals (chromosomes)
Repeat

2) Calculate fitness of each individual in the
population (relative to some objective function).

3) Select prospective parent (using selection methods).

4) Create new individual by mating parents (using crossover)

5) Mutate some of the individuals to introduce diversity.

6) Evaluate the new members and insert them into the popu-
lation.
7) Until some termination condition is reached.

8) Return the best individual as the solution.

Table 2.5: Standard GA algorithm

and well-studied methods are roulette wheel, tournament, and rank selection etc.

[68].

In roulette wheel the parents are selected in proportion to their fitness values.

However, the problem with this method is that it is biased towards parents having

high fitness values, thus such parents will be selected in every generation. To get

around this problem tournament selection method has been proposed. In this

method, potential parents are selected randomly and then a tournament is held to

select a parent for crossover. A variation of tournament selection is rank selection

in which the population is first ranked and then every chromosome receives its

fitness from this ranking. The parents are then selected on ranking, with a bias

towards the higher ranks. This method usually leads to slower convergence.

Once parents are selected new individuals are produced by using the crossover

or recombination and mutation operations. One point crossover operator was

originally suggested, where a single point is selected and the portions of the parents

to the right of this point are swapped. However, researchers have found other

techniques perform better, e.g. multi-point crossover, uniform crossover operator,

order-based crossover, partially matched crossover and cycled crossover. Parents

may also be copied to the new population with out applying cross over operation
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(Elitism). The reader is referred to [133, 153] for detail of these approaches.

Crossover may not necessarily lead to fitter offspring. Furthermore, crossover

and selection alone may not be able to explore the whole solution space. To avoid

this problem, the mutation operation is used. The operation usually consists of

flipping a bit (or allele value generally) in the encoded individual with some small

probability.

After these operations the new individuals are inserted into the next genera-

tion.

Other issues that are important in GA are the parameters, which include

population size, number of parents, number of offspring, rate of crossover and

rate of mutation. In most applications these parameters are selected based on

trial-and-error.

The search process is terminated after some termination condition is reached,

which is normally based on reaching an acceptable solution, time or number of

iterations performed, or number of generations produced.

GAs have been used in many fields and are the most extensively used evolu-

tionary algorithm used to solve many combinatorial optimisation problems. Ap-

plications range from industrial optimisation and design, neural network design,

management and finance, artificial life, communication networks, electronics, and

many others. GAs have also been applied successfully to generate test data.

Xanthakis et al. [191] is considered the first work in this respect.

Evolution strategies

Another commonly used group of EAs is evolution Strategies (ESs) [156]. De-

veloped almost in the same time span (or maybe earlier) as GAs, the ESs are

very similar to GAs and differ only in the selection and ‘breeding’. In GAs the

dominant breeding operation is crossover, whereas in ESs it is mutation.

The two common ESs are the (µ, λ) and (µ + λ). In (µ, λ) ES, initially λ

number of individuals are generated randomly, from which, based on their fitness,

µ number of parents are selected. Each of the µ parents is then mutated to

generate λ/µ children. From the new generation again µ fittest individuals are
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chosen and the process is repeated until some termination criterion is reached.

The (µ + λ) version is similar to (µ, λ) but instead of replacing parents with

children, in (µ+λ), µ parents are also added in the next generation. The (µ+λ)

version, though more exploitative as the parents are competing with children, may

lead to premature convergence because of highly fit parents [108].

In comparison with GAs for real valued parameters, McTavish and Restrepo

[123] (citing [147, 129]) reported that ES implementations are faster and more

accurate.

2.6.5 Artificial Immune Systems (AIS)

Artificial Immune Systems are also bio-inspired algorithms which mirror the prin-

ciples and processes of the natural immune system. AIS can be defined as “adap-

tive systems, inspired by theoretical immunology and observed immune functions,

principles and models, which are applied to problem solving” [44]. From the de-

finition it is clear that AIS are inspired from immunology, but do not slavishly

simulate the process. Digital analogies of immune processes have been used to

solve many different problems in computing. In order to understand AIS tech-

niques, the following lines give a brief and highly simplified overview of basic

immune system from [44].

The immune system is a self-controlled mechanism, which defends the body

against the harmful organisms. The system consists of many components such

as skin and saliva along with two forms of immunity i.e., innate and adaptive.

Both these types complement each other. The innate immunity is unchanging.

It provides initial defence against pathogens and also initiates and controls the

adaptive immunity. The adaptive immunity modifies itself on exposure to unseen

pathogens in order to enhance the defence. And hence because of its acquiring

nature, this kind of immunity is more popular in the computing community for

various problem solving tasks.

There are many different ways in which an immune system fights against pa-

thogens. One such way is the production of antibodies, a kind of protein produced

by a B-cell, which is a kind of white blood cell (lymphocyte). Antibodies bind to
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antigens which are proteins produced by pathogens. The strength of this bonding

is called affinity. Invading pathogens are recognised based on the strength of this

affinity, which triggers an adaptive response to kill pathogens.

There are another kind of white blood cells i.e., T-cells which also play an

important role in the immune system. T-cells are of three kinds: helper T-cells,

killer T-cells and suppressor T-cells. Helper T-cells play main role in the acti-

vation of B-cells. Killer T-cells fight against foreign invaders whereas suppressor

T-cells inhibit other immune cells and help in preventing allergic reaction and

autoimmune diseases. The immune system consists of processes that help it to

learn and remember antigens. Two theories attempt to explain these processes:

the clonal selection and the immune network theory.

According to the clonal selection theory, recognition of antigen by antibodies

triggers reproduction of associated B-cells resulting in a large number of clones

of such cells. This process is called clonal expansion. The clones can undergo

mutation with high rates, termed as somatic hypermutation. This leads to the

change in the shape of the antibodies, which may result in improving the affinity

of some antibodies to the antigens. Along with this B-cells can also differentiate

into long-lived B memory cells. These memory cells, upon a second encounter

with pathogens, proliferate into B-cell capable of producing antibodies, which has

strong affinity with respective antigens.

According to network theory, there is a network of molecules, which constantly

interact with each other irrespective of the presence of antigens and the properties

such as learning, and memory is a result of the interaction of these network mole-

cules. Antigen’s surface contains regions called epitopes that are recognised by a

set of paratopes on antibodies. A binding can also occurs between antibodies by

the same mechanism. In this case instead of epitopes, there are ideotopes. This

epitope-idetope interaction creates network structure, which includes stimulation

of B-cells by other B-cells, hence causing their proliferation. In some cases sup-

pression can also occur, which has a regulatory effect and hence lead to the death

of cells.

Based on the above-mentioned processes in the natural immune system many
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Initialise population of antibodies
WHILE (not finished)

Present antigen
Calculate fitness (by matching antigens and antibodies)
Select
Apply clonal expansion that reproduce new clones [Mutation

(no crossover)]
Replace (variable population)

END WHILE

Table 2.6: An AIS algorithm

AIS models are proposed, which extract and utilizes features like recognition,

learning, memory, and predator-prey response etc. The key feature of most AIS

models is the antibody to antigen match. A basic AIS algorithm [31] is shown in

Table 2.6.

AIS is an evolving field and there is no fixed algorithm available. However,

virtually all models have a population of B-cells, which are usually referred to

as antibodies, without making any distinctions between the two. The antibodies

represent the solution space where as, the antigen represents a target or desired

solution. The antibodies and the antigen are then matched and decisions are made

for cloning and mutation based on the affinity (matching) between the two, which

can be based on some fitness function. If matching is good, new antibodies are

added. Note that mutation may not be applied and depends upon the problem

in context. The bad solutions are removed from the population and the process

continues to find good solution until a termination condition is reached.

AIS has been successfully applied to a number of areas to solve many pro-

blems, which include computer security, data mining, robotics, machine learning,

scheduling and optimization. However, as compared to other comparable areas

such as neural networks, evolutionary algorithms and fuzzy systems, AIS lacks

a general framework that can be applied to solve varied problems. Castro and

Timmis [44] proposed a layered frame work, however much work need to be done

to make it a formalized and established frame work.
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2.6.6 Ant Colony Optimisation

Ant Colony Optimization (ACO) approaches are bio-inspired algorithms based

on the working of real ants. The main underlying idea is that of parallelizing

search based on a dynamic memory structure incorporating information on the

effectiveness of previously obtained results and in which the behaviour of each

single agent is inspired by the behaviour of real ants [110].

The inspiration for ACO was an experiment on Argentine ants where a colony

of ant was connected with a food source through two paths of different length.

The paths were arranged in such a way that any of the paths could be taken by

ants with equal probability [54]. It was found that after some time, most of the

ants started using the shortest path. This experiment was repeated by increasing

the length of the longer path which resulted in decreased number of aunts taking

that path.

The selection of shortest path is in fact the result of probabilistic decisions

taken by ants based on indirect communication. The mean of indirect commu-

nication is pheromone, a chemical substance, deposited by ants while they walk.

Ants can also sense this substance and their probabilistic choices are made by the

amount of pheromone they sense. In the above-mentioned experiment, initially

there was no pheromone on paths. However, because of the different length, ants

following the shorter path reached the food source earlier and on their way back

they smell the pheromone deposited by them. So they choose the shorter path

with higher probability than the longer one. New pheromone is deposited on the

path, increasing its amount, and thus making it more attractive for other ants

and as the process continues, more and more ants took the shorter path. Another

important element of this mechanism is the pheromone evaporation with time

that enables the system to forget the past wrong decisions. On longer paths, the

amount of pheromone deposited evaporates, reducing its amount. Whereas on

frequently visited paths, the evaporation is counterbalanced by new pheromone

added by ants.

The above-mentioned natural process has been adapted to develop a number of
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algorithms for solving discrete optimisation problems. An earlier example is that

of Ants System (AS) and its variants. These algorithms were further extended

and modified, resulting in a general framework in the form of ACO.

ACO can be applied to discrete optimisation problems that can be characte-

rised in graphical format. The main elements of the ACO are artificial ants that

walk on a connected graph G = (C,L), where nodes C are connected by arc L.

The feasible solutions to the problem correspond to the paths on G. Ants collect

information during the search process which is encoded in pheromone trails as-

sociated with arcs, thus providing long-term memory holding information about

the search. Arcs or nodes can also have an associated heuristic value giving a

priori information on the problem. Each individual ant also has memory which is

used to build feasible solutions, evaluate the solution found and retrace the path

backward. Based on the information from pheromone trail, heuristic value and

memory, ants make probabilistic decisions and add new paths to the solutions.

Once a solution is complete, an ant retraces back the same path it followed. Du-

ring this process it deposits pheromone in proportion to the quality of the solution.

This help to direct the search process of the future ants.

Two more procedures i.e., pheromone trail evaporation and daemon actions

(an optional component) are also included in ACO [54]. Pheromone trail evapora-

tion reduces the amount of pheromone and thus helps avoid too rapid convergence

of the algorithm towards a sub-optimal solution. Daemon actions are used to in-

corporate procedures in to the ACO, which cannot be performed by single ants.

Such inclusion can be local search procedures or depositing additional pheromone

based on the quality of solutions.

ACO has been successfully applied to a large number of combinatorial opti-

misation problems. These problems can be divided into two categories. The first

category includes NP-hard optimisation problems where ACO is applied with local

search algorithms to fine-tune the ant’s solution. This category includes classi-

cal problems like Travelling Salesman Problem (TSP) and Quadratic Assignment

Problem (QAP) etc. The second category includes problems where the problem

instance changes from solution to solution during algorithm run time. Routing in
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telecommunication networks is an example of such problems.

Intuitively, the use of ACO for dynamically changing problems seems well

motivated. After all, the ant strategy has evolved to cater for the changing food

sources. (Once a food source is depleted, the problem has changed!)

2.7 Automated Test Data Generation

Given a test requirement, a suitable set of input variables or test cases need to be

developed to test it. Test data generation is, therefore, one of the most important

steps in software testing. This activity is usually conducted manually. However,

manual test data generation is a hard, laborious and very time consuming activity

and contributes greatly to the software development and maintenance cost. Auto-

mating this step in testing can greatly reduce effort and cost of testing. There has

been much research activity in this field with considerable success. Fawster [61]

reported that saving of up to 80 percent over manual effort have been achieved.

There are many techniques for automation which are applied throughout the

software development life cycle. We may broadly classify these techniques as

random, static, and dynamic [150]. All the techniques have their advantages and

disadvantages. However, in the context of this dissertation only the dynamic

approach– i.e., search based test data generation is discussed.

2.7.1 Search Based Test Data Generation

In search based test data generation (SBTDG) achieving a test requirement is

modeled as a numerical function optimisation problem and some heuristic is used

to solve it. The techniques typically rely on the provision of “guidance” to the

search process via feedback from program executions. For example, suppose we

seek test data to satisfy the condition X <= 20. We can associate with this

predicate a cost that measures how close we are to satisfying it, e.g. cost(X <=

20) = max(X − 20, 0). The value X == 25 clearly comes closer to satisfying

the condition than does X == 50, and this is reflected in the lower cost value

associated with the former. The problem can be seen as minimising the cost
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function cost(X <= 20) over the range of possible values of X.

SBTDG for functional testing generally employs a search/ optimisation tech-

nique with the aim of causing assertions at one or more points in the program to

be satisfied. We may require each of a succession of branch predicates to be satis-

fied (or not) to achieve an identified execution path; we may require the program

preconditions to be satisfied but the postconditions to be falsified (i.e. falsifica-

tion testing — finding test data that breaks the specification) [175]; or else we

may simply require a proposed invariant to be falsified (e.g. breaking some safety

condition, or causing a function to be exercised outside its precondition) [176].

Survey

Search based test data generation can be dated back to 1976 [130]. However,

it has been in recent years that interest developed greatly in the application of

search based techniques to tackle the problem of software test data generation. A

comprehensive survey of the different techniques is provided by McMinn [117]. In

this section, the latest work in the field will be reviewed. More emphasis is placed

on comparative and novel applications of search based techniques to the problem

of software input test data generation.

Wegener [186] proposed a data flow based fitness function, however, the work

by Girgis [64] seems to be the first quantitative work using data flow coverage

measure. The criterion selected for coverage is all − uses. A standard GA is

used with binary string encoding. The algorithm works by selecting a list of def-

use paths, which are then given to the GA as input to be covered. The fitness

function of a chromosome is calculated as the number of def-use paths covered

by variable to the total numbers of def-use paths. Roulette wheel and random

selection methods were used for selection parameters. The technique was tested on

15 small FORTRAN programs and 100 percent coverage was achieved in most of

the programs. However, no information is given about the nature of the programs

and their complexity. Also the proposed approach assigns the same fitness to the

individuals which cover equal number of paths. It is possible that one individual

may be better than the other in term of the nature of the path covered by it.
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Michael and McGraw [127] compares local descent, standard simulated annea-

ling and two variants of genetic algorithms i.e., standard GA and differential GA

for more complex programs than previously studied. Condition/decision coverage

is used as an adequacy criterion. Three sets of case studies are presented with

increasing complexity. Random testing, as the case usually is, did much better

for simple programs. However, overall standard SA and standard GA give much

better results for complex programs, outperforming other approaches.

In their work, Alba and Chicano [14] used Evolutionary Strategies (ES) for

test data generation. The proposed system uses condition decision coverage as

adequacy measure and a distance based fitness function [176, 117] is used to guide

the search. Information about which conditions have been reached or covered is

stored in a decision table. In the former case, an ES is invoked to find the test

data that cover the required decision. The condition table is also populated, if

ES finds data that cover other decisions while searching for the required deci-

sion. Experimental results show that the ES performed slightly better than the

GA. However, requiring less parameters to tune [14], ES seems a more attractive

approach to generate test data.

Li and Lam [106] proposed an approach for test case sequence generation to

satisfy all-state coverage criterion for statecharts using ant colony optimisation

(ACO). A Statechart is converted into a directed graph and then a group of ‘ants’

is dispatched to cooperatively explore the graph using the ‘pheronome’ level left

by the previous ants at neighbouring vertices. The effectiveness of this approach

is not clear from the paper. However, this seems to be the first work using ACO

to generate test sequences from statecharts.

Liaskos and Roper [107] proposed AIS to generate input test data using control

flow coverage measure. A binary encoded scheme is used to encode the executed

path (receptors), test targets (antigens) and test cases (immune cells). The fitness

function (affinity) is the binary distance between the executed and target path.

This is equivalent to the approximation or approach level [186] in traditional

test data generation. The well-known Triangle program is used as a case study.

However, the proposed algorithm, lacking the branch distance measurement does
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not seem to perform well.

Sagarna and Lozano [164] includes application of Estimation of Distribution

Algorithms (EDA) to software test data generation for branch coverage. The ap-

proach level with branch distance strategy is used to reach a branch. Different

variants of EDAs suitable for discrete optimisation problems are considered. Re-

sults show that EDAs using nontrivial probabilistic models performed better.

Further comparison is made with existing work on GAs. The authors conclude

that the EDAs required fewer fitness evaluations to find the required test data

in most cases as compared to GAs. In other work, Sagarna and Lozano [165]

compared EDAs and Scatter Search. Based on their results a hybrid EDA-SS

strategy was proposed.

Diaz et al. [52, 43] proposed a tabu search algorithm for the automatic gene-

ration of test data to obtain branch coverage. Using the branch coverage criteria

of a CFG and distance based fitness function, the short term memory is used to

store the best solutions. A long term memory tabu list is used to prevent local op-

timal entrapments by storing such solutions and avoiding them in the subsequent

iterations. An approach similar to Korel’s chaining approach [100] is adapted

for selecting a target to be covered. Four neighbourhood solutions, half of which

are in close proximity while half are farther away, are considered for each input

variable in each move. This allows exploration of a wider neighbourhood. The

approach is evaluated with three case studies using random testing as the bench

mark and different ranges for input variables. Tabu search outperformed random

testing in terms of speed and coverage. The approach seems plausible. However,

for large and complex programs the short term memory list may contain too many

solutions and the algorithm may become inefficient.

Currently most search based test data generation assumes branch predicates

with numeric data types. Alshraideh and Bottaci [15] proposed a cost function

for string equality, ordering and regular expression matching. The cost function

and corresponding search operators are mainly based on information retrieval and

biological string matching. Based on a number of small case studies they suggest

that exploiting the presence of string literals in a program significantly improves
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the performance of search based test generation for string data types.

Most of the time, the domain of application of search based test data gene-

ration has been procedural programming. Tonella [173] for the first time applied

genetic algorithms to generate test cases for the unit testing of object oriented

program. Unlike unit testing of procedural programs, in object oriented program-

ming, an object needs to be created and brought in to a specific state before

method invocation. To bring the object into a specific state may require the

creation of other object(s) and method call(s). Thus a test case must cater for

object/s and state creation in addition to the input test data. Tonella’s approach

captures this by defining a chromosome structure with two portions: one encode

a sequence of statements and another the input values to be passed as parameters

to the methods. Special mutation operators are defined to carry out operations

on chromosomes. The fitness of a chromosome with respect to a target is obtained

from the proportion of the control and call dependence edges that are traversed

during the execution of the test cases. A test case which cover a target is saved

and hence at the end of the algorithm a set of test cases is obtained, each of which

contribute to the final level of coverage.

Wappler and Lammermann [184] proposed a more generic approach for the

unit testing of object-oriented programs. Production rules are given for the test

program, a phenotype, which takes into account object attributes in constructors

as well as methods. The test program is encoded as a basic type value structure,

a genotype individual. Each genotype is considered as a sequence of statements.

Each statement is further structured into target object, method, and parameters.

The target object and method are encoded as integers, whereas the encoding

of a parameter depends on its type. In order to avoid unused genes and to

optimize the evolutionary search, a multilevel optimization is used. Care is taken

for the inconvertible genotypes and if the current population does not contain any

convertible genotype, a mechanism is described to generate enough convertible

genotypes in the proceeding population.

Wappler and Wegener [185] used strongly typed genetic programming to ge-

nerate test cases for object oriented programs. They proposed using method call
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{
flag=(a>b); ____ (i)
.......
if (flag) ____ (ii)
{do something...}
}

{
flag=false

if (a>b); ____(iii)
flag=true;
if (flag) ____ (iv)
{do something...}
}

(a)Flag problem [26] (b)More general case of Flag
Problem.

Table 2.7: Flag Problem

dependence graph to model call dependencies in a Java class. An acyclic subgraph

of this graph corresponds to a feasible method call sequence which is modelled as

tree. Strongly typed GP is used to manipulate these trees for generation of test

programs.

2.7.2 Limitations of Search Based Test Data Generation

Although search based techniques have been successfully applied to generate input

test data, still there are many areas where these techniques have limitations.

McMinn [117] has comprehensively discussed those limitations. In this section we

survey only the latest work regarding these problems.

Flag Problem

A flag is a boolean variable which if present in branch predicates can lead to

straight plateaus in fitness landscape, thus degrading the search to a mere random

search. To cope with the flag problem, various approaches have been suggested.

Bottaci [27] considered the flag problem where the predicate value is evaluated at

one point in the program and is used in another. Consider the code segment in

Table 2.7.2 similar to the example in [117].

The flag is assigned value at (i), but is used at (ii), where the cost function

is evaluated. But it is not useful as the boolean variable give either false or
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true value leading to a flat fitness plateau. To get around the problem, Bottaci

proposed an instrumentation strategy which retains information at such point as

(i) in above code segment and then provides the respective cost value at (ii), where

it is required. However, this is a particular case of the flag problem. The approach

fails when a more general or complex form of flag problem is encountered. For

example, for the code segment in Table 2.7.2(b), the cost calculated at (iii) cannot

be propagated to (iv).

Harman et al. [76] proposed a testability transformation approach to solve

the problem. Their approach is discussed in detail in Chapter 5

Baresel and Sthamer [21] suggested using static analysis to handle the flag

problem. Their approach involves identifying ‘decisive’ branches i.e., the branches

which has an effect on the flag assignment during the program execution. They

divided the branches in to ‘include’ and ‘exclude’ lists. The execution of the

branches in the ‘include’ list results in the desire flag assignment and vice versa.

Unlike traditional fitness functions, which calculate fitness at a branch using the

branch predicates only, they devised a fitness function to take into account all the

branches affecting the flag assignment.

State problem

Another problem similar to the flag problem is the state problem [120]. The state

problem occurs when information is stored in static internal variables, which are

not directly accessible to the search process. The values of such variables can

be changed only by executing the corresponding assignment statements. Often

an input sequence is required for execution before bringing the system into the

required state. In the presence of such state variables, the traditional search based

testing approach does not perform better than random testing [120].

To cater for the state problem McMinn and Holcombe [119] proposed an ex-

tended version of ‘chaining approach’ [62]. In the chaining approach, a sequence of

statements is identified, which is executed before the target node. The extended

chaining approach identifies the set of all variables that can effect the ‘problem’

node. Event Sequences are then generated based on assignment to these variables,
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which are then executed using a special encoding scheme to conduct structural

testing of programs. The approach was applied successfully to a few programs

achieving much higher coverage compared with a previous approach [21]. Howe-

ver, as discussed by the author, the chaining tree can become intractable making it

very difficult to find feasible sequences. Also the approach suffers in the presence

of nested branches and compound conditions.

Zhan and Clark [197] proposed a technique called ‘tracing and deducing’, to

tackle the state problem in MATLAB Simulink models. To satisfy a test require-

ment, a back-propagation is sought to derive a more refined predicate structure

that provide better guidance to the search process. The approach, however, re-

quires the length of input sequence to be known in advance.

2.8 Conclusion

In this chapter we have presented a background literature relevant to this thesis.

An overview of the software testing and adequacy criteria was given. It was

followed by a brief discussion of different optimisation techniques that have been

used to solve the problem of input test data generation. A survey of latest work

was then given in the last section. It can be concluded that search based test

data generation is an active research area where still many problems need to be

solved.
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Chapter 3

Structural Testing: Searching

for Fine Grained Test Data

3.1 Introduction

In structural or white box testing, a program is tested in order to locate the

possible errors in a program.

To conduct structural testing, input test data is required. It can be generated

manually, which is the normal practice in most of the organisations ([166], citing

[57]). Manual generation of test data, however, is a laborious and time consuming

activity and adds considerably to the overall cost of the project. Automation of

this process is highly desirable. Many techniques have been proposed to automate

the test data generation process [150].

One of the techniques that has gained popularity in recent years is search

based test data generation, where the test data generation problem is modelled

as a numerical optimisation problem. Data is then sought to solve this problem.

The goal is usually to satisfy a coverage criterion.

A coverage criterion is important as it may help to detect errors that may

cause the possible failure of the system. An overview of coverage criteria has been

given in Chapter 2. In the case of search based test data generation, the most

widely used coverage criterion has been branch coverage. However, this is not

the strongest criterion and does not fulfill requirements for industrial standard

58



CHAPTER 3. STRUCTURAL TESTING: SEARCHING FOR FINE
GRAINED TEST DATA

[162]. In this chapter a technique has been proposed to extend the existing search

based test data generation techniques to generate more refined input test data.

We have selected multiple condition coverage and MC/DC as coverage criteria to

assess our technique. Interest in generating test data for more stronger criteria,

using search based techniques, is growing. One recent work, carried out almost

in parallel to ours, is by Awedikian et al. [20]. They also considered MC/DC as

the coverage criterion. They considered an approach similar to the one proposed

by McMinn and Holcombe [119] for state based programs, incorporating elements

of control dependencies along with data dependencies to generate event sequence

chains. This provides more guidance to the search. The work is similar to ours.

However, it is more focused on the branch reachability problem.

In the following sections we describe the proposed framework and the experi-

ments on tuning the parameters of simulated annealing, our chosen search tech-

nique. A section on evaluation considers the results of experiments conducted

using the proposed framework.

3.2 Framework Implementation for Refined Test Data

Generation

This section describes how search based techniques have been applied to generate

test data for multiple condition coverage and MC/DC. We propose a framework.

Figure 3.1 describes the high level architecture of the framework. The framework

has three main parts: the instrumentor; the fitness function calculator; and the

optimisation rig.

The Instrumentor takes the class under test (CUT) as input and produces an

instrumented version. Paths and branches, for which data to be generated, are

identified. Based on the coverage criteria, a fitness function is selected and then

using the selected optimisation technique, the desired test data is searched. Java is

used to implement the framework underpinning the work in this thesis. However,

the research questions addressed in this thesis are not concerned with object-

oriented aspects of the language. Although extension of the concepts explored
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to encompass object-oriented elements is not precluded, this is not the subject

of our research. (We would hope that any such extensions would be facilitated

by our choice of Java as the implementation language.) The research questions

largely target traditional imperative language structures. Java is used primarily

for implementation convenience.

Figure 3.1: High Level Architecture of the Framework

3.2.1 Instrumentor

The Instrumentor is an important component of the framework. We used ANTLR

[1] for Java parser generation using the Java grammar [132]. The Abstract Syn-

tax Tree (AST) is generated, walked and instrumented at desired locations in the

code. We used the Java emitter by Trip [177], which walks the modified AST to

generate the instrumented code. The instrumentation scheme is designed to cap-

ture the information required for assessing how well the current test data achieves

an identified purpose (i.e., the input to the fitness function), yet preserving the se-

mantics of the program. The following lines explain the instrumentation scheme.

All conditions are assumed to be in disjunctive normal form (DNF) 1.

If during parsing a control structure of the form
1It is always possible to reduce a condition to such a form [137]
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c00 ∧ c01..c0n ∨ c10 ∧ c11..c1n ∨ ..cn0 ∧ cn1..cnn

is encountered, the instrumentor annotates it with the respective decision

number, conjunct number and clause number.

Here

cij represents jth conjunct of ith clause of the form

(expr)relop(expr).

relop can be any of the relational operators: ≤,≥, <,>,==, ! =

For example consider the following if-branch, the condition portion of which

consists of two clauses and each clause consists of two conjuncts

if((x1 < 15 ∧ x2 > 10) ∨ (y1 > z1 ∧ z1 < 35))

The instrumentor replaces it by the following structure.

if(data.complex(dec#,

data.basic(x1, “ < ”, 15, dec#, clause0, conjunct0) ∧

data.basic(x2, “ > ”, 10, dec#, clause0, conjunt1) ∨

data.basic(y1, “ < ”, z1, dec#, clause1, conjunct0) ∧

data.basic(z1, “ < ”, 35, dec#, clause1, conjunct0)))

The instrumented code can then be compiled by any standard Java compi-

ler. data.basic() and data.complex() are method calls to the object of a Data

class which contains data structures to gather information from all instrumented

branches during execution of the program.

The advantage of this kind of instrumentation is that we can store the infor-

mation about input decision variables as well as the decision itself separately. This

helps us to manipulate it in a flexible way for our purposes i.e., we can incorporate

different cost functions and hence coverage criteria.

One problem that usually occurs with traditional source code instrumentation

is that of undesirable side effects, which can alter the program’s intended beha-
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viour during run time. The suggested instrumentation scheme avoids this pro-

blem. However, if the program contains side effects, the instrumentation scheme

will not make it side effect free. Techniques, such as those proposed by Harman

et al. [82, 80], can be applied to obtain a side effect free version. In this work we

assume all programs are side effect free.

3.2.2 Cost Function

We have chosen the approach level with branch distance strategy to reach the

desired goal [117]. In this strategy, the cost function is devised in such a way to

consider the path leading to the target. Thus the cost function is given as;

f(x) = CurrentDecisionCost+

K ∗NumberOfRemainingBranches

Where K is constant and can be given any value just greater than the highest

branch cost of any of the branches. The advantage of this value is that, it helps

the search to be guided for a path that leads to the target.

When the current branch is the one directly leading to the the target without

any other branches in between then the BranchCost is the summation of costs of

individual conditions in the MC/DC test case under consideration. For all other

branches, leading to this branch, only the cost for branch coverage is calculated.

The cost function has further been explained in Section 3.3.1.

The framework is implemented with routines to calculate cost functions for

many different criteria. Currently it provides cost calculations for:

• For any decision it reaches.

• For any conjunct in the decision.

• For a series of specific conjunct truth assignments for each decision and

• For any identified series of branches (a path).
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During the execution of the instrumented program, the framework also stores

the minimum and maximum value of cost for a condition. This is particularly

helpful for getting information about loop predicates as well as the branches inside

a loop. For example, consider the following code segment:

public void loopTest(int x){

for (int i=0;i<10; i++){

x++;

if (x>50){

target statement;

}

else{

statements;

}

}

}

The target is executed only when the value of x is greater than 40. When the

value is less than or equal to 40, the minimum fitness value guides the search to

select a closer value until the goal is reached. If a false outcome of the branch is to

be taken, then any value of x less than 50 will reach the goal. However, if a value

of 49 is taken, after the loop is executed, the value of x will be 59. If we do cost

function calculation after the loop is executed, we would not be given a solution

until the value of x less than 41 is chosen. However, by keeping the minimum and

maximum values, the framework avoids this problem.

3.2.3 Optimisation Rig

The framework is implemented in a modular form to incorporate different op-

timisation techniques. For proof of concept purposes we have used simulated
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annealing in this work.

3.2.4 Required Test Case Sequence Generation

For multiple condition coverage, all possible combinations in the truth table are

generated. For example, if we have a decision containing two conditions as C1∧C2

then the following sequence of required truth value combinations is generated.

True True

True False

False True

False False

In the case of MC/DC, a minimal sequence of required combinations is gene-

rated. Mathur [113] describes a procedure to generate the minimal set of required

combinations automatically for MC/DC coverage. However, only compound deci-

sions containing a single kind of conditional operator was considered. We modified

the technique to generate test sequences for compound decisions containing both

conjuncts and disjuncts. The procedure is described below.

Consider a decision D consisting of n conditions Ci, where i = 1, 2, 3, ..., n. To

generate a required combination of MC/DC adequate test, the following steps are

followed.

• Construct a table T of size (n+ 1)× (n). T [i][j] is a cell in T at row i and

column j, where i = 0, 1, 2, ....n and j = 0, 1, 2, ....n− 1.

• Populate the cells T [0][n− 1] and T [1][n− 1] with True and False respec-

tively. This gives us the test case sequence for one condition.

• Now we fill the immediate cells surrounding the already filled cells. Starting

from the right check the first operator. If the operator is OR, then populate

the surrounding cells T [0][n − 2], T [1][n − 2], T [2][n − 2], T [2][n − 1] with

False,False,True and False, respectively. If the operator is AND then

populate the cells with True,True,False and True respectively. This gives

us the test case sequence for two conditions.
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• repeat above step increasing one more level. If the operator is the same as

in previous step, then we get the required combination for three conditions.

In case of a different operator, we change the cell value T [2][n − 1] to an

opposite value.

• Repeat the above steps.

3.3 Tuning Parameters

As stated in Chapter 2 the factors affecting SA can be divided in to two categories

(i) Problem specific (ii) Generic.

The problem specific decisions include cost function, search space and neigh-

bourhood. Generic decisions, on the other hand, include initial and final tempe-

rature, the cooling schedule and the rate of cooling.

In search based software testing we found very little work regarding these

factors. The only work that came to our knowledge is by Zhan [195] and a limited

work by Tracey [176]. We conducted experiments to determine suitable values of

simulated annealing parameters.

We chose three problems for this purpose as shown in Table 3.1. The respective

programs have been shown in Appendix A. NestedBr is a custom written program

with a constrained domain. It consists of three input variables and a branch

nesting of two levels. The target is to generate test data for the inner most

branch for the coverage of MC/DC test case (“True True True”).

Triangle is a benchmark program in software testing. Its description has been

given in section 3.4. The target is to generate test data for equilateral triangle.

Quad has been taken from Zhan PhD thesis [195] where it was also used for

SA parameters tuning. It has been written in code form. It consists of three input

variables with a constrained domain. The objective is to generate test data that

cover the false branch

if((x− 310000)x(x− 310000) > 0.5)

For all the three problems we select different ranges and data types (‘int’ and

‘double’) of input variables in order to pose different level of difficulty to the search
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process. For double data type we chose an error limit δ of 0.0005.

Table 3.1: Problems For Parameters Settings
Program No of MC/DC Test Range Data Search

Vars Case Type Space

NestedBr 3 T T T
0 ∼ 1500 int 3.375x1009

0 ∼ 30000 int 2.70x1013

0 ∼ 1500 double 2.704x1019

Triangle 3 T T
−1000 ∼ 1500 int 1.56x1010

−30000 ∼ 30000 int 2.16x1014

−1000 ∼ 1500 double 1.25x1020

Quad 3 T
−5000 ∼ 5000 double 2.0x107

−500000 ∼ 500000 double 2.0x109

3.3.1 Objective (Fitness) Function

In Simulated Annealing, fitness function is important in order to guide the search

to an optimal solution. It gives a measure of ‘goodness’ of a solution with some

chosen benchmark. For control flow coverage analysis, usually distance based

objective functions are used. The value, usually called ‘cost’ of a solution, gives a

measure of how far it is away from satisfying a coverage or ‘sub’ coverage criterion.

Therefore, we usually refer to the objective function as the cost function. The

cost function that we chose for this work is similar to the one proposed by Tracey

[174]. It has been shown in Table 3.2. This a modified form of the work proposed

by Korel [100]. The fitness function is based on evaluating branch predicates.

It gives a value of 0 if the branch predicate evaluate to the desired value and a

positive value otherwise. The lower the value, the better the solution.

3.3.2 Search Space

The search space includes all the possible solutions that are available to the search

process. Thus if a problem contains input variables each with a certain range of

values, then the search space is made up of all the combinations of these variables’

values. In search based software testing the search space is usually driven by the

requirements, therefore, is not be a factor to be tuned. However, it does effect

other parameters such as neighbourhood proportion and hence can greatly effect
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Table 3.2: Cost Function
Predicate Value of Cost Function F
Boolean if TRUE then 0, else K

E1 < E2 if E1 − E2 < 0 then 0, else E1 − E2 +K

E1 ≤ E2 if E1 − E2 ≤ 0 then 0, else E1 − E2

E1 > E2 if E2 − E1 ≤ 0 then 0, else E2 − E1 +K

E1 ≥ E2 if E1 − E2 ≤ 0 then 0, else E2 − E1

E1 = E2 if abs(E1 − E2) = 0 then 0, else Abs(E1−
E2) +K

E1 6= E2 if abs(E1 − E2) 6= 0 then 0, else K

E1 ∨ E2 (E1 min(cost(E1), cost(E2))
unsatisfied, E2 unsatisfied

E1 ∨ E2 (E1 0
unsatisfied, E2 satisfied

E1 ∨ E2 (E1 0
satisfied, E2 unsatisfied

E1 ∨ E2 (E1 0
satisfied, E2 satisfied

E1 ∧ E2 (E1 cost(E1)+cost(E2)
unsatisfied, E2 unsatisfied

E1 ∧ E2 (E1 cost(E1)
unsatisfied, E2 satisfied

E1 ∧ E2 (E1 cost(E2)
satisfied, E2 unsatisfied

E1 ∧ E2 (E1 0
satisfied, E2 satisfied
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search efficiency. Therefore due consideration is given to search space while tuning

other parameters. In our test problems for tuning parameters, we have chosen

different search spaces from small to very large.

3.3.3 Neighbourhood

In search based test data generation, the neighbourhood is the maximum range,

called the ‘Move Strategy’ [195], within which a randomly chosen input variable

is incremented or decremented with a randomly chosen value in order to make a

move. This is usually taken as some fraction of the range of the input variables’

domain. An appropriate value for move step-size is important. The search process

will take too long if a step sizes is small. On the other hand, a large step-size may

cause the search process merely sampling from a large portion of search space

may not be able to amply explore the area where the solution lies [38].

There are usually two approaches applied for choosing a step-size: the ‘fixed-

strategy’ and the ‘dynamic or variable-strategy’ [193, 195]. In the fixed-strategy,

the step-size remains constant through out the search process. In case of the

variable-strategy, the step-size changes as the search proceeds. The concept is

based on the idea that during the initial temperature, when the probability of

accepting ‘bad’ moves is very high, exploration of the search space is important

and hence a large step-size is required. On the other hand, at low temperature

some areas of the search space need to be exploited and hence a smaller move

step-size is more suitable [193].

In the domain of software testing, only Zhan [195] has conducted a study with

both strategies. Zhan experimented with step-sizes of 2% and 0.2% of the input

variables’ domain for fixed-strategy. Experiments for variable-strategy conduc-

ted with initial step-sizes of 20% and 2% and were allowed to decrease with

the same rate as the cooling temperature rate with each iteration of the outer

loop. In most cases, the fixed-strategy with larger step-size gave better results.

The variable strategy performed very poorly. However, this has been because of

the fast decrease in the move step-size. For example, for an initial move step-

size of 2%, temperature decrease rate of 0.8 and a cooling schedule of 100×300
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(innerLoops×OuterLoops), the step-size becomes about 0.00002% of the search

space only after fifty outer loop iterations. This makes it almost impossible for the

algorithm to find a solution if a solution is not found during the intitial iterations.

Therefore, the author suggested using longer inner loop iterations and a smaller

move step-size decrease.

Tracey [176] also performed experiments with the fixed-strategy. His study

does not show much effect of this parameter on the performance of the algorithm.

However, the performance measure concerned coverage achievements only and no

studies were conducted to compare the success rate and number of fitness function

executions (i.e., the efficiency).

3.3.4 Temperature

Two important factors related to temperature are initial temperature and final

temperature at which the SA terminates.

The initial temperature is usually high enough, so that the acceptance pro-

bability is close to one. So almost every move is accepted. However, a very high

initial temperature may cause a long computation time or bad performance [151].

Kirkpatrick et al. [98] suggested an initial temperature which allows a fraction

of all the ‘bad’ moves to be accepted according to an initial acceptance ratio χo. χo

is the ratio of moves accepted to the total number of moves made. The procedure

proposed by Kirkpatrick et al. is to chose an initial high temperature randomly

and perform a number of random moves. The ratio of accepted moves is compared

with χo. If it is less than χo, then the temperature is multiplied by 2. The process

is repeated until the ratio exceeds χo. This is generally referred to as ‘temperature

doubling’.

We also find many other schemes in SA literature for initial temperature such

as those proposed by Johnson et al. [92], Park and Kim [151], Ben-Ameur [23].

In this thesis, we have used the above mentioned approach by Kirkpatrick et al.

As the SA algorithm progresses, the temperature cools. At low temperature,

‘bad’ moves are accepted with low probability. The process continues until some

termination criterion is reached. Many termination criteria have been proposed.
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A preferred method is to stop SA when a predetermine maximum count of the

inner loop iterations is reached. Johnson et al. [92] as cited in Park and Kim

[151] proposed a method, which increments a counter by one, when no ‘bad’ move

is accepted during one outer loop iteration. If a move is accepted, the counter is

reset to zero. SA is stopped, when the counter exceeds a predetermined value. In

our work we have implemented both approaches.

In search based testing literature, Zhan [195] proposed an initial temperature

of 0.7, Mansour and Salame [111] proposed a value of 0.90 whereas Tracey [176]

chose a value of 0.95. However, it is not clear why these values were selected.

For final temperature, Zhan and Tracey considered a predetermined iterations

of inner loop as the stopping criterion. Mansour and Salame [111] chose a final

temperature of 2−30 as the stopping criteria.

3.3.5 Cooling Schedule and rate

The cooling schedule constitutes the number of trials, at which the temperature

remains constant, before it is cooled down to a lower value at a certain cooling

rate. This is also called as Markov chain length [38] or epoch length [151].

The Markov chain length can be set proportional to the size of the problem or

the size of the neighbourhood [151]. However, in software testing, the neighbou-

rhood size can be infinite as in case of a ‘double’ value solution [195]. Therefore,

a few trial sizes are experimented with before selecting the final size.

The cooling rate α is also an important parameter. A high cooling rate will

cause SA to converge too quickly without enough exploration of the search space,

thus causing it to stuck in a local minimum. On the other hand a low cooling

rate can be computationally expensive as it will take too long to converge to a

solution. It is important to choose a cooling rate, which allow enough exploration

and exploitation of the search space.

Many schedules have been proposed. The most common one involves mul-

tiplying temperature Ti by α at each Markov chain length to get the following

temperature Ti i.e., Ti = αT . In SA literature usually a value 0.8 to 0.99 is

suggested for α [187, 157]. We also carried out experiments in this range.
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3.3.6 Experimentation Results for Parameters Setting

The results of the experiments have been shown in the following lines with the a

conclusion at the end of this section.

Initial Threshold

For initial threshold, following experimental set up was used.

• initial Temperature=100;

• Move Strategy: Fixed with a parameter of 0.005;

• Cooling rate : 0.8

• Inner loop iterations(IL): 100

• Outer loop Iterations(OL): 1500

• Termination : Either data is found or no move is accepted for 150×IL or

IL×OL is reached.

Table 3.3 summarises the results. The values in cells indicate the cost of search

in terms number of fitness function evaluations and the corresponding success rate,

which has been given in brackets.

In case of NestedBr initial acceptance ratio had little effect. An initial Thre-

shold of 0.6 slightly perform better than other values. For Triangle and Quad,

the search performed better mostly at a value of 0.6. In all the experiments the

search was usually more expensive at higher threshold values.

Move Strategy

For fixed strategy, we experimented with four step-sizes i.e., 0.5%,1%, 2% and 5%

of input variable range. Following experimental set up was used.

• Initial Temperature:100

• Initial threshold: 0.6
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• Move Strategy: Fixed with a parameter of 0.005, 0.01, 0.02 and 0.05

• Cooling rate : 0.8, 0.9 and 0.95

• (IL)x(OL): 250×600, 100×1500

• Termination : Either data is found or no move is accepted for 60×IL and

150×IL respectively for 250×600 and 100×1500 or maximum limit of itera-

tions is reached.

Tables 3.4, 3.5, and 3.6 show the results. In case of problems NestedBr and

Triangle, for short ranges of input variable, a step-size of 0.05 gave much better

results. Whereas 0.005 gave better results for large input ranges. For Quadratic,

for shorter input range, a step-size of 0.02 gave much better results, whereas step-

size of 0.005 was dominant in case of the larger input range. Thus in case of fixed

strategy, for large input spaces, it is suggested to use a small step-size and vice

versa.

For variable neighbourhood strategy, three initial step sizes were used i.e., 2%,

10% and 20% of input variable range. Following experimental set up was used.

• Initial Temperature:100

• Initial threshold: 0.6

• Move Strategy: Variable with a parameter of 0.02, 0.1 and 0.2

• Cooling rate : 0.8

• (IL)x(OL): 250×600, 100×1500

• step-size decrease rate: 0.95 at 10IL of 100×1500 schedule for small search

spaces and 25IL for large search spaces.

• Termination : Either data is found or no move is accepted for 60×IL and

150×IL for 250×600 and 100×1500 schedule respectively or maximum limit

of iterations is reached.
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In addition to the usual SA parameters, another parameter i.e., step-size de-

crease rate is also required to be set up. With limited experiments, we chose such

values in order to allow sufficient iterations at a reasonable step sizes. Table 3.7

summarises the results. It can be seen that the search performed better at shorter

step-size of 0.02 for both larger and smaller search spaces.

Comparing fixed and variable strategies, we can see from Tables 3.4, 3.5, 3.6,

and 3.7 that there is no clear winner. Therefore, we selected fixed strategy with

shorter Markov chain length for further experiments.

Cooling Rate

For cooling rate we performed experiments for fixed strategy only. The results

are concluded from the same experimental set up as for fixed strategy. As can be

seen from Tables 3.4, 3.5, and 3.6, a cooling rate of 0.8 performed much better

and therefore chosen in our experiments.

Markov Chain Length

For Markov chain length, we chose two different schedules short and long. For

short schedule, a length of 100×1500 and for long, a length of 250×600 was

chosen. As evident from Tables 3.4, 3.5, and 3.6, the shorter length Markov chain

performed best most of the time and therefore is chosen for further experiments

in this thesis.
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Table 3.4: Experiment Results for a fixed neighbourhood strategy at a cooling
rate of 0.8

Program Variance Range 250×600 100×1500
Executions Success Executions Success

NestedBr

0.01
I 4719 100% 2972 100%
II 4440 100% 2812 100%
III 4496 100% 3157 100%

0.02
I 3400 100% 1915 100%
II 6853 100% 3538 100%
III 3143 100% 1802 100%

0.05
I 2716 100% 1513 100%
II 10782 100% 6005 100%
III 2470 100% 1206 100%

0.005
I 7408 100% 4507 100%
II 4782 100% 3953 100%
III 8095 100% 4752 100%

Triangle

0.01
I 3946 100% 2020 100%
II 7539 86.67% 4326 100%
III 32326 40% 32055 50%

0.02
I 3242 100%% 1745 100%
II 8919 93.33% 4872 100%
III 48317 30% 29584 30%

0.05
I 3147 100% 1719 100%
II 12249 100% 8560 100%
III 43150 0% 38110 0%

0.005
I 6973 100% 3819 100%
II 4862 100% 3496 100%
III 33510 53.33% 33834 53.33%

Quad

0.01
I 221 100% 252 100%
II 6786 100% 7558 100%

0.02
I 216 100% 140 100%
II 7452 100% 10928 96.67%

0.05
I 261 100% 220 100%
II 22941 73.33% 23878 50%

0.005
I 386 100% 460 100%
II 2966 100% 4096 100%
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Table 3.5: Experiment Results for a fixed neighbourhood strategy at a cooling
rate of 0.9

Program Variance Range 250×600 100×1500
Executions Success Executions Success

NestedBr

0.01
I 7630 100% 4505 100%
II 9724 100% 3886 100%
III 7465 100% 4098 100%

0.02
I 5740 100% 2911 100%
II 11581 100% 6377 100%
III 4733 100% 2450 100%

0.05
I 4423 100% 2219 100%
II 18012 100% 10380 100%
III 3943 100% 1814 100%

0.005
I 11002 100% 6732 100%
II 7406 100% 6775 100%
III 10871 100% 6234 100%

Triangle

0.01
I 5855 100% 3106 100%
II 9027 100% 5221 100%
III 60121 30% 48134 13.33%

0.02
I 4947 100% 2205 100%
II 12455 100% 9193 100%
III 49425 13.33% 43742 30%

0.05
I 5118 100% 2704 100%
II 19964 93.33% 13010 100%
III 53471 13.33% 41627 20%

0.005
I 10045 100% 6258 100%
II 8896 100% 4081 100%
III 38571 80% 36245 53.33%

Quad

0.01
I 181 100% 228 100%
II 4763 100% 5768 100%

0.02
I 193 100% 218 100%
II 18107 100% 9734 100%

0.05
I 276 100% 395 100%
II 26621 86.67% 19620 96.667%

0.005
I 387 100% 717 100%
II 3602 100% 3756 100%
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Table 3.6: Experiment Results for a fixed neighbourhood strategy and cooling
rate of 0.95

Program Variance Range 250×600 100×1500
Executions Success Executions Success

NestedBr

0.01
I 10841 100% 6335 100%
II 12018 100% 7153 100%
III 10437 100% 6328 100%

0.02
I 8923 100% 4618 100%
II 21329 100% 10126 100%
III 6669 100% 4298 100%

0.05
I 7440 100% 4626 100%
II 28721 100% 15281 100%
III 5549 100% 3292 100%

0.005
I 17730 100% 10451 100%
II 12749 100% 5958 100%
III 16717 100% 9547 100%

Triangle

0.01
I 9519 100% 4596 100%
II 14292 93.33% 7654 100%
III 69548 40% 45049 20%

0.02
I 8390 100% 4385 100%
II 20631 93.33% 10263 93.33%
III 75902 13.33% 51176 13.33%

0.05
I 5846 100% 5304 100%
II 31402 100% 14482 100%
III 62356 30% 44454 13.33%

0.005
I 22955 100% 8019 100%
II 12289 100% 5539 100%
III 58364 70% 30111 80%

Quad

0.01
I 216 100% 212 100%
II 4252 100% 6703 100%

0.02
I 170 100% 174 100%
II 7324 100% 15145 100%

0.05
I 255 100% 264 100%
II 29976 86.67% 26287 80%

0.005
I 299 100% 687 100%
II 4327 100% 3108 100%
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Table 3.7: Experiment Results for a Variable neighbourhood strategy
Program Initial Range 250×600 100×1500

Step-Size Executions Success Executions Success

NestedBr

0.1
I 3216 100% 1528 100%
II 13535 100% 10320 100%
III 2325 100% 1264 100%

0.2
I 4893 100% 2192 100%
II 20508 100% 15948 100%
III 4379 100% 1758 100%

0.02
I 3570 100% 1951 100%
II 6369 100% 3603 100%
III 3276 100% 1882 100%

Triangle

0.1
I 4712 100% 2054 100%
II 24025 100% 17535 100%
III 52054 40% 51806 53.33

0.2
I 7252 100% 2884 100%
II 28022 100% 24186 100%
III 71924 66.67% 62737 46.67%

0.02
I 3065 100% 1692 100%
II 6992 100% 7143 100%
III 41827 73.33% 56644 33.33%

Quadratic

0.1
I 393 100% 443 100%
II 21315 100% 43328 93.33%

0.2
I 937 100% 1852 100%
II 22762 93.33% 27649 60%

0.02
I 198 100% 156 100%
II 5546 100% 8863 100%
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3.4 Experimentation

This section describes experiments conducted to generate test data for MC/DC

and multiple condition coverage. Test data is also generated using random testing.

Both techniques are then compared and analysed. The aim of the experiments is

to provide evidence that:

• Search based test data generation techniques can be extended to generate

test data for MC/DC and multiple condition coverage.

• The proposed technique is a more efficient means than random testing for

generating test data to achieve coverage of more complex structures.

3.4.1 Test Objects

We performed experiments with benchmark testing programs which are taken

mostly from the current software testing literature. Following test objects are

used for evaluating the proposed approach. The test objects have been given in

Appendices A and B.

Triangle

Triangle is a benchmark program and has been used many times in many works

related to software testing. It takes three input variables as sides of a triangle and

decides whether these constitute a triangle and if so, the type of the triangle. A

variant of this program was used that contains more complex branching structures.

All the variables are of type integer and their range is from -1000 to 1500.

CalDate

CalDate is taken from May’s PhD thesis [115]. This program converts the date

given as day, month and year into a Julian date (not including the fractional

time part). The Julian date is then calculated as the number of days from the

1st January, 4713 B.C. If the date to be converted is after 15th October 1582,
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which is the date of introduction of the Gregorian calender, then the Julian date

is adjusted. The Julian date is then returned.

Quadratic

Quadratic program determines the roots of a quadratic equation. It takes three

integer input variables in the range -1000 and 1000 and determines whether the

resulting equation is quadratic and if so, whether it has real or complex roots.

Complex

Complex is an artificial program with difficult branching structure. It consists of

five input variables in the range -1000 to 1500. The purpose of the program is to

check the MC/DC test data generation for difficult nested branches.

Expint

Exponential Integral Program, is based on ‘expint’ routine from [180]. It consists

of two input variables, First is of type integer and the second one is of type double

in the range -1500 to 1500.

3.4.2 Experimental Setup

We used the following parameters for simulated annealing based on the experi-

ments in the previous section.

Move strategy: fixed

Initial temperature threshold: 0.6

Geometric temperature decrease rate: 0.8

Number of iteration in inner loop: 100

Maximum number of iterations in outer loop: 1500

Stopping criteria: Either a solution is found or maximum number of iterations

(100x1500) is reached or no move is made for 150xIL.
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3.4.3 Analysis

To evaluate the performance of the test data generation for MC/DC and mul-

tiple condition coverage, random testing is also carried out as a baseline testing

approach.

Results of the experiments are presented in Table 3.9 and 3.8. All results are

averaged over thirty runs of each program. Coverage is calculated by dividing

the number of required combinations covered by test data to the total number of

required feasible combinations. It is shown in columns 4 and 7, in both tables

for random testing and SA. Columns 5 and 8 shows the success rate, which is

calculated by dividing the number of time the data is found to the total number

of runs. The average number of executions taken to search the required test data

is shown in columns 6 and 9 respectively. In the following lines we discuss the

results for each program.

For Triangle, SA did poorly for the first and second branch in both multiple

condition and MC/DC coverage criteria. However, performed much better for

third condition, which required test data generation for equilateral triangle.

CalDate was an easy program with a limited search space of input variables.

Same required combination of test case sequences was required to satisfy both mul-

tiple condition and MC/DC coverage. Random testing and SA perform equally

better.

For Quadratic program again random testing perform better than SA. Same

required combination of test sequences for MCDC and condition coverage was

also required here. Random testing was more successful in finding the data for

the third condition, where SA stuck more frequently in local minima.

SA outperformed random testing in case of Complex program. Random testing

especially had difficulty with finding test data for the last two decisions. SA was

much more efficient in terms of cost function evaluation as well as success rate.

In case of Expint, condition 1 was most difficult. SA performed much better

in this case as well.
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3.5 Conclusion

In this chapter we demonstrated how search based test data techniques can be

used to generate test data at the lowest level of branch predicate. We adopted a

rigorous empirical procedure to select the best parameter setting for SA. Using

these parameters we generated the test data at the lowest level using a combine

instrumentation/search strategy. This enabled us to target more practical cove-

rage criteria such as MC/DC and multiple condition coverage. We also compared

the performance of search based testing with random testing for these criteria.

For easy targets, search based test data generation was more expensive in terms

of number of fitness function evaluations, but mostly outperformed random tes-

ting for difficult branches. Random testing, as usually is the case, failed to find

test data in cases where a narrow domain of search space contained the required

input data. A reasonable strategy will be to hybridise search based techniques

with random testing.
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Chapter 4

Application of Genetic

Algorithms to Simulink Models

4.1 Introduction

Search based test data generation has been applied mostly to code. However,

modern software engineering has seen increasing emphasis on the use of V&V at

higher levels of abstraction, and the exploitation of the models that arise at higher

levels for the purpose of test data generation [55, 93, 94]. One such design and

modelling framework, used extensively in control system design is is MATLAB

Simulink. Zhan and Clark [196] have demonstrated the application of search

based test data generation techniques to Simulink models. Their work shows that

code-oriented search based techniques can be applied in a very similar way to the

Simulink models. The approach was evaluated with simulated annealing, which

out performed random testing in most cases. This chapter proposes an extension

of the above work suggesting the use of genetic algorithms. The results show that

genetic algorithms can generate test data for Simulink models more efficiently.

The chapter is structured as follow. In the first section a short introduction to

Simulink model is presented, followed by the application of search based test data

generation technique to such models and the existing work. This is followed by

the section which describes how genetic algorithms have been applied to Simulink

models. The last section presents the results of experiments conducted to compare
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the performance of simulated annealing and genetic algorithms.

4.2 Background

4.2.1 Simulink

Simulink is a software package from MathWorks [91] for modelling, simulating,

and analysing dynamic systems. A Simulink model consists of two main elements:

blocks and lines. Blocks are the functional units, used to generate, manipulate

and output signals. Blocks are connected by lines that provide the mechanism

to transfer signals across the connection. A block can be a parent container

containing other blocks, each modeling a subsystem or sub-functionality.

The Simulink library consists of a large number of blocks. For test data ge-

neration using control flow coverage measures, we are interested in blocks that

provide branching structures. Many such blocks can be found such as ‘If’ and

‘Switch’ blocks. An ‘If’ block can take any number of inputs and based on these

inputs, construct output conditions. The conditions’ out ports are connected to

the respective ‘If Action Subsystem’. The subsystem is executed when the cor-

responding output condition becomes true. For example, Figure 4.1 corresponds

to the pseudocode segment in listing 4.1.

Figure 4.1: Simulink If Block

The ’Switch’ block is the most commonly used branching block. It consists
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1 i f ( ( u1>0)&&(u1<10) ) {
2 output (2 )
3 }
4 else i f ( u1==10){
5 output (3 )
6 }
7 else {
8 output (4 )
9 }

Listing 4.1: Pseudocode equivalent of Figure 4.1

of four ‘ports’: three ‘in’ ports and one ‘out’ port. The middle ‘in’ port provides

a conditional value. If this value is greater than or equal to some ‘threshold’

value then the first ‘in’ port value is the output or vice-versa. Thus in Simulink a

‘Switch’ block can be a considered as a convenient way of writing the if-then-else

structure.

The ‘ConditionalOperator’ and ‘LogicalOperator’ blocks provide conditional

and logical operations in the model. Consider the example of the Quadratic

model as shown in Figure 4.2 from Zhan [195]. The model demonstrates the

above mentioned blocks. This model has three input variables; ‘IN-A’, ‘IN-B’ and

‘IN-C’. The ‘Product’ block multiplies all its inputs. The ‘Out’ block gives the

output. The model calculates if an equation of the form:

ax2 + bx+ c = 0

is both truly quadratic (i.e., has degree 2) and has real-valued (possibly identical)

roots. If so, ‘1’ is output; otherwise, the output is ‘-1’. Listing 4.2 provides the

equivalent code listing of the model.

1 i f ( IN−A != 0) && (IN−B∗IN−B)>=(4∗IN−A∗IN−C)

2 output (1 )

3 else

4 output (−1) ;

Listing 4.2: Equivalent code listing of Quadratic model

Search based test data generation techniques measure how ‘close’ a proposed

test input vector comes to achieving the required test goal. They do this by
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Figure 4.2: A Simulink Model for the Quadratic Equation.

monitoring the execution of the system description. Though useful feedback could

in theory be provided by other means, execution of the system description is

almost universally adapted. Our approach to obtaining feedback assumes that the

model is executable (simulatable). In search based test data generation generally

significant restrictions have been placed on data types that may participate in

predicate expressions (e.g., relational expressions). The most common restriction

is that predicates involve only scalar quantities and occasionally booleans. Some

work [15, 103] has attempted to incorporate other data types. Our implementation

of search based test data generation for MATLAB/Simulink restricts predicates to

relational operators over numeric variables. (In MATLAB Simulink the default

data type is double with boolean true and false represented by unsigned 8-bit

integers 1 and 0 respectively).

4.2.2 Search Based Test Data Generation for Simulink Models

Simulink has been popularly used as a higher level system prototyping or design

tool in many domains, including aerospace, automobile and electronics systems.
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This facilitates investigation (e.g. for both verification and validation purposes

as well as optimisation) of the system under consideration at an early stage of

development. Code can then be generated either manually or automatically. Si-

mulink is playing an increasingly important role in system engineering and the

verification and validation of Simulink models is becoming vital to users. Search

based test data generation (SBTDG) techniques have seen little application to

Simulink models, which is surprising since the execution model of Simulink would

seem to allow analogous SBTDG techniques to be applied as for code. Here we

build on earlier work by Zhan and Clark [195]

4.2.3 Existing Work

Zhan and Clark [196] proposed search based techniques for generating test data

for Simulink models. They successfully generated input test data for structural

and mutation testing [197]. They also proposed a technique to address the state

problem in search based testing [198] (extending code-based work by McMinn

[121]

The search techniques that were applied for test data generation are random

testing, which has been the choice for some of the existing tools for Simulink

models, and simulated annealing. Various models were used for experiments.

Results showed that SA was more efficient than random search in finding input

test data. The work that we propose in this chapter is the extension of the above

work. We suggest using GAs for test data generation as our results show that it

may be more efficient in generating test data for Simulink models than SA.

4.2.4 GAs for Test Data Generation of Simulink Models

SA can be a useful technique for generating test data as suggested by existing

work [176]. The existing work for Simulink models is in agreement with this.

However, there are situations where SA may not be efficient in finding the test

data i.e., where the search space is complex and the input domain is very large.

In such situation there is a need to apply a more generalized search technique.
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That is why, we see that GAs have been the most common choice in search based

test data generation techniques.

We believe that GAs will also be more successful in case of Simulink models.

However, before making any such claim, we need to have some foundation, either

theoretical or empirical. We adapted the later approach for our work where we

have attempted to make a comparative study of SA and GA, assuming that either

of the two algorithms will perform better. We used Zhan’s [195] existing prototype

tool with some modification for SA. We also incorporated Genetic Algorithm and

Direct Search toolbox (GADS) by The MathWorks, inc. [2] for GA in the same

tool.

4.2.5 Fitness Function

In search based testing, fitness function plays a vital role in guiding search to

achieve a goal. Since the application of search based test data generation technique

to a Simulink model is very similar to code based programs, the same fitness

function can be used. In the work by Zhan and Clark [196], the fitness function

proposed by [174] is used with the modification proposed by [26]. Table 4.1 shows

this fitness function. The same fitness function is used in this chapter for both

SA and GA. In Simulink, as stated earlier, the output of all branches is calculated

irrespective of branch selection. This gives the added advantage of calculating

value at any point in the model. Probes can be inserted at appropriate locations

to collect the data.

4.3 Experimentation

We performed two sets of Experiments. In the first set, we considered the ‘all-

paths-coverage’ criterion of models as proposed in [196], where a path is made of

an identified combination of switch blocks. Fulfillment of the structural adequacy

criterion will require a test set to exercise all such combinations of switch predi-

cates. For example, if a model contains two switch blocks S1 and S2, then the

satisfaction of the above criterion will require finding test data for four ‘paths’,
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Table 4.1: Cost Function
Predicate Value of Cost Function F
Boolean if TRUE then 0, else K

E1 < E2 if E1 − E2 < 0 then 0, else E1 − E2 +K

E1 ≤ E2 if E1 − E2 ≤ 0 then 0, else E1 − E2 +K

E1 > E2 if E2 − E1 ≤ 0 then 0, else E2 − E1 +K

E1 ≥ E2 if E1 − E2 ≤ 0 then 0, else E2 − E1 +K

E1 = E2 if abs(E1 − E2) = 0 then 0, else Abs(E1−
E2) +K

E1 6= E2 if abs(E1 − E2) 6= 0 then 0, else K

E1 ∨ E2 (E1 (cost (E1) x cost (E2))/ (cost (E1)+cost
unsatisfied, E2 unsatisfied (E2))

E1 ∨ E2 (E1 0
unsatisfied, E2 satisfied

E1 ∨ E2 (E1 0
satisfied, E2 unsatisfied

E1 ∨ E2 (E1 0
satisfied, E2 satisfied

E1 ∧ E2 (E1 cost(E1)+cost(E2)
unsatisfied, E2 unsatisfied

E1 ∧ E2 (E1 cost(E1)
unsatisfied, E2 satisfied

E1 ∧ E2 (E1 cost(E2)
satisfied, E2 unsatisfied

E1 ∧ E2 (E1 0
satisfied, E2 satisfied
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i.e. S1− true S2− true, S1− true S2−false, S1−false S2− true, and

S1 − false S2 − false.

The ‘all-path-coverage’ criterion, however, in most cases, may not be practical,

where the number of branching blocks is high. For example a model which contains

15 branching blocks may require to satisfy 32768 such ‘paths’, which may be

computationally very expensive as well as impractical in a reasonable amount of

time. Moreover, many such paths may be infeasible. Therefore, in the second set

of experiments, we considered a more practical criterion of ‘branch coverage’ for

three different Simulink blocks: Relational, Conditional and Switch [195]. The

branch coverage criterion requires all conditional behaviours of the blocks to be

executed at least once. For example, a LogicalOperator block has two conditional

behaviours: being evaluated to ‘TRUE’ or ‘FLASE’. Therefore, in the model in

Figure 4.2, where there are four branching blocks (RO∼=, RO>=, LogicalAND

and Switch), we have eight such branch coverage requirements.

The aims of the experiments are to assess:

• The degree to which a genetic algorithms based test data generation ap-

proach can generate test data for MATLAB Simulnk models.

• To compare genetic algorithms and simulated annealing based search ba-

sed test data generation approaches in the context of MATLAB Simulink

models.

4.3.1 Experimental Objects

For experiments, we used the models from the work of Zhan and Clark [196, 195].

These models have been summarised in Tables 4.2 and 4.3 and have been given

in appendix B. Following is the description of the models. All the models, except

Calc-Start-Progress are tested with double values in the range between -100 to

100 inclusive.
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SimpSw

This is a simple model consisting of two ‘Switch’ blocks. The threshold value for

‘Switch1’ is 100 and for ‘Switch2’ is 50.

Quadratic v1

The model consists of 3 Switch blocks. The threshold value for ‘Switch’, ‘Switch1’

and ‘Switch2’ are 0.5, 1 and 1 respectively.

RandMdl

This model is more complex than the above two models. It consists of 4 switch

blocks which gives a total of 16 combinations ‘paths’. The threshold values for

‘Switch1’, ‘Switch2’, ‘Switch3’ and ‘Switch4’ are 8100, 1000, 0 and 8100 respec-

tively. Switch2 and Switch4 provides an equivalent of ‘nested if’ structure in the

code.

CombineMdl

CombineMdl is a combination of both Quardatic v1 and RandMdl. This makes

the model more complex and difficult for test data generation process. It consists

of 7 switch blocks which gives a total of 128 ‘paths’.

Tiny

Here is the description of the model given by the author in [195]. “This is a small

and highly artificial program with a highly constrained solution domain. It works

as follows. There are three inputs X, Y, Z. When the predicate expression

((Y − Z)× (Z −X) >= 1000) ∧ (Z × Z >= 8950)

is TRUE, the output will be (X+Y ). Otherwise, the output will be (Z×Z)”.

Quadratic v2

This model has been described in Section 4.2.
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Table 4.2: Experimental objects1
Model No of No of No of

Input Var Switch Blocks Paths
SmplSw 2 2 4

Quadratic v1 2 3 8

RandMdl 3 4 16

CombineMdl 5 7 128

Table 4.3: Experimental objects2
Model No of No of No of

Input Var Blocks Branches
Tiny 3 4 8

Quadratic v2 3 4 8

ClacStart 3 25 50

Calc-Start-Progress

Following is the description from the author in [195] “This is also a subsystem

of an engine controller system. It determines the overall progress of any starting

process based on three signals indicating the status of various components of the

system. Its three inputs are all integers, with a range of [1 .. 5000]. ”

4.3.2 Experimental Setup

We used the following SA and GA configuration for both sets of experiments.

Simulated Annealing Configuration : We used the standard SA algorithm

with the following parameters. The parameters values are based on the existing

work in [195], where the parameters were optimized after a number of experiments.

• Move strategy: Fixed-strategy with a parameter of 0.02

• Geometric temperature decrease rate: 0.9

• Number of inner loop iterations: 100
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• Maximum number of outer loop iterations: 300

• Stopping criteria: Either a solution is found or max number of iterations is

reached.

Genetic Algorithm Configuration : We used the GADS toolbox [2],

mostly, in its default configuration. Following is a summary of these parame-

ters.

• Initial population size=100 (50 for SmplSW and Quadratic v1).

• Maximum number of generations: 300

• Selection: Stochastic uniform which chooses the parents using roulette wheel

and uniform sampling [2].

• Elite count: 2

• Crossover rate: 0.8

• Mutation function: Gaussian which creates the mutated children using

Gaussian distribution (scale=.5, shrink=0.75).

• Stopping criteria: Either a solution is found, a stall limit of 100 generations

is reached, or the maximum number of generations limit is reached.

4.3.3 Analysis

Tables 4.2 and 4.3 show the number of paths (combinations) and branches for

the models. For analysis we did not consider trivial combinations. We defined a

trivial path or branch as the one for which both the algorithms found required

data easily, i.e., SA took less than 100 executions whereas GA took 3 or fewer

generations to find the test data in all runs. Each algorithm was run 30 times for

all the models to obtain statistically significant results.

Our null hypothesis is that neither of the algorithms is better than the other.

The two variables we tested our hypothesis on, are success rate and number of
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Table 4.4: GA and SA comparison for Quadratic v1 Model

No Combinations Mean no of Success rate
Evaluations per 30 runs
GA SA GA SA

1 1 1 1 50 69 30 30
2 1 1-1 431 2164 30 30
3 1-1 1 697 576 25 30
4 1-1-1 50 48 30 30
5 -1 1 1 198 258 30 30
6 -1 1-1 1127 2287 13 30
7 -1-1 1 447 344 30 30
8 -1-1-1 253 212 30 30

executions each algorithm took to find the input test data. Tables 4.4 to 4.9 give

the results of experiments.

Both algorithms achieved 100% coverage for all the branches in both experi-

ments. However, when compared for success rate, in experiment 1, GA performed

better than SA. GA achieved a much higher success rate in more complex models.

In ‘Quadratic v1’ SA showed better success rate for two of the combinations. In

experiment 2, the performance of both the algorithms was not much different.

In experiment 1, GA required less number of fitness evaluations to find a

solution for simple models but SA performed much better than the GA for more

complex models. In case of experiment 2, however, GA performed much better

for more complex models.
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Table 4.5: GA and SA Comparison for Random Model

No Combinations Mean no of Success rate
Evaluations per 30 runs
GA SA GA SA

1 1 1 1 1 2995 402 21 5
2 1 1 1-1 1250 716 10 9
3 1 1-1 1 100 72 30 8
4 1 1-1-1 100 88 30 7
5 1-1 1 1 100 288 30 16
6 1-1 1-1 100 248 27 8
7 1-1-1 1 100 175 30 23
8 1-1-1-1 100 245 30 30
9 -1 1 1 1 2233 2882 18 11
10 -1 1 1-1 2554 453 24 10
11 -1 1-1 1 100 348 30 11
12 -1 1-1-1 100 1023 30 9
13 -1-1 1 1 100 84 30 12
14 -1-1 1-1 100 294 30 20
15 -1-1-1 1 100 168 30 30
16 -1-1-1-1 100 183 30 30

Table 4.6: Combine Model GA and SA Comparison

No Combination

Mean no of Success

Evaluations per 30 runs

GA SA GA SA

1 1 1 1 1 1 1 1 3060 480 23 6

2 1 1 1 1 1 1-1 1823 337 22 10

3 1 1 1 1 1-1 1 4567 522 21 4

4 1 1 1 1 1-1-1 4831 811 16 2

5 1 1 1 1-1 1 1 1600 624 10 3

6 1 1 1 1-1 1-1 1127 1014 11 2

7 1 1 1 1-1-1 1 2400 590 8 5

8 1 1 1 1-1-1-1 2789 629 9 7

9 1 1 1-1 1 1-1 183 264 30 9

continued on next page
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Table 4.6: Combine Model GA and SA Comparison

No Combination

Mean no of Success

Evaluations per 30 runs

GA SA GA SA

10 1 1 1-1 1-1 1 1308 304 25 5

11 1 1 1-1 1-1-1 1479 327 28 10

12 1 1 1-1-1 1 1 100 276 30 25

13 1 1 1-1-1 1 1 103 351 29 8

14 1 1 1-1-1 1-1 107 245 30 9

15 1 1 1-1-1-1 1 1104 331 26 10

16 1 1 1-1-1-1-1 1138 452 26 4

17 1 1-1 1 1 1 1 114 402 29 19

18 1 1-1 1 1 1-1 117 559 29 14

19 1 1-1 1 1-1 1 983 551 29 19

20 1 1-1 1 1-1-1 1080 624 26 17

21 1 1-1 1-1 1 1 144 415 27 9

22 1 1-1 1-1 1-1 154 2828 28 13

23 1 1-1 1-1-1 1 778 1235 27 9

24 1 1-1 1-1-1-1 1341 296 27 8

25 1 1-1-1 1 1 1 100 276 30 25

26 1 1-1-1 1 1-1 100 325 30 22

27 1 1-1-1 1-1 1 770 1494 30 26

28 1 1-1-1 1-1-1 536 370 30 22

29 1 1-1-1-1 1 1 100 355 30 30

30 1 1-1-1-1 1-1 100 384 30 30

31 1 1-1-1-1-1 1 873 485 30 30

32 1 1-1-1-1-1-1 741 576 29 29

33 1-1 1 1 1 1 1 1817 4393 12 15

continued on next page
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Table 4.6: Combine Model GA and SA Comparison

No Combination

Mean no of Success

Evaluations per 30 runs

GA SA GA SA

34 1-1 1 1 1 1-1 3910 4178 11 12

35 1-1 1 1 1-1 1 3342 6404 12 14

36 1-1 1 1 1-1-1 3981 2846 16 17

37 1-1 1 1-1 1 1 3017 5231 24 11

38 1-1 1 1-1 1-1 2738 2946 24 14

39 1-1 1 1-1-1 1 5000 3037 17 10

40 1-1 1 1-1-1-1 5353 2241 19 12

41 1-1 1-1 1 1 1 120 2443 30 16

42 1-1 1-1 1 1-1 100 1606 30 18

43 1-1 1-1 1-1 1 900 2595 26 25

44 1-1 1-1 1-1-1 1144 1496 27 14

45 1-1 1-1-1 1 1 100 2378 30 17

46 1-1 1-1-1 1-1 113 2192 30 14

47 1-1 1-1-1-1 1 1155 1398 29 18

48 1-1 1-1-1-1-1 1046 3002 28 15

49 1-1-1 1 1 1 1 150 292 30 14

50 1-1-1 1 1 1-1 220 421 29 13

51 1-1 1-1-1-1-1 980 484 25 10

52 1-1-1 1 1-1-1 1166 406 29 16

53 1-1-1 1-1 1 1 110 394 30 21

54 1-1-1 1-1 1-1 100 329 29 20

55 1-1-1 1-1-1 1 1032 420 28 17

56 1-1-1 1-1-1-1 1183 460 24 17

57 1-1-1-1 1 1 1 100 352 30 30

continued on next page
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Table 4.6: Combine Model GA and SA Comparison

No Combination

Mean no of Success

Evaluations per 30 runs

GA SA GA SA

58 1-1-1-1 1 1-1 100 332 30 30

59 1-1-1-1 1-1 1 443 472 30 30

60 1-1-1-1 1-1-1 570 514 30 30

61 1-1-1-1-1 1 1 100 276 30 30

62 1-1-1-1-1 1-1 100 251 30 30

63 1-1-1-1-1-1 1 466 459 30 30

64 1-1-1-1-1-1-1 536 572 30 30

65 -1 1 1 1 1 1 1 3109 444 21 3

66 -1 1 1 1 1 1-1 2804 496 23 7

67 -11 1 1 1-1 1 4010 554 19 6

68 -1 1 1 1 1-1-1 3250 739 14 6

69 -1 1 1 1-1 1 1 1713 455 15 7

70 -1 1 1 1-1 1-1 1900 611 10 5

72 -1 1 1 1-1-1 1 2789 499 9 4

73 -1 1 1 1-1-1-1 2567 734 9 3

74 -1 1 1-1 1 1 1 272 242 29 9

75 -1 1 1-1 1 1-1 227 301 29 4

76 -1 1 1-1 1-1 1 1318 313 28 11

77 -1 1 1-1 1-1-1 1748 316 27 3

78 -1 1 1-1-1 1 1 130 212 30 8

79 -1 1 1-1-1 1-1 157 248 30 5

80 -1 1 1-1-1-1 1 881 306 27 8

81 -1 1 1-1-1-1-1 1329 324 24 3

82 -1 1-1 1 1 1 1 146 579 24 21

continued on next page
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Table 4.6: Combine Model GA and SA Comparison

No Combination

Mean no of Success

Evaluations per 30 runs

GA SA GA SA

83 -1 1-1 1 1 1-1 169 2122 29 20

84 -1 1-1 1 1-1 1 1231 563 26 21

85 -1 1-1 1 1-1-1 1252 585 25 19

86 -1 1-1 1-1 1 1 168 462 28 14

87 -1 1-1 1-1 1-1 165 337 26 11

88 -1 1-1 1-1-1 1 1596 429 26 4

89 -1 1-1 1-1-1-1 1652 493 21 7

90 -1 1-1-1 1 1 1 103 328 30 21

91 -1 1-1-1 1 1-1 103 305 30 18

92 -1 1-1-1 1-1 1 773 500 30 25

93 -1 1-1-1 1-1-1 1203 432 30 26

94 -1 1-1-1-1 1-1 107 390 30 30

95 -1 1-1-1-1-1 1 1573 579 30 30

96 -1 1-1-1-1-1-1 1777 550 30 30

97 -1-1 1 1 1 1 1 2372 4402 18 15

98 -1-1 1 1 1 1-1 4057 3572 14 19

99 -1-1 1 1 1-1 1 5371 6617 7 10

100 -1-1 1 1 1-1-1 5364 6956 11 16

101 -1-1 1 1-1 1 1 3656 4339 18 14

102 -1-1 1 1-1 1-1 3400 3852 18 9

103 -1-1 1 1-1-1 1 4258 1454 19 12

104 -1-1 1 1-1-1-1 3264 1064 22 10

105 -1-1 1-1 1 1 1 130 338 30 13

106 -1-1 1-1 1 1-1 128 2139 29 15

continued on next page
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Table 4.6: Combine Model GA and SA Comparison

No Combination

Mean no of Success

Evaluations per 30 runs

GA SA GA SA

107 -1-1 1-1 1-1 1 1115 1727 27 18

108 -1-1 1-1 1-1-1 1104 2847 23 12

109 -1-1 1-1-1 1 1 138 647 26 15

110 -1-1 1-1-1 1-1 237 296 30 13

111 -1-1 1-1-1-1 1 1389 2334 27 14

112 -1-1 1-1-1-1-1 1173 1681 26 17

113 -1-1-1 1 1 1 1 182 622 27 9

114 -1-1-1 1 1 1-1 319 2083 27 18

115 -1-1-1 1 1-1 1 896 515 25 17

116 -1-1-1 1 1-1-1 871 521 24 13

117 -1-1-1 1-1 1 1 164 531 28 13

118 -1-1-1 1-1 1-1 293 448 28 17

119 -1-1-1 1-1-1 1 986 452 21 18

120 -1-1-1 1-1-1-1 1030 424 27 16

121 -1-1-1-1 1 1 1 103 339 30 30

122 -1-1-1-1 1 1-1 106 485 30 30

123 -1-1-1-1 1-1 1 830 587 30 30

124 -1-1-1-1 1-1-1 736 457 30 30

125 -1-1-1-1-1 1 1 100 414 30 30

126 -1-1-1-1-1 1-1 100 509 30 30

127 -1-1-1-1-1-1 1 769 342 30 30

128 -1-1-1-1-1-1-1 577 471 30 30
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Table 4.7: GA and SA comparison for Tiny for branch coverage
Branch No Mean no of Evaluations Success rate

GA SA GA SA
3 4596 1343 24 30
5 100 151 30 30
7 103 165 30 30

Table 4.8: GA and SA comparison for Quadratic v2 for branch coverage
Branch No Mean no of evaluations Success rate

GA SA GA SA
2 273 2861 30 30
4 100 1953 30 30
6 100 154 30 30
8 2417 11187 30 27

The results give GA an edge over SA. However, when compared for the means

of the fitness function evaluations, when input data was found, we found that the

number of paths/branches for which SA performed better than GA were mostly

the same as the number of paths/branches for which GA performed better as

shown in the last two columns of Table 4.10. However, in experiment 2, GA

outperformed SA. Still, however, this does not give us much information about

statistically significant difference between the two algorithms in terms of this

measure of performance. To find out which algorithm performed significantly

better than the other when test data was found, we further conducted the Mann-

Whitney non parametric test for the number of fitness function evaluations. Table

4.11 summarizes the results of Mann-Whitney test for both experiments. Column

2 in Table 4.11 gives the total number of paths or branches considered for analysis.

Column 3 gives the number of paths of respective models for which SA performed

significantly better than GA. Whereas column 4 gives the same for GA. Column

5 gives us the number of branches for which there wasn’t a significant difference

between the two algorithms.

From the analysis results we can see that GA performed slightly better than

SA when compared for the number of execution it took to find test data. However,

for a significant amount of time there wasn’t any statistically significant difference
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Table 4.9: GA and SA comparison for CalcStart for branch coverage
Branch No Mean Success rate per 30 runs

GA SA GA SA
1 2270 1459 30 30
3 2350 1774 30 30
5 1000 823 30 30
7 1920 2210 30 30
9 2170 1899 30 30
11 2560 2107 30 30
13 2300 2743 30 30
15 2040 1717 30 30
17 380 931 30 30
19 3540 14987 30 15
21 2390 2269 30 30
23 2380 2284 30 30
25 2090 1981 30 30
27 2310 1420 30 30
29 310 924 30 30
31 2320 2231 30 30
34 100 1055 30 30
35 2380 1684 30 30
37 2389 2016 30 30
39 2070 1795 30 30
41 850 755 30 30
43 820 2238 30 30
45 1680 1949 30 30
47 2250 2156 30 30
49 100 497 30 30
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Table 4.10: Results of Experiments
Coverage Mean success rate Comparison

SA GA SA GA SA GA

SmplSw 2/2 2/2 30 30 0 1

Quadratic v1 8/8 8/8 30 28 4 4

RandMdl 16/16 16/16 15 25 8 8

CombineMdl 128/128 128/128 17 27 63 63

Quadratic v2 8/8 8/8 29.625 30 0 4

Tiny 8/8 8/8 28.5 30 2 2

Calc-Start-Progress 50/50 50/50 29.7 30 8 17

between the two.

4.4 Conclusion

In this chapter we presented the work for an empirical comparison of simulated

annealing and genetic algorithms for Simulink models. To the best of our know-

ledge, this is the first study of the type for the Simulink models. Surprisingly, we

also do not see much work of the kind for code based systems. The only work that

came to our knowledge is from Nashat et al [111] and Tracey et al [176]. In [111],

results show that SA performed better than GA and, therefore, they suggested

using SA for generating test data for path testing. In the work of Tracey et al. SA

was more efficient for simpler code segments but performed similar to the GA for

more complex programs. However, our results show contrary to this. GA perfor-

med slightly better than SA, when compared for the fitness function evaluations.

But for the most part, there was not much ‘statistically significant’ difference

between the two. However, when it comes to the success rate, the performance

of GA was much better than SA, thus making it a more attractive choice for the

test data generation for Simulink models.

SBTDG is the most addressed field within search-based software engineering.
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Table 4.11: Mann-Whitney Analysis of Experiments
No of

Model Paths/ SA GA No
Analyzed Branches Difference

Analyzed

Smplsw 1 0 1 0

Quadratic v1 8 0 3 5

RandMdl 15 3 3 9

CombineMdl 126 34 42 50

Tiny 4 2 0 2

Quadratic v2 4 0 3 1

Calc-Start-Progress 25 6 6 13

Indeed, it could be said that SBSE grew out of work in SBTDG. However, we

believe that the full potential of SBTDG will only be revealed when its tech-

niques can be routinely applied across system descriptions of varying degrees of

abstraction. There has been a great deal of work at the code level, and work ge-

nerating test data from specifications, but surprisingly little in the middle ground

of design. Our work here provides an initial comparison of search approaches

to systems expressed in one such design notation and does so with experimental

rigour. Longer term, it is clear that a rigorous mapping is needed between sys-

tem complexity (however measured) and efficacy of the various search techniques.

This is a valuable long-term strategic goal and which require further research.
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Chapter 5

Program Stretching

5.1 Introduction

As discussed in the previous chapter, search based techniques have been success-

fully applied to generate test data for many programs. Current approaches to

search based test data generation have explored the use of various optimisation

techniques and various fitness functions to find test data satisfying some particu-

lar goal. The approaches tried have seen considerable success, but there are also

clear limitations.

Even with the predicate structures involving Boolean relational operators,

some targets will be difficult to achieve. It may be because of the very small

input domain of data satisfying the goal or because the program structures are

not very amenable to the search process. For example, handling Boolean flag

variables is hard. In such cases one approach has been to transform the program

to an equivalent version more suited to search based approaches [84, 76, 119].

In this chapter we also propose a transformation-based approach called “pro-

gram stretching”. The approach has been proposed for efficient input test data

generation of hard-to-reach targets using search based techniques. The chapter

begins with a brief introduction to the program transformation followed by a re-

view of its application to search based software testing. This will be followed by

a description of our proposed approach: “program stretching”. Our approach is

then evaluated through a number of experiments in the experimental and evalua-
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tion section.

5.2 Program Transformation

In the literature, the term “program transformation” applies to a variety of pro-

cesses. The common theme is that a source program is mapped to a different but

related system description. The levels of description may be at different levels of

abstraction. Thus, a compiler can be said to transform a source program to binary

(with binary obviously being at a lower level of abstraction than typical source

code). This is often called ‘vertical transformation’. Production of Java Byte

code from a Java source program is similarly a vertical transformation. There

are opportunities to transform from higher level system descriptions too. Thus,

tools that support MATLAB SIMULINK models typically provide a facility to

produce an executable simulation of the model by producing a C-code (or similar)

implementation thereof [4, 6].

Other interpretations of program transformation refer to the manipulation

of the source program into a closely related source program, with the goal of

improving some aspect of interest. This is often referred to as “rephrasing” and

“translation” (though the latter is also used in compiler construction to denote

some vertical transformations).

For example, a compiler may (at various levels) make small changes to a pro-

gram with the aim of improving efficiency. A statement within a loop may be

“hoisted” outside the loop if it is unaffected by the function of the loop body. A

compiler may similarly replace an expression of the form (x = ∗16) by (x << 4)

(multiplication by 16 is the same as left shift by 4) when operating on integers.

It may also alter the order of low level instruction execution (without altering the

semantics of the instruction sequence overall, but allowing lower level optimisa-

tions, e.g., on register use, to take place). The term “peephole optimisation” is

used to refer to a process of applying a suite of localised transformations by com-

pilers. (Localised here means that the changes take place only on closely situated

instruction sequences.)
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Other transformations are possible. Thus small changes may preserve the se-

mantics of a program but make it more comprehensible (according to some metric

of comprehensibility). Such transformations may be very important for mainte-

nance purposes. For example, a variety of tools exist for imposing ‘structure’ on

poorly written ‘spaghetti code’.

A common theme in all the above examples is that the transformations pre-

serve functional semantics of the program. For some purposes this may not be

necessary. For example, Harman et al have proposed Testability Transformation

(TeTra) to deal with some problematic areas in search based software test data

generation. Since then it has been applied successfully to the flag problem [76],

nested predicates [119], and the state problem [93]. Harman [78] suggested other

possible application areas in software engineering. Section 5.3 describes testability

transformation in more detail.

5.2.1 Model Transformation

Another form of transformation practiced in software engineering community is

model transformation. Models are used to address the size and complexity of a

system by describing different aspects of it at various levels of abstraction. Many

models are usually required for this purpose.

Often transformation is carried out to derive one model from another. This

not only helps to extract a different aspect of the system but also keeps the model

consistent. There is even more emphasis on model transformation in the current

model driven development (MDD) approaches. Model transformation is one of the

core elements of the set of standards defined by MDA (model driven architecture),

an initiative of object management group (OMG) [5] to standarise MDD. OMG

has defined a standard language QVT MOF 2.0 for model transformation [9]. An

overview of QVT can be found in [102].

There are many approaches to model transformation. Sendall and Kozac-

zynski [171] categorise it in to three broad categories: direct model manipulation;

intermediate representation; and transformation language support. In direct model

manipulation, procedural APIs are used to manipulate internal model representa-
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tion. In intermediate representation, models are exported in a standard form, such

as XML and then transformed. Transformation language support, as the name

suggests, defines languages for model transformation. We also find many other

classifications. For a complete overview readers are referred to [42, 170, 124, 126].

5.3 Testability Transformation

Testability Transformation is the rephrasing of a program in order to make it

more amenable to search. It is different from traditional transformation in two

ways [81]:

1. In traditional transformation, the original program is discarded after trans-

forming it into a target program. It is not so in Testability Transformation.

Once the test data is found, the transformed program is discarded. Thus

the transformed program is just a “means to an end”.

2. It is not required for the transformation process to preserve the whole se-

mantics of a program. Only those semantics are required which may be

essential for test data generation.

This makes testability transformation very flexible. One need not worry much

about proving functional equivalence or proof of correctness of the target program

[79]. It is just required to be structured enough to help achieve the objective of

test data generation.

Definitions

For the sake of completeness, in this section, the definitions of Testability Trans-

formation are presented, as given by [81].

Definition 5.3.1 (Testing-Oriented Transformation) Let P be a set of pro-

grams and C be a set of test adequacy criteria. A program transformation is a

partial function in P → P . A Testing-Oriented Transformation is a partial

function in (P × C)→ (P × C).
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Definition 5.3.2 (Testability Transformation) A Testing-Oriented Transfor-

mation τ , is a Testability Transformation iff for all programs p, and criteria

c, if τ(p, c) = (p′, c′) then for all test sets T , T is adequate for p according to c if

T is adequate for p′ according to c′.

For some criterion c, a c-preserving testability transformation guarantees that the

transformed program is suitable for testing with respect to the original criterion.

Definition 5.3.3 (c−Preserving Testability Transformation) Let n be a tes-

tability transformation. If, for some criterion, c, for all programs p, there exists

some program p′ such that τ(p, c) = (p′, c) called a c−Preserving Testability

Transformation.

One thing to be noted here is that all search based dynamic test data gene-

ration techniques are essentially transformation-based. The test data generation

process is not run on the original program. Rather the program is instrumented

with code elements in order to get data to be used in the cost function calcula-

tion. The instrumented or transformed version is thrown away once data is found.

However, testability transformation adds, before conversion into the final version,

an additional middle layer in the transformation process for test data generation.

5.3.1 Survey

Testability transformation was initially applied to the flag problem by Harman

et al [76] for evolutionary test data generation. The flag problem has been in-

troduced in Chapter 2. In their approach, Harman et al transformed the original

program to an intermediate ‘flag-free’ program preserving the branches of the

original program. Thus data can be generated for the required coverage crite-

rion or a stronger criterion. Consider Example 5.3.1 [117]. After transformation

the flag-use is replaced by the right hand side of its assignment expression. This

provides more guidance to the search process improving both the performance

of evolutionary test data generation and the adequacy level of the test data so

generated.
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Example 5.3.1 Testability Transformation applied to Flag Problem.

{
flag=(a>b); ____ (i)
.......
if (flag) ____ (ii)
{do something...}
}

{

flag=(a>b); ____ (i)
.......
if (a>b) ____ (ii)
{do something...}
}

(a)Original (b)Transformed.

In the example above we presented a simple case of Testability transformation.

In their work, Harman et al. applied it to more complex cases. They defined five

level of complexity of flag assignment [81] and provided algorithms to find test

data. The fifth level consists of loop assigned flag, which were investigated in [79].

Wappler et al. [183] extended the work to function assigned flags i.e., the cases

where the flag value is assigned the return value of a function. They suggested a

combined testability transformation instrumentation strategy.

McMinn et al. [119] proposed a testability transformation approach to the

nested search targets. In the traditional approach to search based test data ge-

neration, the search does not have knowledge of a branch until it reaches it. It

can cause problems in the case of nested structures especially in cases where the

branch variables are also used in the preceding branches. For example consider

Example 5.3.2. The traditional approach must satisfy sub goal at branch (i) first.

After satisfying it, if the value of b is less than 100, the search would set up

another value of b. This will cause the condition at branch (i) to became false

and satisfaction of this will again become the focus of the search. Thus all the

information previously available at branch (ii) is lost. McMinn et al’s approach

includes a transformation strategy that removes all the control-dependent deci-

sions up to the target, but preserves their information in extra variables. This

has been shown in Example 5.3.2. The advantage of this strategy is that it gives

a smooth downward slope to the fitness curve, thus eliminating the requirement
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to satisfy the preceding branches on which the target is control dependent. Case

studies were performed on two small programs which showed an improvement

factor of more than two in terms of efficiency in the search process. However,

the technique still faces challenges posed by some common program constructs:

loops, arrays and pointers.

Kalaji et al. [93] proposed a testability transformation approach to tackle spe-

cial cases of the state problem. The state problem has been introduced in Chapter

2. They considered four cases depending upon type of assignment to the state

variable. They defined two types of functions i.e., ‘affecting’ and ‘affected-by’.

Affected-by function is always data dependent on affecting function. In addition

the affected-by function may also be control dependent on affecting function if

there is some condition in affecting function that affect the assignment of state

variables. Their transformation strategy included combining both above functions

into a single function which contains the target condition directly dependent on

input variables, thus giving a smooth downward slope to the fitness curve.

Example 5.3.2 Testability Transformation applied to nested predicates.

{

if (a==b) ____ (i)
{
if (b>100) ____ (ii)

{target}
}

{

double dist=0
dist+=branch_distance(a==b); ____ (i)
.......
dist+=branch_distance(b>100); ____ (ii)

if(dist==0.0)
{target}
}

(a)Example 5.3.2 Original (b)Example 5.3.2 Transformed.

The above survey shows that testability transformation can be a useful tool to

solve many problems in search based test data generation. The reader is referred

to Harman [78] for a more extensive discussion on the applicability of testability

transformation to other problems in search based software engineering.
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5.4 Program Stretching

Program stretching is a program transformation technique which has been pro-

posed to find test data for ‘hard’ targets in a program. The notion of ‘hard’ can

have many meanings. The target can be hard because of the limitation of search

based approaches or it can be hard because of structural complexity. We consider

‘hard’ in the latter sense.

Program stretching is essentially a c−Preserving Testability Transfor-

mation, which means that we preserve the adequacy criterion during the trans-

formation process. We ‘stretch’ the difficult branches thus making them easier

to cover. This can be achieved by generating transformed programs by adding

auxiliary variables to the predicates in the difficult branches. To further clarify

the idea consider the following example.

Example 5.4.1 Program Stretching

if (expr1 < expr2) ...........(I)

{

statements

}

else

{

statements

}

if((expr3 > expr4) ∧ (expr5 < expr6))...........(II)

{

statements

}

else

{

statements

114



CHAPTER 5. PROGRAM STRETCHING

}

Lets suppose that (II) is the branch that SBTDG seems unable to cover. We

now add additional input variables, i.e, var1 and var2 to it as shown below.

if (expr1 < expr2) ...........(I)

{

statements

}

else

{

statements

}

if ((expr3 + var1) > expr4 ∧ (expr5 <

(expr6 + var2))...........(II)

{

statements

}

else

{

statements

}

Initially we set the values of var1 and var2 reasonably large so that it is

easy (even trivial) to find test data such that (expr3 + var1) > (expr4) and

expr5 < (expr6 + var2). The ranges of additional variable values define a set

of “stretched” programs. Our search now proceeds over the set of such stretched

programs and test inputs for them. The search trajectory comprises a sequence of

pairs 〈(prog1, td1), (prog2, td2), . . . , (progfinal, tdfinal)〉. The aim is to end up with
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an “unstretched” program progfinal (with all auxiliary variables set to 0) and test

data tdfinal that satisfies the required constraints. Essentially, the search space

comprises the original test data input space combined with the set of all variable

assignments to auxiliary variables. Although we know the desired eventual value

of each auxiliary variable (i.e., 0) allowing it to take positive intermediate values

can facilitate the solution of the overall problem. Essentially we find test data

satisfying our goal for a highly stretched program, and evolve the test input data

and auxiliary variables together to achieve the original aim. This requires a very

simple modification to the existing cost function as shown in the following section.

Program stretching is a one off process. It should not incur any more cost than a

simple transformation step. The computation cost for search may be more as the

search needs to bring the auxiliary variables’ values to 0 and must evaluate this

aspect of fitness at each evaluation. This, however, may not always be the case

as shown by the experimental results for more complex code based program.

5.4.1 Cost Function

We have already discussed the cost function on page 66. This function is given

below as.

f(x)branch = f(x)branchc +KN

Where K is a constant, branchc is the current branch and N is the number of

uncovered branches of the path to be satisfied.

We need also to incorporate the effect of auxiliary variables. For this purpose

we add a new term to the fitness function, which is the summation of all the new

variables. i.e.,

f(x)total = f(x)branch +
n∑
i=0

abs(vi)

where vi is the ith auxiliary variable.

We then bring down f(x)total to zero by decreasing the value of
∑n

i=0 abs(vi)
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Table 5.1: Branch Transformation
Predicates Transformed Form Remarks
a == b (a+ var1) ≥ b∧

(b+ var2) ≥ a
a 6= b a 6= b No need for

transformation
a < b a < (b+ var)
a > b (a+ var) > b

a ≤ b a ≤ (b+ var)
a ≥ b (a+ var) ≥ b
a ∨ b Apply transformation

to expr a and\or b
using the above rules

a ∧ b Apply transformation
to expr a and\or b

using the above rules

in a ‘controlled’ way.

5.4.2 Transformation Rules

We define simple rules for adding additional variables to the existing variables of

‘difficult’ branches. Table 5.1 shows how assertions in a program may be stretched.

Some times it is relatively difficult to add extra variables directly to the actual

expression. For example in the case of “equality, ==” operator, we can not add a

variable directly, as it will lead to erroneous data. In this case we also transform

operator first into an equivalent form i.e., (a ≥ b ∧ b ≥ a) and then add the

additional variables.

A zero cost solution to an identified goal provides test data that achieves

the goal for the original program. The extension of the cost function to include

punishment of non-zero values of additional variables does not assume any par-

ticular mechanism for the traditional cost function component. We have chosen

the traditional one with which we are most familiar, but others’ approaches can

be simply extended in the way we suggest.
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5.5 Experiments and Evaluation

This section describes the experiments carried out to assess the program stretching

technique. The aims of the experiments are to:

• Demonstrate the validity of the program stretching concept.

• Show that the technique can be applied both at code and architectural levels.

We performed two sets of experiments. In the first set, we considered three small

case studies of program code of varied McCabe structural complexity. These

programs are given in Appendix B. In the second set of experiments, we applied

the concept at the architectural level to MATLAB R© Simulink R© models. We

compared performance of the programs on the basis of (i) coverage, i.e., input

test data found for branches against total branches to satisfy a coverage criterion,

(ii) success rate, i.e., how many times test data was found when a program was

run multiple times to satisfy a coverage criterion and, (iii) the average number of

executions taken to find the test data.

5.5.1 Experiment Set 1: Code Examples

We used Simulated Annealing (SA) with the following parameters for our first

set of experiments. Further experiments can be carried out to optimise the pa-

rameters. However, since we kept the same parameters for both approaches, we

believe the results will be similar for the optimise set as well.

Move strategy: fixed

Geometric Temperature decrease rate: 0.8

Number of iteration in inner loop: 250

Maximum number of iteration in outer loop: 1000

Stopping criteria: Either a solution is found or the maximum number of ite-

rations are reached.

Program 1 is relatively easy having a McCabe structural complexity of 10 and

is experimented with to find the applicability of the stretching principle to different

relational operators. Program 2 though has a structural complexity of 8 but is
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relatively difficult from a search point of view because of the branching structure.

Program 3 has a structural complexity of 14 and the branching structure is more

difficult for search. In each of the above programs, our goal is to achieve the

coverage of the last branch as indicated in the appendix. To reach that goal we

‘stretched’ the intermediate difficult branches.

5.5.2 Analysis and Evaluation of Experiment Set 1

With program 1, we were able to obtain 100% coverage and success rate using

the traditional search based approach and also using program stretching. Howe-

ver, as expected, the average number of iterations to cover the required target

in the stretched program approach was more than for the traditional approach.

Although the goal is satisfied with the stretched program approach, the search

process must expend additional effort reducing the program to the original and

dragging the test data with it to maintain goal satisfaction. For easy goals, we be-

lieve that the traditional approach should be used instead of program stretching.

In program 2, the search was again 100% successful in each case. However,

the task here is more difficult and the results are better for the program stret-

ching approach. Program stretching, in this case, would appear to give efficiency

advantages.

In program 3, the results were even better. In this case the search process

was successful in 92% of runs for the standard approach and 99.8% of runs using

program stretching. The average number of function evaluations (program exe-

cutions) for successful runs were also better for the program streching approach.

Tables 5.2 and 5.3 summarise the above results.

5.5.3 Experiment Set 2: Simulink Models

As stated above, for the second set of experiments we used MATLAB Simulink

models. For this set of experiments we again used the models from Zhan [196].

These models have been described in Chapter 4 in detail. We used the follo-

wing configuration for SA parameters. The parameters setting is based on the
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Table 5.2: No of executions to generate test data Via Standard SBTDG (Based
on 500 runs)

Program1 Program2 Program 3
Average 4825 14248 78212

Max 15037 24315 250050
Min 451 2663 26604
SD 2876 5564 58747

Success 100 100 92
Rate(%)

Table 5.3: No of executions to generate test data via Program Stretching (Based
on 500 runs)

Program1 Program2 Program 3
Average 7222 11976 61960

Max 24900 18405 140606
Min 1341 5514 14411
SD 3671 2195 35853

Success 100 100 99.8
Rate(%)

experimental work by Zhan and Clark [197].

Move strategy: fixed.

Geometric Temperature decrease rate: 0.9

No of inner loop iterations: 100

Max. No. of outer loop iterations: 300

Stopping criteria: Either a solution is found or maximum number of iterations

are reached.

5.5.4 Analysis and Evaluation of Experiment Set 2

We considered only those branches for analysis for which the traditional approach

was not one hundred percent successful. Zhan and Clark [196] used four models.

Model SmplSw is rather straightforward and hence is not considered for experi-

ments. Quadratic model is also relatively simple but the search is made more

difficult by introducing local minima. This was achieved by changing the range

of input variables.
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Quadratic model contains three Switch blocks and hence eight ‘paths’ or, more

specifically combinations. RandMdl has four Switch blocks and hence has sixteen

combinations. Combine model has seven Switch blocks and hence one hundred

and twenty eight combinations. We targeted each of these combinations in the

cases of Quadratic and RandMdl models. We ‘stretched’ the models for the case

where all switch blocks take the value true. Each model was run thirty times

for each of the combination then to achieve statistically significant results. For

example, for RandMdl, we did four hundred and eighty runs in total.

The Quadratic model gave much better results for the stretching approach.

However, for models RandMdl and Combine the results in both approaches are

very similar in terms of success rate. But the ‘stretching’ is more expensive as it

requires more number of executions to find the input data to cover the required

combination. The results have been summarised in Tables 5.4 and 5.5.

In both sets of above experiments, the neighbourhood is searched by conside-

ring a small change in any of the variables, either actual or auxiliary, and then the

modified fitness function is evaluated. All the variables have equal probability to

be selected for the next move. The move is always accepted, if the fitness function

value is improved. However, by restricting the neighbourhood search, we found

significant improvement in the results. In such case, when the auxiliary variable

is chosen for the next move and its next neighbouring value is chosen, one of the

actual variable is also changed by a fraction of that value. All the actual variables

have the same probability to be selected for this change. The fitness function due

to all the actual variables, as well as the total fitness function are evaluated. The

move is accepted if both fitness functions are improved or if there is an impro-

vement in any of the fitness functions but the other remains unchanged. Table

5.6 summarises the results for Simulink models for this strategy. We can see that

there is a clear improvement in the average number of executions as well as the

success rate.

Tables 5.7 to 5.13 show the coverages and success rates for all the combinations

in all three models.
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Table 5.4: SBTDG for Simulink Models without Program Stretching (Based on
30 runs)

Quadratic RandMdl Combine
Total No 8 16 116

of Branches
No of Branches 4 12 2

for Analysis
Mean Success 49.16 57.5 33

Rate(%)
Coverage(%) 100 100 100
Mean No of 587 2021 3122
Executions

Table 5.5: SBTDG for Simulink Models with Program Stretching (Based on 30
runs)

Quadratic RandMdl Combine
Success 90.83 56.89 36.33
Rate(%)

Coverage(%) 100 100 100
Mean No of 5769 5857 7350
Executions

Table 5.6: SBTDG for Simulink Models with Program Stretching and (Stretch
and Restrict) (Based on 30 runs)

Quadratic RandMdl Combine
Success 90.83 80 77
Rate(%)

Coverage(%) 100 100 100
Mean No of 3885 7935 6534
Executions

Table 5.7: Quadratic Model without Program Stretching
No Combination Unmodified

Success Rate No of Executions Max Min
1 1 1 1 19 261 506 32
2 1 1 -1 16 1335 547 136
3 1 -1 1 15 387 790 90
4 -1 1 1 30 103 369 1
5 1 -1 -1 09 363 512 37
6 -1 -1 1 30 262 555 12
7 -1 1 -1 30 84 319 1
8 -1 -1 -1 30 238 480 1
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Table 5.8: Quadratic Model with Program Stretching
No Combination Program Stretching Random

Success Rate No of Executions Max Min
1 1 1 1 28 6819 15739 2142
2 1 1 -1 26 5559 11029 1458
3 1 -1 1 28 5685 15505 2397
4 -1 1 1 30 1694 5487 548
5 1 -1 -1 27 5015 8371 2076
6 -1 -1 1 30 1804 4392 470
7 -1 1 -1 30 1677 5840 546
8 -1 -1 -1 30 1787 4213 606

Table 5.9: Quadratic Model with Program Stretching (Stretch and Restrict)
No Combination Program Stretching Stretch and Restrict

Success Rate No of Executions Max Min
1 1 1 1 29 3429 9190 1196
2 1 1 -1 25 4166 9682 1777
3 1 -1 1 30 3993 12823 1309
4 -1 1 1 30 1994 8293 417
5 1 -1 -1 25 3955 8415 1568
6 -1 -1 1 30 1894 6337 486
7 -1 1 -1 30 1964 7599 533
8 -1 -1 -1 30 2054 5465 623

Table 5.10: Random Model without Program Stretching
NO Combination Unmodified

Success Rate No of Executions Max Min
1 1 1 1 1 7 630 1153 1
2 1 1 1 -1 19 1417 2349 268
3 1 1 -1 1 15 280 1296 1
4 1 -1 1 1 12 755 1605 13
5 -1 1 1 1 30 2396 4421 102
6 1 1 -1 -1 17 122 504 1
7 1 -1 -1 1 5 476 1200 1
8 -1 -1 1 1 13 2993 7877 1295
9 1 -1 1 -1 5 3537 8715 1127
10 -1 1 1 -1 30 3154 5156 1
11 -1 1 -1 1 30 844 3542 1
12 1 -1 -1 -1 11 4680 5478 104
13 -1 -1 -1 1 16 4748 8748 3534
14 -1 -1 1 -1 21 4157 15131 1
15 -1 1 -1 -1 30 1046 3441 1
16 -1 -1 -1 -1 15 1101 4167 1
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Table 5.11: Random Model with Program Stretching
No Combination Program Stretching Random

Success Rate No of Executions Max Min
1 1 1 1 1 13 5429 12856 1204
2 1 1 1 -1 13 6574 16670 1527
3 1 1 -1 1 08 2300 4438 881
4 1 -1 1 1 09 4262 9698 1611
5 -1 1 1 1 30 6420 20011 1792
6 1 1 -1 -1 20 4806 11156 557
7 1 -1 -1 1 8 3498 5952 1306
8 -1 -1 1 1 9 5154 8435 1304
9 1 -1 1 -1 10 10066 18472 3398
10 -1 1 1 -1 30 7098 19292 1441
11 -1 1 -1 1 30 4164 11215 1011
12 1 -1 -1 -1 10 7901 19790 5059
13 -1 -1 -1 1 19 6603 14869 4446
14 -1 -1 1 -1 13 6923 19247 1299
15 -1 1 -1 -1 30 5774 13171 1411
16 -1 -1 -1 -1 17 6752 19219 742

Table 5.12: Random Model with Program Stretching (Stretch and Restrict)
No Combination Program Stretching Stretch and Restrict

Success Rate No of Executions Max Min
1 1 1 1 1 30 7051 25972 1134
2 1 1 1 -1 29 9286 24735 818
3 1 1 -1 1 30 13187 25168 1676
4 1 -1 1 1 13 6143 19824 1040
5 -1 1 1 1 30 6765 24895 1077
6 1 1 -1 -1 30 9056 26804 1136
7 1 -1 -1 1 21 7052 19942 988
8 -1 -1 1 1 6 11452 21303 2222
9 1 -1 1 -1 14 6845 15259 2988
10 -1 1 1 -1 30 6877 22632 999
11 -1 1 -1 1 30 6816 19644 1306
12 1 -1 -1 -1 20 8387 15788 1841
13 -1 -1 -1 1 24 9155 24656 5335
14 -1 -1 1 -1 20 7914 13366 583
15 -1 1 -1 -1 30 5553 29966 888
16 -1 -1 -1 -1 27 5426 13530 756
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Table 5.13: Combine Model with Program Stretching

(Stretch and Restrict)

No Combination Success No of Max Min

Rate Executions

1 1 1 1 1 1 1 1 23 6533 9403 4001

2 1 1 1 1 1 1 -1 6 8940 16737 3626

3 1 1 1 1 1 -1 1 11 5058 12148 2556

4 1 1 1 1 1 -1 -1 4 10024 14674 4576

5 1 1 1 1 -1 1 1 10 6022 12349 2142

6 1 1 1 1 -1 1 -1 10 6508 13633 3061

7 1 1 1 1 -1 -1 1 22 6973 20461 2939

8 1 1 1 1 -1 -1 -1 30 8691 24721 2496

9 1 1 1 -1 1 1 1 13 10639 27067 3092

10 1 1 1 -1 1 1 -1 12 18235 21674 3228

11 1 1 1 -1 1 -1 1 28 6814 25033 2228

12 1 1 1 -1 1 -1 -1 30 7131 19498 2623

13 1 1 1 -1 -1 1 1 7 5800 8369 3019

14 1 1 1 -1 -1 1 -1 17 4342 6271 3126

15 1 1 1 -1 -1 -1 1 30 4525 10422 2210

16 1 1 1 -1 -1 -1 -1 30 5263 17487 1941

17 1 1 -1 1 1 1 1 6 9220 12320 6089

18 1 1 -1 1 1 1 -1 6 9715 16407 4057

19 1 1 -1 1 1 -1 1 8 7015 4590 3058

20 1 1 -1 1 1 -1 -1 2 10225 13456 7003

21 1 1 -1 1 -1 1 1 17 6536 11063 3123

22 1 1 -1 1 -1 1 -1 10 7141 8597 2188

23 1 1 -1 1 -1 -1 1 21 7750 21385 2567

24 1 1 -1 1 -1 -1 -1 30 8112 20172 2337

25 1 1 -1 -1 1 1 1 15 10738 22885 2678
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Table 5.13: Combine Model with Program Stretching

(Stretch and Restrict)

No Combination Success No of Max Min

Rate Executions

26 1 1 -1 -1 1 1 -1 10 9454 23954 2530

27 1 1 -1 -1 1 -1 1 15 8094 16639 3552

28 1 1 -1 -1 1 -1 -1 19 10717 17381 3266

29 1 1 -1 -1 -1 1 1 18 5435 11663 2730

30 1 1 -1 -1 -1 1 -1 15 4206 8209 1985

31 1 1 -1 -1 -1 -1 1 30 6498 19626 2526

32 1 1 -1 -1 -1 -1 -1 30 6221 120769 1914

33 1 -1 1 1 1 1 1 9 6747 4500 3999

34 1 -1 1 1 1 1 -1 4 11088 21522 3797

35 1 -1 1 1 1 -1 1 11 7155 13231 2174

36 1 -1 1 1 1 -1 -1 4 5103 26767 3488

37 1 -1 1 1 -1 1 1 14 6479 12704 2400

38 1 -1 1 1 -1 1 -1 12 7435 9516 3156

39 1 -1 1 1 -1 -1 1 21 4923 12888 2834

40 1 -1 1 1 -1 -1 -1 30 6136 15256 2905

41 1 -1 1 -1 1 1 1 16 8521 19626 3151

42 1 -1 1 -1 1 1 -1 16 11239 27638 2924

43 1 -1 1 -1 1 -1 1 18 5822 7442 2730

44 1 -1 1 -1 1 -1 -1 15 4164 7424 2358

45 1 -1 1 -1 -1 1 1 15 5406 11995 2608

46 1 -1 1 -1 -1 1 -1 16 4169 9706 2

47 1 -1 1 -1 -1 -1 1 30 6257 19695 2521

48 1 -1 1 -1 -1 -1 -1 30 4865 11653 2252

49 1 -1 -1 1 1 1 1 7 8847 16873 3042

50 1 -1 -1 1 1 1 -1 3 11890 15150 8786

51 1 -1 -1 1 1 -1 1 7 6241 9679 3101
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Table 5.13: Combine Model with Program Stretching

(Stretch and Restrict)

No Combination Success No of Max Min

Rate Executions

52 1 -1 -1 1 1 -1 -1 4 7735 12001 5249

53 1 -1 -1 1 -1 1 1 18 7630 17050 2623

54 1 -1 -1 1 -1 1 -1 14 8691 13503 2552

55 1 -1 -1 1 -1 -1 1 19 9913 22630 2894

56 1 -1 -1 1 -1 -1 -1 30 10454 27328 2708

57 1 -1 -1 -1 1 1 1 17 12254 22972 2803

58 1 -1 -1 -1 1 1 -1 16 12042 26684 3053

59 1 -1 -1 -1 1 -1 1 8 6258 11514 3222

60 1 -1 -1 -1 1 -1 -1 8 7574 13471 3600

61 1 -1 -1 -1 -1 1 1 20 6123 8609 2195

62 1 -1 -1 -1 -1 1 -1 15 5788 8111 2275

63 1 -1 -1 -1 -1 -1 1 30 5993 18262 2625

64 1 -1 -1 -1 -1 -1 -1 30 5224 16319 2652

65 -1 1 1 1 1 1 1 7 6674 14842 3390

66 -1 1 1 1 1 1 -1 8 8290 13954 5880

67 -1 1 1 1 1 -1 1 9 6090 11807 3055

68 -1 1 1 1 1 -1 -1 7 6237 10920 3329

69 -1 1 1 1 -1 1 1 16 6745 12738 3838

70 -1 1 1 1 -1 1 -1 14 5622 10492 2634

71 -1 1 1 1 -1 -1 1 19 5971 9756 2815

72 -1 1 1 1 -1 -1 -1 30 7541 16640 3302

73 -1 1 1 -1 1 1 1 20 10578 26237 4635

74 -1 1 1 -1 1 1 -1 16 7510 20426 3716

75 -1 1 1 -1 1 -1 1 11 7425 13885 3239

76 -1 1 1 -1 1 -1 -1 16 5894 8669 3583

77 -1 1 1 -1 -1 1 1 15 5878 9947 3152
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Table 5.13: Combine Model with Program Stretching

(Stretch and Restrict)

No Combination Success No of Max Min

Rate Executions

78 -1 1 1 -1 -1 1 -1 17 4960 12687 3010

79 -1 1 1 -1 -1 -1 1 30 7856 19382 2392

80 -1 1 1 -1 -1 -1 -1 30 7045 20827 2137

81 -1 1 -1 1 1 1 1 8 10274 18158 4841

82 -1 1 -1 1 1 1 -1 5 11356 20010 4645

83 -1 1 -1 1 1 -1 1 12 7235 12367 4108

84 -1 1 -1 1 1 -1 -1 7 11509 15277 6509

85 -1 1 -1 1 -1 1 1 18 9347 15701 3747

86 -1 1 -1 1 -1 1 -1 9 7590 14278 2846

87 -1 1 -1 1 -1 -1 1 19 9354 17189 4523

88 -1 1 -1 1 -1 -1 -1 29 8656 24518 2647

89 -1 1 -1 -1 1 1 1 15 12454 27337 4693

90 -1 1 -1 -1 1 1 -1 20 8371 26667 2

91 -1 1 -1 -1 1 -1 1 13 11170 26466 3253

92 -1 1 -1 -1 1 -1 -1 14 7201 13951 3924

93 -1 1 -1 -1 -1 1 1 12 6140 8617 4119

94 -1 1 -1 -1 -1 1 -1 14 5959 13532 3551

95 -1 1 -1 -1 -1 -1 1 30 5870 20660 2912

96 -1 1 -1 -1 -1 -1 -1 30 5900 18147 2701

97 -1 -1 1 1 1 1 1 8 5331 9307 3468

98 -1 -1 1 1 1 1 -1 6 11285 16582 5377

99 -1 -1 1 1 1 -1 1 15 5250 9665 2717

100 -1 -1 1 1 1 -1 -1 3 7690 11213 5185

101 -1 -1 1 1 -1 1 1 16 7139 12687 3514

102 -1 -1 1 1 -1 1 -1 13 5719 8278 3954

103 -1 -1 1 1 -1 -1 1 17 8020 15286 3244
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Table 5.13: Combine Model with Program Stretching

(Stretch and Restrict)

No Combination Success No of Max Min

Rate Executions

104 -1 -1 1 1 -1 -1 -1 30 7963 25128 2162

105 -1 -1 1 -1 1 1 1 14 7701 20337 2970

106 -1 -1 1 -1 1 1 -1 19 14551 24092 3511

107 -1 -1 1 -1 1 -1 1 13 5752 14027 3502

108 -1 -1 1 -1 1 -1 -1 9 6520 11976 3747

109 -1 -1 1 -1 -1 1 1 13 6220 11863 3228

110 -1 -1 1 -1 -1 1 -1 19 5200 10701 3190

111 -1 -1 1 -1 -1 -1 1 30 6775 23559 2903

112 -1 -1 1 -1 -1 -1 -1 30 7222 22084 2953

113 -1 -1 -1 1 1 1 1 3 7990 14812 4579

114 -1 -1 -1 1 1 1 -1 5 10564 11805 8221

115 -1 -1 -1 1 1 -1 1 8 9550 18097 4328

116 -1 -1 -1 1 1 -1 -1 2 9130 13367 4894

117 -1 -1 -1 1 -1 1 1 16 7788 15660 4496

118 -1 -1 -1 1 -1 1 -1 13 6181 13041 3067

119 -1 -1 -1 1 -1 -1 1 18 9613 24955 4104

120 -1 -1 -1 1 -1 -1 -1 30 9956 24552 3087

121 -1 -1 -1 -1 1 1 1 11 8895 27839 4133

122 -1 -1 -1 -1 1 1 -1 12 13485 29321 5481

123 -1 -1 -1 -1 1 -1 1 14 6923 13212 3256

124 -1 -1 -1 -1 1 -1 -1 14 7497 19504 3928

125 -1 -1 -1 -1 -1 1 1 16 6049 9574 3710

126 -1 -1 -1 -1 -1 1 -1 11 5045 8792 2839

127 -1 -1 -1 -1 -1 -1 1 30 6388 18753 2816

128 -1 -1 -1 -1 -1 -1 -1 30 7279 24313 2561
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5.6 Conclusions

The program stretching principle is in its initial stages. Initial results are promi-

sing and we believe that the technique can be extended to more complex systems.

The technique was motivated by the need to satisfy “difficult” goals. The studies

indeed show that program stretching has advantages in these cases, either sho-

wing greater success or greater efficiency (or both) than standard search based

test data generation.

The approach is basically a form of continuous program transformation. A

key difference here is that the transformations do not preserve program seman-

tics. The idea of stretching was originally motivated as a form of “topological”

deformation. Ideally the input domains corresponding to satisfying test goals in

the stretched program would map in a straightforward way to those of the ori-

ginal program’s test goals. This is not essential. One could easily imagine some

input partitions vanishing as the program is stretched — some paths through the

program may no longer be possible for example.

In this chapter we have shown how program stretching can be used to find

hard-to-find branches, but really this is about generating test data to satisfy hard-

to-find conditions.

5.7 Application Outside SBSE

We believe that program stretching is a novel yet appealing concept. Although

developed to solve a specific problem in SBTDG, it seems plausible that the ap-

proach could find application elsewhere. In abstract terms the fundamental idea

is that the “problem” and “solution” are developed together. The problem is es-

sentially relaxed (made easier) until a satisficing solution is found. An attempt is

then made to migrate the problem to the original problem of interest with the so-

lution being “dragged” along to maintain satisfaction of the changing constraints.

We see no reason in principle why this form of relaxing and dragging should not

find wider application within the search based engineering disciplines.
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Chapter 6

Strengthening Inferred

Specifications using Search

Based Testing

6.1 Introduction

The software specification captures the required behaviour of a program. It is an

important ‘document’ used throughout the software development lifecycle. Spe-

cifications are informal plain text statements of needs, semi-formal structured or

graphical descriptions, or statements with mathematical precision (usually refer-

red to as formal specifications). Specifications may be identifiable documents in

their own right, or else comprise assertion fragments embedded within code (e.g.

as in the Design By Contract paradigm).

The extent to which a specification can be useful depends upon its specific

form — each format has its own strengths and weaknesses. Formal specifications

typically facilitate the automation of a variety of tasks (e.g. test data generation

or proofs of correctness) but generally require a high level of skill to produce and

read. Informal specifications are usable by a wider audience but may suffer from

ambiguity.

In many cases we do not have any explicit specification. This is highly un-

desirable; specifications are highly useful documents to many stakeholders. Since
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generating and maintaining specifications is a tedious job, it can be greatly bene-

ficial if the process is automated. Work has been done in this respect, exploring

the use of static code analysis techniques (e.g. [39, 168]) and dynamic techniques

(most prominently the work of Ernst [59, 58, 60])

An invariant is a property of a program which remains true for all its executions

(in case of a loop, it remains true in the beginning and at the end of each iteration

of the loop) and hence represents a partial specification. There are unlimited

number of program invariants. Some will be fundamental (the set of invariants

defining the program behaviour) and others may be derived as consequences.

Static analysis techniques for deriving invariants from program code are sound

theoretically, but in practice they are difficult to implement. One recent ap-

proach used to overcome such problems is dynamic (runtime) analysis [58]. In

this approach likely invariants are inferred from the actual execution traces of the

program when exercised by test cases. Since the inferred invariants are largely

dependent on test cases, they may not be correct. To get around this problem,

many approaches have been proposed [138, 192, 72, 50, 148].

In this chapter we present the use of search based test data generation tech-

niques to verify and ‘strengthen’ the inferred putative invariants. An attempt is

made to falsify inferred invariants using the available search techniques. The re-

sult is that an inferred specification can be iteratively challenged by search based

test data generation techniques resulting in a more credible set of invariants.

6.2 Background

6.2.1 Dynamic Invariant Generation

Dynamic Invariant Generation techniques have in recent years attracted signifi-

cant research interest. As stated above, data is collected from the state and IO

execution traces of programs when test cases are run. Assertions can be generated

over variables of interest. Assertions that are consistent with all traces are possible

invariants. There are, of course, an infinity of such true statements but Ernst et al.

[58, 152] have demonstrated how useful invariants can be generated. In particular
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they have shown how invariants that make up the specification of a program can

be generated. This “specification” is a best effort attempt to capture abstractly

the behaviour of the implemented program. Daikon [60], their tool framework,

uses a multi-step approach to inferring likely invariants. An instrumented version

of a program (with code to record state data at program points during execu-

tion) is exercised with test cases. The likely invariants are detected and can be

reported in many useful formats. The output consists of procedure pre- and post-

conditions and generalized object invariants. Daikon checks for 75 different types

of invariant and the extension mechanism is simple enough to include more. It

also checks for conditional invariants and implications. A conditional invariant

is only true part of the time. Consider the post condition for the absolute value

procedure:

if (arg < 0)

then return== −arg

else return== arg

This is an example of conditional invariants [8]. Support for many popular pro-

gramming languages has already been provided and can be further extended easily

to other languages. In this thesis work we have considered the likely generated

invariants at public methods’ entry and exit.

6.2.2 SBTDG for Invariant Falsification

SBTDG techniques find input data that cause identified assertions to be true

or false (as required). For specification strengthening purposes we simply target

those assertions generated by dynamic techniques such as Daikon as fragments

of inferred specifications. We need only represent such assertions in a form that

is amenable to search. This can be readily obtained by representing an invariant

in branch predicate form. Suppose we have a proposed invariant inv for some

identified point in the program. If we insert a program statement “if(!inv);” at

that point we can view the falsification of the invariant as a branch reachability
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problem [70]. This enables us to use the standard SBTDG techniques, where we

try to find test data to satisfy this branch. The overall approach we adopt can

readily be used with any reasonably effective SBTDG tool.

6.3 Related Work

Nimmer et al. [138] proposed a combination of dynamic and static analysis tech-

niques to generate specifications and prove their correctness. They used Daikon

with ESC/Java [51, 105]. Their work shows that specifications generated from

program execution are reasonably accurate. However, due to limitations of the

tools spurious inferred invariants may remain.

Harder et al. [75] proposed the Operational Difference (OD) technique for

generating, augmenting, and minimizing the test suites. The main idea is to

generate an operational abstraction (OA), an abstraction of the program’s runtime

behaviour, from program executions and then try to improve it. The technique

starts with an empty test suite and empty OA. Test cases are generated and

evaluated by means of the change that it brings in the OA. A test case that

improves the OA can be added to a test suite and a test case that doesn’t can

be removed. They also proposed operational coverage as a measure of difference

between the OA and the correct specification. This is a relative term and requires

the presence of an oracle to be computed. The technique developed fault revealing

test suites, however, it is not guaranteed that the change brought by a test case

in the OA is correct. For example, consider a variable A >= 0. A test case, say

A = 5, may cause the OA to include A ! = 0 unless and until another test case

A = 0 is executed. Thus elements of the OA may be untrue. Our technique on the

other hand searches for such “missing” or revealing test cases and hence increases

the quality of the OA.

Gupta [70] proposed modelling the invariant detection problem as a test data

generation problem in a manner very similar to our approach and then sugges-

ted applying test data generation techniques to falsify the generated invariants.

However they did not apply any technique in practice to assess it. They [72]
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further proposed an invariant coverage criterion based on a set of definition-use

chains of variables of an invariant property. The approach though increases the

quality of likely generated invariants may generate many infeasible definition-use

chains. Filtering out such infeasible chains is a tedious process. Also the test set

generated to satisfy invariant coverage criterion may not be sufficient in detecting

all the spurious likely invariants.

Hangal [74] and Xie [192] used specification violation approaches to improve

their inferred specifications. Hangal’s work [74] was mainly aimed at detecting

bugs. It is implemented in the DIDUCE tool, which continually checks the pro-

gram’s behaviour against the invariants during program execution and reports all

detected violations at the end. Xie’s [192] approach uses Daikon with ParaSoft

JTest [3] with the intention of improving the test suites for unit testing of Java

programs.

Pacheco [148] proposed a technique that selects from a large test set, a small

subset of test inputs that are likely to reveal faults in the software under test.

Their technique infers an operational model of the software’s operation from the

correct execution of a program using the Daikon invariants detector. The pro-

gram is then executed using randomly generated ‘candidate’ inputs with provided

inferred invariants monitored to see if they are satisfied. A classifier system labels

candidate inputs as illegal, normal operation or fault-revealing. The interesting

ones are the fault-revealing inputs which may indicate a fault in the program. If

more than one input violates the same property then only one input is selected

from that set. The technique has been implemented in a tool called as Eclat. The

technique was tested with some sample programs and compared with another tool,

JCrasher [40]. Eclat yields good results. The technique is effective and revealed

previously unknown faults. However, it requires a priori correct test suites which

may not be available. It also sometimes classifies an input as fault-revealing,

though it may not be so.
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6.4 Model for Invariant Falsification

One limitation of many dynamic invariant inference approaches is that they are

at the mercy of the test data. Test suites may not be wholly appropriate for the

purposes of inference. We may also get spurious or ‘not interesting’ [72] invariants.

Though some approaches [72, 75, 192] have been proposed to modify test suites,

they do not completely preclude the generation of spurious invariants. This is

especially the case when the domain of input data is large or the program is

complex. We may have a test suite satisfying a certain structural criterion, but

due to not enough test cases, we may get erroneous specifications. Figure 6.1 is an

example of such a program. In order to refine the specification for such programs

we adopt a systematic approach.

Figure 6.1: A simple program with a large input space

Our approach is similar to that of [72, 74, 192]. However, we propose a search

based test data generation approach and unlike previous approaches, our domain

of application is more ‘procedural’ in nature.

6.4.1 High Level Model

Figure 6.2 shows a high level model of our approach. We can divide our model

into three main steps.

Invariant Inference: Invariants are generated from a randomly generated test

suite containing ‘enough’ test cases to allow a reasonably succinct set of invariants

to be inferred.

Invariants’ Class: The invariants generated are then ‘imported’ into an in-

termediate class. It contains all the invariants in a format suitable to apply our
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search based test data generation techniques.

Invariant Falsification: A test data generation tool attempts to falsify the

invariants.

Figure 6.2: High Level Model

These are further elaborated below.

6.4.2 Invariant Inference

In this step we use Daikon to infer likely invariants. To begin with, a test suite

of ‘reasonably’ large set of test cases is given as input to Daikon. Daikon dyna-

mically infers a list of invariants based on the execution of test cases. The test

suite is either generated randomly or by the test data generation tool, described

in Chapter 3. We can ensure that identified structural criteria are satisfied, whi-

chever approach is adopted. Though the inferred invariants are affected by the

number of test cases in a test suite, there is no direct correlation between the

size of test suite and the invariant inference process [75]. Therefore, we chose a

test suite of arbitrary size, ensuring at the same time to include enough test cases

that may satisfy the structural criteria many times. The reason for this is to get
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a list of generalized likely invariants and to eliminate the less interesting ones e.g.

invariants peculiar to a specific test set used, such as “x is one of {4, 8, 9}”.

Consider the running example in Figure 6.1. We used Daikon to infer inva-

riants using 15000 randomly chosen values of “a” between -1000 and 100000. The

output from Daikon is shown in Figure 6.3. The invariant a! = 0 is not neces-

sarily true, but since the probability of randomly choosing a = 0 as an input is

1/101001, we can see why a random process is unlikely to generate such a case

(even with 15000 trials). 15000 trials would generate at most 15000 distinct values

of “a” and the domain of “a” comprises 101001 of which 0 is but one element.

Thus in random test data generation techniques, which seem to be the choice for

invariants falsification in previous approaches [74, 192], we are very likely to get

the spurious invariants. Note that stronger coverage criteria, such as Invariant

Coverage are also not effective here as a single test case, e.g. a = 2, may give us

the coverage for all these criteria.

Compared to other techniques, search based techniques directly target an in-

ferred likely invariant and seek data to falsify it. This eliminates the need for

deriving many test suites [75] or more complex criteria [72]. Search based test

data generation techniques provide one approach to finding counter-examples.

Our implementation approach transforms the generation of a counter-example

into a problem of executing the true branch of if(!invariant);. The advantage

and disadvantages of using search based test data generation approaches are the-

refore exactly those of using such approaches to satisfy path (and other) criteria.

As indicated in Section 2.1, search based approaches are not inhibited by the use

of “difficult” language constructs (pointers, dynamic data structures, etc.).

6.4.3 Intermediate Invariants’ Class

For counter-example generation purposes we insert additional fragments into the

program. At point P in the program if an invariant such as (a! = x) is pro-

posed then we insert a code fragment if (a == x). In test data generation

terms breaking the invariant corresponds to reaching the true branch of the inser-

ted fragment. Thus we model breaking invariants as path satisfaction problems.
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Fragments are inserted for each invariant we want to falsify.

6.4.4 Test Data Generation Framework

The generated class is then given as an input to the test data generation frame-

work, which searches data to falsify the invariants.

If an invariant can not be falsified even after exhausting the search criteria,

the search is terminated for that invariant and the invariant is assumed correct.

Here we use the tool’s abilities to target branch conditions. We terminate the

search process when either a solution is found or a maximum numbers of trials

have been made. If a test case is found that falsifies the invariant, it is added

to the existing test suite. The process continues until test data to falsify all the

invariants have been searched for.

The modified test suite is again executed by Daikon and a modified list of

invariants is generated. The process is repeated and if no further invariant is

falsified in the following iteration, the process is terminated. For the example

program, all the falsified invariants were found in the first iteration thus giving

us more refined specifications as shown in figure 6.4.

6.5 Experiments

This section describes the experiments carried out to assess the above mentioned

technique. The aim of the experiments is to demonstrate that search based test

data generation techniques can be applied effectively to refine sets of automatically

generated likely invariants produced by the Daikon tool.

We performed experiments with five programs including the example program

described earlier. Two programs i.e., Middle and WrapRoundCounter are taken

from [174]. These programs were used for specification conformance and were

originally written in Ada. CalDate, is taken from [115] and BubbleSort is a

modified form of a program given in [47]. These programs have been given in the

appendix. We have considered the invariants generated for the public methods.

Details of the input domains, test cases, number of Invariants generated and
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Figure 6.3: Initial Output from Daikon.

numbers of falsified invariants are shown in the Table 6.1.

6.5.1 Middle Program

Middle program takes three input variables and returns a variable having a value

between the other two. If two variables have same value then the third one is

reported as the middle value.
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Figure 6.4: Final Output from Daikon.

6.5.2 WrapRoundCounter

WrapRoundCounter is a simple program which counts from 0 to 10 and then

wrap-around back to 0 again. This program takes one input of type integer. If

the input is greater than 10, then it returns 0. Otherwise it increments the input

variable by 1. This program is included to investigate conditional invariants as

well.

6.5.3 BubbleSort

This program takes an array of int values. If the array is not sorted, it sorts it

elements in an ascending order.
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Table 6.1: Case Studies
Program Input # of Total # # of

Domain Test of Falsified
cases Invariants Invariants

Middle -10 — 10 15000 19 1
Middle -100 — 100 15000 21 0
Middle -500 — 500 15000 22 1
Middle -1000 — 1000 15000 22 2
Middle -5000 — 5000 15000 25 2

BubbleSort -100 — 100 15000 4 0
BubbleSort -1000 — 1000 15000 4 0

WrapRound- 0 — 11 100 8 0
Counter

WrapRound- 0 — 100 100 8 0
Counter

WrapRound- 0 — 11 100 8 0
Counter

(conditional)
Example- -1000 — 15000 16 8
Program 100000
CalDate various 500 5 3
CalDate various 1000 5 3
CalDate various 15000 3 1

6.5.4 CalDate

A description of this program has been given in Chapter 3. It takes three input

variables, day, week and year of type int. day has a domain of 0-30, week 0-6 and

year can take any integer value between -4713 to 3000.

6.5.5 Analysis

In the case of Middle program, we experimented with different domains. The pro-

gram was tested with fifteen thousand randomly generated test cases. Usually,

if we keep the input domain small, we don’t expect spurious invariants to be ge-

nerated. However, in the case of Middle even though we kept the input domain

very small, a spurious invariant was nevertheless inferred. By further increasing

the input space, Daikon inferred a set containing no spurious invariant. However,

when the domain of input values was further increased, additional spurious inva-
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riants were inferred by Daikon. In each case the search based test data generation

framework successfully generated test data to falsify these spurious invariants.

In the case of BubbleSort, we considered two different domains and fifteen

thousand randomly generated tests. This is an example of program where the

input domain does not have an effect on the inferred invariants. Daikon inferred

a correct set of invariants in this case.

In the case of WrapRoundCounter, we again considered two different domains

of input variables. A hundred test cases were generated randomly. In all cases

eight likely invariants were inferred. No inferred invariant was falsified by the

search tool. Upon inspection we found that in this case too Daikon inferred a

correct set of invariants. Also there was no effect of changing the input domain

because of the nature of program.

For the example program, shown earlier, we generated fifteen thousand tests.

The initial set of inferred invariants contained sixteen invariants out of which

eight were spurious. All were falsified by the search based test data generation

framework.

In the case of calDate we changed the number of test cases rather than the

domain as the domain needs to remain fixed. The search tool was able to eliminate

the spurious inferred invariants in each case. However, as expected, the number

of spurious invariants decreases with the test suite size. Again the final sets of

invariants were identical in each case.

In all the above cases the initial test suites were generated randomly. However,

we included sufficient test cases in each case to enable Daikon to infer a compatible

set of likely invariants. It is possible that the number of inferred invariants may

be different for another suite of test cases.

6.6 Conclusion

Specifications are important. In many cases, they will not exist or (often even

worse) be out of date. Specification synthesis tools such as Daikon offer a pro-

mising solution to this problem. However, Daikon, and indeed other dynamic
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inference tools, make inferences based on the traces of the program when execu-

ted with a given test set. Inferred specifications may differ between test sets used;

this presents a problem. Coverage criteria may be postulated but there would

appear to be no clear candidate. In many cases users resort to random testing

whilst in others structural criteria are used. These often allow erroneous inva-

riants to be inferred. Our work shows that extant search based software test data

generation approaches can be used to stress each inferred invariant with a view to

falsifying it. Test data that falsifies inferred invariants can be added to the test

suite and the inference tool can be rerun. This leads to more accurate inferred

specifications. Currently the search for test data is carried out automatically by

our tool. However, instrumenting the program with the Daikon invariants to be

falsified is at present a manual process though this can also be automated.

The approach shows that search based test data generation and specification

inference are complementary. (Search based test data generation techniques can

also be used to generate the initial test suite itself.) Our approach is a pragmatic

way to enable the important task of specification inference to be improved.
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Chapter 7

Evaluation, Future Work and

Conclusion

In this chapter we will evaluate and conclude the work. Future directions are also

provided for further work.

7.1 Evaluation

The work in this dissertation provides support for the following hypothesis:

Search based test data generation techniques can be exten-

ded to satisfy criteria at both code and higher levels with

increasing sophistication.

To address the hypothesis four topics were considered. Figure 7.1 summarises

these topics. In the following section we evaluate these in turn.
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Figure 7.1: Thesis Hypothesis
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7.1.1 Structural Testing: Searching for Fine Grained Test Data

In this work we proposed an instrumentation strategy coupled with the tradi-

tional search based approach to generate test data at a fine level of condition

granularity. For the proof of concept multiple condition and modified condition

decision coverage criteria were selected and simulated annealing was adapted as

an optimisation technique. The proposed technique was evaluated with programs

from the current software testing literature. Experiments were also carried out to

optimise the parameters of simulated annealing.

Most of the time in search based test data generation the coverage criterion

used is branch coverage. The work in this thesis is a demonstration of how search

based techniques can be applied to generate test data for stronger criteria. We

believe that this sophistication is important as many industrial standards such

as those used in avionics mandate stronger criteria such as MC/DC [162] as a

minimum for structural based testing.

We developed a framework to carry out the above mentioned work. However, it

is not a completely automated solution. We concentrated on specific components.

Thus, part of the framework i.e., selecting sub-paths to reach the decision under

consideration is done manually. However, these processes can be automated as

has already been demonstrated by many existing works [176, 186, 118].

7.1.2 Application of Genetic Algorithms to Simulink Models

In this work we provided sophistication by using genetic algorithms to generate

test data for MATLAB Simulink models, extending the existing work by Zhan

and Clark [196].

There is much application of search based techniques at code level. However,

there is very little work at architectural level. We ought to be thinking of ap-

plying different search techniques at this level as well. We took a step forward for

Simulink models and did comparative studies for two of the most commonly used

optimisation techniques. We performed experiments with a set of models taken

from existing research literature. In general GAs perform better, however, we are
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not claiming that it is the best technique for Simulink models. We believe that

to substantiate this claim further, more work is required and further techniques

and their variants need to be assessed.

7.1.3 Program Stretching

In this work we proposed ‘program stretching’, a novel technique which targets

test data generation for ‘hard’ branches. To evaluate the technique, we conducted

case studies at the code as well as architectural level. We received mixed results.

At the code level, we experimented with three programs with varying degrees of

structural complexity. In the most complex program, we obtained an improve-

ment in the average number of evaluations as well as in the success rate. At the

architecture level, we applied it to three Simulink models. Two variants of the

approach were evaluated. The first variant did not perform well. However, by

slightly improving the technique, significant improvement in success rate occur-

red. But in case of Simulink models the technique was very expensive in terms of

number executions required to find the test data.

Program stretching is in its initial stages. Limited case studies were conducted

for the proof of the concept. We believe much further research is required to

establish this technique. Still there are issues which need to be resolve such as

the ‘cooling schedule’ for the auxiliary variables, identification of ‘hard’ branches

and the branches to be transformed and cost evaluation as the technique can be

very expensive. Further real world application is needed.

The general idea of ‘program stretching’ is innovative and the idea would

appear to generalise. Thus, investigation of ‘program stretching’ seems an obvious

way forward. We know of no similar work in the literature.

7.1.4 Strengthening Inferred Specifications using Search Based

Testing

In this work, we proposed a framework to refine automatically generated likely

invariants. For a proof of concept, we inferred likely specifications for five bench-
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mark programs with different configurations, using the widely known Daikon in-

variant detector [60].

By its very nature Daikon infers assertions that are consistent with witnessed

traces but which are not necessarily invariants. The targetting of such putative

invariants by search based techniques demonstrates that search based testing ap-

proaches (ours, and by implication, those of others too) can contribute to a major

problem in software engineering. Daikon is a powerful tool. Our work shows how

search based approaches can make it even better.

Our work also draws attention to possible synergies between proof and testing.

Many advanced techniques require formal specifications of behaviour. Daikon has

already established the ability of test executions to contribute to the creation of

useful specification fragments. Our invariant falsification work augments the Dai-

kon tool to increase the quality of inferred predicates, thus facilitating possible

subsequent formal verification. Furthermore, a more general use of our falsifi-

cation approach could save time for those seeking formal proof of correctness.

If a program is indeed flawed, failing to find a proof of correctness is inevitable

and a very considerable effort. Formal proofs could be attempted only after si-

gnificant attempts have been made to find counter-examples using search based

approaches (probably in conjunction with other methods as appropriate). This is

a potentially significant area for deployment of search based test data generation

techniques.

7.2 Future Work

Some possible future work directions.

7.2.1 Extension to the Proposed Framework

The framework for fine grained test data generation was developed to provide a

proof of concept. It can be extended to make it a completely automated testing

tool. We can incorporate different techniques that have been proposed to over-

come different limitations of search based testing. This will provide a platform to
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better assess the true efficacy of search based test data generation techniques.

7.2.2 Application of Search Based Techniques to Simulink Mo-

dels

Application of GAs can be extended to the state based and mutation testing of

MATLAB Simulink models (Both issues were addressed with SA in the work of

Zhan and Clark [197, 198]. The framework can also be extended to generate test

data for more complex models by incorporating techniques for Stateflow analysis.

Other search based techniques such as EDAs can be implemented for comparative

studies. We also aim to investigate other models such as UML dynamic diagrams

(e.g., sequence and collaboration diagrams). We are interested in whether test

data can be generated using search based techniques for coverage criteria as pro-

posed by Rountev et al. [161].

7.2.3 Program Stretching

The work can be also extended to other areas as given below:

Real World Examples The technique can be evaluated with more real world

programs such as those used in automobile and avionics industry.

Search Based Algorithm Only simulated annealing was used to assess the

technique. The effectiveness of other techniques such as GAs still needs

to be investigated.

Invariant Falsification Suppose we have a proposed invariant inv for some

identified point in the program. If we insert a program statement “if(!inv);”

at that point we can view the falsification of the invariant as a branch

reachability problem. As a consequence we can easily apply the program

stretching technique.

Exception Generation Consider assignment statements of the form “var=expr;”.

When expr is evaluated the result must be a value inside the type bounds, if

an exception is not to be raised. In program reasoning it is common to refer
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to such constraints as healthiness pre-conditions. We can insert a statement

of the form “if(!healthiness); and proceed much as before.

Higher Level Models In this work we attempted application of program stret-

ching to the ‘path coverage’ or more specifically to the ‘combination’ cove-

rage [196] of Simulink models. Zhan and Clark [197] also proposed tech-

niques for a more practical branch coverage criterion. We could extend the

approach to such criteria. We also believe that our stretching technique may

find application to other higher level models such as statecharts. Similarly,

automated SBTDG from specification might be facilitated.

7.2.4 Likely Invariants’ Falsification

We could also seek complete automation of the process of invariant falsification.

This includes automatic generation of the invariants’ class. One way this can be

achieved is by extending the ‘Annotate tool’ in Daikon tool set. Further work can

also be carried out to solve the ‘automatic’ oracle problem, especially for legacy

software or software for which specifications do not exist. In fact, search based test

data generation techniques can be used to generate the initial test suite, including

boundary test values. This may give us a more refined set of inferred invariants,

which can be subjected to further refinement using the technique described in

Chapter 6. Furthermore, we aim to carry out a statistical comparison of existing

techniques with our proposed technique for deriving a refined set of likely inferred

invariants. Techniques will be compared for efficiency in term of computation cost

and derivation of correct sets of likely invariants.

7.3 Conclusion

The work in thesis has shown how current approaches to search based test data ge-

neration can be refined and extended. The fine-grained criterion satisfaction work

generally seems a natural extension of the wealth of code-oriented search based

test data generation work in the research literature. The comparison of optimi-

sation techniques in the context of Simulink models makes a modest contribution
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to an area where little research has been performed. Program Stretching seems a

highly innovative idea with wide potential applicability. Finally, the application of

search based test data generation techniques to invariant falsification shows how

these techniques can complement the best available techniques in a very important

domain.
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Triangle Program with

Instrumented Version

1 pub l i c c l a s s Tr iang l e {

2 pub l i c void t r iang leType ( i n t x , i n t y , i n t z ) {

3 i f (x<=0||y<=0||z<=0)

4 {

5 System . out . p r i n t l n ( ” Inva l i d inputs : negat ive or zero s i d e ” ) ;

6 }

7 else i f (x>y+z | | y>x+z | | z>x+y)

8 {

9 System . out . p r i n t l n ( ” Inva l i d inputs : sum of two s i d e i s l e s s

than the th i rd s i d e ” ) ;

10 }

11 else i f ( x == y && y == z ) {

12 // t r i a n g l e i s e q u i l a t e r a l

13 System . out . print ( ”an e q u i l a t e r a l ” ) ;

14 } else i f ( x == y | | y == z | | x == z ) {

15 // t r i a n g l e i s i s o c e l e s

16 System . out . print ( ”an i s o c e l e s ” ) ;

17 } else {

18 // t r i a n g l e i s s c a l en e

19 System . out . print ( ”a s c a l en e ” ) ;

20 }

21 }

22 }
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A.1 Instrumented Version of Triangle Program

1 pub l i c c l a s s Tr iang l e implements S e r i a l i z a b l e {

2 pub l i c Data data = new Data (4 , 2 , 1) ;

3

4 pub l i c void t r iang leType ( i n t x , i n t y , i n t z ) {

5 i f ( data . complex (0 , data . ba s i c (x , ”<=” , 0 , 0 , 0 , 0) | data . ba s i c (

y , ”<=” , 0 , 0 , 1 , 0) | data . ba s i c ( z , ”<=” , 0 , 0 , 2 , 0) ) ) {

6 System . out . p r i n t l n ( ” Inva l i d inputs : negat ive or zero s i d e ” ) ;

7 } else

8 i f ( data . complex (1 , data . ba s i c (x , ”>” , y + z , 1 , 0 , 0) | data .

ba s i c (y , ”>” , x + z , 1 , 1 , 0) | data . ba s i c ( z , ”>” , x + y , 1 ,

2 , 0) ) ) {

9 System . out . p r i n t l n ( ” Inva l i d inputs : sum of two s i d e i s l e s s

than the th i rd s i d e ” ) ;

10 } else

11 i f ( data . complex (2 , data . ba s i c (x , ”==” , y , 2 , 0 , 0) & data .

ba s i c (y , ”==” , z , 2 , 0 , 1) ) ) {

12 System . out . print ( ”an e q u i l a t e r a l ” ) ;

13 } else

14 i f ( data . complex (3 , data . ba s i c (x , ”==” , y , 3 , 0 , 0) | data .

ba s i c (y , ”==” , z , 3 , 1 , 0) | data . ba s i c (x , ”==” , z , 3 ,

2 , 0) ) ) {

15 System . out . print ( ”an i s o c e l e s ” ) ;

16 } else {

17 System . out . print ( ”a s c a l en e ” ) ;

18 }

19

20 }

21 }
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Programs used in this thesis

work

B.0.1 CalDate

1 pub l i c c l a s s CalDate {

2 pub l i c double t oJu l i an ( i n t day , i n t month , i n t year ) {

3 i n t JGREG = 15+31∗(10+12∗1582) ;

4 double HALFSECOND = 0.5 ;

5 i n t ju l i anYear = year ;

6 i f ( year <0){ j u l i anYear = ju l i anYear +1;

7 }

8 i n t jul ianMonth = month ;

9 i f (month>2){

10 jul ianMonth = julianMonth+1;

11 } else {

12 ju l i anYear = ju l ianYear −1;

13

14 jul ianMonth = julianMonth +13;

15 }

16 double t = Math . f loor (365 .25∗ j u l i anYear ) ;

17 double s = Math . f loor (30 .6001∗ jul ianMonth ) ;

18 double j u l i a n = t+s+day+1720995.0;

19 i n t temp = day+31∗(month+12∗year ) ;

20 i f ( temp>=JGREG) {

21 // change over to Gregorian ca l endar
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22 i n t j a = ( i n t ) ( 0 .01∗ j u l i anYear ) ;

23 j u l i a n = j u l i a n+2−j a +(0.25∗ j a ) ;

24 }

25 return Math . f loor ( j u l i a n ) ;

26 }

27 }

B.0.2 Quadratic

1 pub l i c c l a s s Quadratic {

2 pub l i c void quad( i n t a , i n t b , i n t c ) {

3

4 i f ( a==0){

5 System . out . p r i n t l n ( ”Not a quadrat i c equat ion ” ) ;

6

7 }

8 else i f ( ( b∗b−4∗a∗c )>0){

9 System . out . p r i n t l n ( ”Roots are r e a l and unequal ” ) ;

10 }

11 else i f ( ( b∗b−4∗a∗c )==0){

12 System . out . p r i n t l n ( ”Roots are r e a l and equal ” ) ;

13 }

14 else {

15 System . out . p r i n t l n ( ”Roots are complex” ) ;

16 }

17 }

18 }

B.0.3 Expint

1 pub l i c c l a s s Expint {

2 pub l i c s t a t i c f i n a l i n t MAXIT = 100 ;

3 pub l i c s t a t i c f i n a l double EULER = 0.5772156649 ;

4 pub l i c s t a t i c f i n a l double FPMIN = Math . exp(−30) ;

5 pub l i c s t a t i c f i n a l double EPS = Math . exp(−7) ;

6

7 pub l i c double expint ( i n t n , double x ) {
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8 i n t i , i i , nm1 ;

9 double a , b , c , d , del , f ac t , h , ps i , ans = 0 ;

10 nm1=n−1;

11 i f (n<0 | |x<0.0 | | ( x==0.0)&&(n==0||n==1)) {

12 System . out . p r i n t l n ( ”Bad arguments in exp int ” ) ;

13 }

14 else

15 {

16 i f (n==0)

17 ans=Math . exp(−x ) /x ;

18 else {

19 i f ( x==0.0)

20 ans=1.0/nm1 ;

21 else

22 i f (x>1.0){

23 b=x+n ;

24 c=1.0/FPMIN;

25 d=1.0/b ;

26 h=d ;

27 for ( i =1; i<=MAXIT; i++){

28 a=−i ∗(nm1+i ) ;

29 b+=2.0;

30 d=1.0/( a∗d+b) ;

31 c=b+a/c ;

32 de l=c∗d ;

33 h∗=de l ;

34 i f (Math . abs ( del −1.0)<EPS) {

35 ans=h∗Math . exp(−x ) ;

36 return ans ;

37 }

38

39 }

40 System . out . p r i n t l n ( ” cont inued func t i on f a i l e d in exp int ” )

;

41 } else {

42 i f (nm1!=0){

43 ans=1/nm1 ;

44 }
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45 else {

46 ans=−Math . log ( x )−EULER;

47 }

48

49 f a c t =1.0 ;

50 for ( i =1; i<MAXIT; i++){

51 f a c t∗=−x/ i ;

52 i f ( i !=nm1)

53 de l=−f a c t /( i−nm1) ;

54 else {

55 p s i=−EULER;

56 for ( i i =1; i i <=nm1 ; i i ++)

57 p s i +=1.0/ i i ;

58 de l=f a c t ∗(−Math . log ( x )+ps i ) ;

59 }

60 ans+=de l ;

61 i f (Math . abs ( de l )<Math . abs (ans ) ∗EPS)

62 return ans ;

63 }

64

65 }

66 }

67

68 }

69 return ans ;

70 }

71 }

B.0.4 Complex or Program3 for program stretching, code based

1 pub l i c c l a s s Complex{

2 pub l i c void complexCheck ( i n t a , i n t b , i n t c , i n t d , i n t e ) {

3 i f ( ( a<10) && (b>1000)&&(c>999 ) ) {

4 System . out . p r i n t l n ( ”complex8 executed ” ) ;

5 } else i f ( ( a>10) && (b>1000)&& ( c>999)&& (d>999&& d<1001) ) {

6 System . out . p r i n t l n ( ”complex8 e l s e i f executed ” ) ;

7 i f ( c+b<2003&& a+b<1400&&a>390) {
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8 System . out . p r i n t l n ( ” the inner i f executed ” ) ;

9 i f (d+e>2001 && d+e <2003)

10 {

11 System . out . p r i n t l n ( ”Target reached ” ) ;

12 }

13 }

14 } else {

15 System . out . p r i n t l n ( ” the f a l s e branch taken” ) ;

16 }

17 }

18 }

1 pub l i c c l a s s Middle implements S e r i a l i z a b l e {

2 pub l i c i n t f indMiddle ( i n t a , i n t b , i n t c ) {

3

4

5 i f ( ( a<b && b<c ) | | ( c<b && b<a ) ) {

6 System . out . p r i n t l n ( ”middle value i s b=”+b) ;

7 return b ;

8 }

9 else i f ( ( a<c && c<b) | | ( b<c && c<a ) ) {

10 //System . out . p r i n t l n ( ”middle va lue i s c=”+c ) ;

11 return c ;

12 }

13 else i f ( ( b < a && a <c ) | | ( c<a && a<b) ) {

14 //System . out . p r i n t l n ( ”middle va lue i s a=”+a ) ;

15 return a ;

16 }

17 else i f (b==c ) {

18 //System . out . p r i n t l n ( ” b i s equal to c , middle va lue i s ”+a ) ;

19 return a ;

20 }

21 else i f (b==a ) {

22 //System . out . p r i n t l n ( ” b i s equal to a , middle va lue i s ”+c ) ;

23 return c ;

24

25 }

26 else {
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27 //System . out . p r i n t l n ( ” a i s equal to c” ) ;

28 return b ;

29 }

30 }

31 }

1 pub l i c c l a s s WrapRoundCounter implements S e r i a l i z a b l e {

2

3 pub l i c i n t wrap inc ( i n t n) {

4 i f (n>10)

5 {

6 n=0;

7 return n ;

8

9 }

10 else

11 {

12 n=n+1;

13 return n ;

14 }

15 }

16 }

1 pub l i c c l a s s BubbleSort {

2 pub l i c void sort ( i n t array [ ] )

3 {

4 // loop to con t r o l number o f pas s e s

5 for ( i n t pass = 1 ; pass < array . length ; pass++ ) {

6

7 // loop to con t r o l number o f comparisons

8 for ( i n t element = 0 ;

9 element < array . length − 1 ;

10 element++ ) {

11

12 // compare s ide−by−s i d e e lements and swap them i f

13 // f i r s t element i s g r e a t e r than second element

14 i f ( array [ element ] > array [ element + 1 ] )

15 swap ( array , element , element + 1 ) ;
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16

17 } // end loop to con t r o l comparisons

18

19 } // end loop to con t r o l pas s e s

20

21 } // end method bubbleSort

22

23 // swap two elements o f an array

24 pub l i c void swap ( i n t array3 [ ] , i n t f i r s t , i n t second )

25 {

26 i n t hold ; // temporary ho ld ing area for swap

27

28 hold = array3 [ f i r s t ] ;

29 array3 [ f i r s t ] = array3 [ second ] ;

30 array3 [ second ] = hold ;

31 }

32

33 } // end c l a s s BubbleSort

B.0.5 Program 1

1 pub l i c c l a s s Program1 {

2

3

4 pub l i c void opCheck ( i n t j , i n t k ,

5 i n t l , i n t m) {

6

7 i f ( ( j >10) && ( j< 15) ) {

8

9 System . out . p r i n t l n ( ” j >10 && j <15: executed ” ) ;

10

11 i f ( k== j ) {

12

13 System . out . p r i n t l n ( ”k=j : executed ” ) ;

14

15 i f ( ( l !=k ) && (m>=j ) &&(m==k) ) {

16
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17 System . out . p r i n t l n ( ”Target Reached” ) ; . . . . . . . . . . ( 1 )

18 }

19 }

20 }

21 }

22 }

Transformed Program 1

1 pub l i c c l a s s Program1Var {

2

3 pub l i c void opCheck ( i n t x , i n t y ,

4 i n t z , i n t m,

5 i n t var1 , i n t var2 ,

6 i n t var3 , i n t var4 ) {

7

8 i f ( x+var1 >10 && x−var2 <15){

9

10 System . out . p r i n t l n ( ”x>10 && x<15: executed ” ) ;

11

12 i f ( y+var3>=x&&x+var3>=y) {

13

14 System . out . p r i n t l n ( ”y==x : executed ” ) ;

15

16 i f ( z !=y && m>=x && m==y) {

17

18 System . out . p r i n t l n ( ”Target reached ” ) ;

19 }

20 }

21 }

22 }

23 }

B.0.6 Program 2

1 pub l i c c l a s s Program2 {

2
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3 pub l i c void complexCheck ( i n t x , i n t y , i n t z ) {

4 i f ( ( x<10) &&(y>1000) && ( z>999) ) {

5

6 System . out . p r i n t l n ( ”Branch 1 executed ” ) ;

7 }

8 else i f ( ( x > 10) &&(y > 1000) && ( z> 999) ) {

9

10 System . out . p r i n t l n ( ”Branch 1 e l s e− i f executed ” ) ;

11

12 i f ( ( ( z + y) < 2003) && (x + y< 1400) && (x > 390) ) {

13 System . out . p r i n t l n

14 ( ”Target reached ” ) ; . . . . . . . . . . ( 2 )

15

16 }

17 }

18 else {

19

20 System . out . p r i n t l n ( ” the f a l s e branch taken” ) ;

21 }

22 }

23 }

Transformed Program 2

1 pub l i c c l a s s Program2Var {

2

3 pub l i c void complexCheck ( i n t x , i n t y ,

4 i n t z , i n t var1 ,

5 i n t var2 , i n t var3 ) {

6

7 i f ( ( x<10) &&(y>1000)

8 && ( z>999) ) {

9

10 System . out . p r i n t l n ( ”Branch−1 executed ” ) ;

11

12 }

13
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14 else i f ( ( x+var1 > 10) &&(y+var2 > 1000)

15 &&(z+var3> 999) ) {

16

17 System . out . p r i n t l n ( ”Branch−1 e l s e− i f executed ” ) ;

18

19 i f ( ( ( z + y) < 2003) && (x + y< 1400)

20 && (x > 390) ) {

21

22 System . out . p r i n t l n

23 ( ”Target reached ” ) ;

24 }

25 }

26 else {

27

28 System . out . p r i n t l n ( ” Fa l se branch taken” ) ;

29 }

30 }

31 }

B.0.7 Program 3

1 pub l i c c l a s s Program3 {

2

3 pub l i c void complexCheck ( i n t a , i n t b ,

4 i n t c , i n t d , i n t e ) {

5

6 i f ( ( a<10) && (b>1000)&&(c>999 ) ) {

7

8 System . out . p r i n t l n ( ”Branch−1 executed ” ) ;

9

10 }

11 else i f ( ( a>10) && (b>1000)&& ( c>999)

12 && (d>999&& d<1001) ) {

13

14 System . out . p r i n t l n ( ”Branch−1 e l s e i f executed ” ) ;

15

16 i f ( c+b<2003&& a+b<1400&&a>390) {
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17

18 System . out . p r i n t l n ( ” Inner i f executed ” ) ;

19

20 i f (d+e>2000 && d+e <2003){

21

22 System . out . p r i n t l n

23 ( ”Target reached ” ) ; . . . . . . . . . . ( 3 )

24 }

25 }

26 }

27 else {

28

29 System . out . p r i n t l n ( ” Fa l se branch taken” ) ;

30 }

31 }

32 }

Transformed Program 3

1 pub l i c c l a s s Program3Var {

2

3 pub l i c void complexCheck ( i n t a , i n t b ,

4 i n t c , i n t d ,

5 i n t e , i n t var1 ,

6 i n t var2 , i n t var3 ,

7 i n t var4 , i n t var5 ,

8 i n t var6 ) {

9

10 i f ( ( a<10) &&(b> 1000) &&(c> 999) ) {

11

12 System . out . p r i n t l n ( ”Branch−1 executed ” ) ;

13

14 }

15 else i f ( ( ( a+var1> 10) &&

16 (b+var2 >1000) ) &&

17 c+var3> 999)&&

18 (d+var4 >999)&&
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19 (d<1001) ) {

20

21 System . out . p r i n t l n ( ”Branch−1 e l s e i f executed ” ) ;

22

23 i f ( ( c + b<2003+var5 ) &&

24 ( a + b<1400)&&(a+var6 >390) ) {

25

26 System . out . p r i n t l n ( ” Inner i f executed ” ) ;

27

28 i f ( ( d + e> 2001) && (d + e <2003) ) {

29

30 System . out . p r i n t l n ( ”Target reached ” ) ;

31 }

32 }

33 }

34 else {

35 System . out . p r i n t l n ( ” Fa l se branch taken” ) ;

36 }

37 }

38 }

B.1 Models for Test data generation using GAs for

Simulink Models

Figure B.1: SmplSW
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Figure B.2: Quadratic v1

Figure B.3: RandMdl
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Figure B.4: Combine

Figure B.5: Quadratic v2
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Figure B.6: Tiny

Figure B.7: Calc-Start-Progress
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