
Global properties of cellular
automata

Edward Jack Powley

Submitted for the qualification of PhD

University of York

Department of Computer Science

October 2009

Abstract

A cellular automaton (CA) is a discrete dynamical system, composed of
a large number of simple, identical, uniformly interconnected components.
CAs were introduced by John von Neumann in the 1950s, and have since
been studied extensively both as models of real-world systems and in their
own right as abstract mathematical and computational systems.

CAs can exhibit emergent behaviour of varying types, including universal
computation. As is often the case with emergent behaviour, predicting the
behaviour from the specification of the system is a nontrivial task. This
thesis explores some properties of CAs, and studies the correlations between
these properties and the qualitative behaviour of the CA.

The properties studied in this thesis are properties of the global state
space of the CA as a dynamical system. These include degree of symmetry,
numbers of preimages (convergence of trajectories), and distances between
successive states on trajectories. While we do not obtain a complete classifi-
cation of CAs according to their qualitative behaviour, we argue that these
types of global properties are a better indicator than other, more local,
properties.

3

Contents

Chapter 1. Introduction 11

Part 1. Literature review 15

Chapter 2. Cellular automata 17
2.1. Definition and dynamics 17
2.2. Example: Conway’s Game of Life 19
2.3. 1-dimensional CAs and elementary CAs 21
2.4. Essentially different rules 23
2.5. Classification 26
2.6. Speed of propagation 29
2.7. Gliders 29
2.8. Turing completeness 30

Chapter 3. Linear cellular automata 33
3.1. Definition 33
3.2. As polynomials 34
3.3. Fast simulation of linear CAs 37
3.4. Properties of ECA rule 90 38
3.5. Summary 41

Chapter 4. Preimages 43
4.1. The reverse algorithm 44
4.2. The reverse algorithm for linear CAs 45
4.3. Counting preimages with de Bruijn matrices 46

Chapter 5. Other properties of cellular automata 53
5.1. Langton’s λ parameter 53
5.2. Wuensche’s Z parameter 56
5.3. Word entropy and Shannon entropy 58
5.4. The common descendent problem 60
5.5. Equicontinuity and sensitive dependence 61

Part 2. New results 67

Chapter 6. Transition graphs 69

5

6 CONTENTS

6.1. Finding the attractor 70
6.2. Testing for isomorphisms 73
6.3. Drawing transition graphs 76
6.4. Transition graphs for linear CAs 78

Chapter 7. Counting automorphisms of transition graphs 81
7.1. Automorphisms 82
7.2. Symmetries 82
7.3. Counting automorphisms 85
7.4. Numerical results 89
7.5. Splitting the expression 93
7.6. Conclusion 93

Chapter 8. Counting automorphisms for linear CAs 97
8.1. Counting automorphisms 97
8.2. Example: elementary rule 90 100
8.3. Numerical results for rule 90 102
8.4. Conclusion 103

Chapter 9. Preimages of homogeneous configurations 107
9.1. String lengths 108
9.2. De Bruijn matrices 112
9.3. Preimages of heterogeneous periodic configurations 117
9.4. Conclusion 119

Chapter 10. Distribution of transition distances 121
10.1. Numerical results 122
10.2. Moments 124
10.3. Hamming distances and preimage counting 141
10.4. Individual basins of attraction 142
10.5. Multiple transitions 143
10.6. Other metrics 145
10.7. Conclusion 149

Chapter 11. Discussion 151

Appendix 155

Appendix A. Mathematical prerequisites 157
A.1. Magmas, semigroups, monoids and groups 157
A.2. Relations 159
A.3. Group actions and orbit counting 160
A.4. Rings and fields 161

CONTENTS 7

A.5. Finite rings of polynomials 162
A.6. Metric spaces and topology 164
A.7. Graph theory 167

Appendix B. Table of elementary cellular automata 169

Appendix C. Transition graphs for ECAs on Z10 177

Appendix D. Transition graphs for ECAs on Z11 193

Appendix E. Computing cycle lengths and multiplicities for ECA
rule 90 211

Appendix F. Tables of results for Chapter 9 215

Appendix. Bibliography 227

Author’s declaration

The material in Sections 7.1 to 7.4 was presented at the Automata 2007
conference, and in Journal of Cellular Automata [PS09a].

The material in Chapter 8 was presented at the Automata 2008 confer-
ence [PS08], and in Journal of Cellular Automata [PS09b].

The material in Chapter 9 and Appendix F is to appear in Journal of
Cellular Automata [PS09c].

The material in Sections 10.1 and 10.2 has been submitted to Complex
Systems [PS09d].

9

CHAPTER 1

Introduction

A cellular automaton (CA) is a system composed of a large number of
simple components (cells) arranged on a lattice, with each cell connected to
several other spatially local cells in a uniform way. Each cell has a state,
and the states of the cells are updated synchronously on discrete time steps,
with each cell’s new state computed as a function of its current state and the
current states of the cells to which it is connected. A configuration of the
CA is an assignment of states to cells. We choose an initial configuration,
and observe the sequence of configurations that follow on successive time
steps.

CAs were introduced in the 1950s by John von Neumann, on the sug-
gestion of Stanislaw Ulam, in von Neumann’s work on self-reproducing ma-
chines [vNB66, Bur70]. CAs have since been used to model a wide variety of
physical and biological systems [FHP86, TM87, Lam98]. They are also a use-
ful formalism for massively parallel computation, mapping particularly well
to hardware architectures such as field programmable gate arrays [STCS02]
and programmable graphics processing units [GDH07].

CAs are examples of systems with emergent properties: the global be-
haviour of a CA is not designed into its components, but arises from the com-
plex interactions between these components. Systems with emergent proper-
ties are ubiquitous in physics, biology, and the social sciences [Hol98, Joh01].

Wolfram [Wol84] asserts that the long-term qualitative behaviour of a
CA falls into one of four classes: homogeneous, periodic, chaotic, or com-
plex. These classes are described in more detail in Section 2.5; for now,
the important point is that CAs as a class of systems exhibit a wide range
of behaviour, although a particular CA tends to exhibit only one class for
the vast majority of initial configurations. Furthermore, it is surprisingly
difficult to formalise this classification.

This thesis explores several properties of CAs, and investigates how these
properties relate to the CA’s class of behaviour. The properties investigated
are global, in that they relate to the entire lattice, and often the entire con-
figuration space (as opposed to local properties, which relate to individual
cells). The CA’s Wolfram class is clearly a global property, so it seems
reasonable that global properties of the CA would be a better indicator of

11

12 1. INTRODUCTION

qualitative behaviour than local properties. The aim is not to derive a com-
plete formal classification of CAs, and indeed this thesis does not present
such a classification; rather, the aim is to investigate what conditions on the
CA might be necessary and/or sufficient for certain classes of behaviour to
occur.

The configuration space of a CA grows exponentially with its number
of cells. A recurring theme in this thesis is the problem of how to study
global properties of CAs when the numbers involved become so large so
quickly. Simply throwing more computational resources at the problem is
not an effective solution: it is the nature of exponential problems that orders-
of-magnitude increases in resources yield only incremental increases in the
size of problem that can be tackled. However, in some cases mathematical
“tricks” can be used to reduce certain instances of the problem to non-
exponential problems.

The structure of this thesis is as follows. Part 1 is primarily concerned
with reviewing the existing literature, although some new results do appear
(and are indicated as such in the text). The majority of the original work
appears in Part 2.

In Part 1, Chapter 2 defines cellular automata, and discusses some im-
portant elementary concepts. Chapter 3 introduces linear CAs, which, like
linear systems in general, can be studied in different ways to their nonlinear
counterparts. Chapter 4 discusses the problem of running a CA “in reverse”:
that is, given the configuration at time t, determining what configurations
may have applied at time t − 1. Chapter 5 reviews some miscellaneous
properties of CAs, including parameters on the cell’s update rule, entropy
measures, and ideas from the theory of dynamical systems.

In Part 2, Chapter 6 defines transition graphs of CAs, and gives some
algorithms for working with them. A transition graph is a way of visualis-
ing the entire configuration space of a CA, including the transitions between
configurations. Chapter 7 presents results regarding numbers of symmetries
for transition graphs for CAs in general, and Chapter 8 extends these results
for linear CAs in particular. Chapter 9 revisits the notion from Chapter 4
of running a CA “in reverse”, but here for the special case of homoge-
neous configurations (configurations in which every cell has the same state).
Chapter 10 investigates the Hamming distances, and distances with respect
to other metrics, covered by transitions between configurations. Finally,
Chapter 11 gives some concluding remarks.

1. INTRODUCTION 13

We assume the reader is familiar with elementary concepts from mathe-
matics and theoretical computer science, such as set theory, functions, mod-
ular arithmetic, graph theory, formal languages, Turing machines, and com-
putational complexity. More advanced mathematical prerequisites are given
in Appendix A, and referenced from the main text when they are first used.

Figure on next page: “A Bunch of Rocks”, from http://xkcd.com/505/.

http://xkcd.com/505/

Part 1

Literature review

CHAPTER 2

Cellular automata

The structure of this chapter is as follows. Section 2.1 gives a formal
definition of CAs and some related concepts. Section 2.2 describes Con-
way’s Game of Life, a particularly well-known example of a CA. Sections 2.3
and 2.4 introduce an important class of CAs, the elementary CAs, which are
studied extensively in the remainder of this thesis. Section 2.5 describes how
CAs can be (informally) classified according to their qualitative behaviour.
Section 2.6 discusses the maximum speed at which information can propa-
gate in a CA, and Section 2.7 describes the structures by which information
propagation takes place. Finally, Section 2.8 gives some examples of Turing
complete CAs.

2.1. Definition and dynamics

A cellular automaton (CA) is a tuple 〈S, (L,+), T, f〉 consisting of four
components: a set S of states, a lattice (L,+), a neighbourhood template T ,
and a local rule f .

(1) The set of states, denoted S, can be any finite set with at least two
elements. Often the state set is S = Zs = {0, . . . , s− 1}, the set of
integers modulo s.

(2) The lattice (L,+) is an abelian group. Abelian groups are formally
defined in Definitions A.7 and A.9; for current purposes, an abelian
group is a set (L) on which is defined a binary operation (+, or “ad-
dition”) which satisfies the kinds of properties we expect of addition
(including the existence of a “zero” element). The elements of the
lattice are the cells of the CA. The following two families of lattice
are the most common:
(a) the infinite D-dimensional lattice ZD with the operation of

D-dimensional integer addition;
(b) the finite D-dimensional lattice with periodic boundary con-

dition, Zn1 × · · · × ZnD , with the operation of D-dimensional
modular addition.

When referring to a group, it is common to omit the binary oper-
ation if it can be inferred from context. We henceforth denote the
lattice by L instead of (L,+).

17

18 2. CELLULAR AUTOMATA

(3) The neighbourhood template T = 〈η1, . . . , ηm〉 is a sequence over L.
(4) The local rule is a function f : S|T | → S, mapping neighbourhood

states to cell states. It is sometimes useful to think in terms of the
CA’s rule table, which is simply a table giving the value of f for
each possible neighbourhood state.

A configuration of the CA is a function c : L → S. In other words, the
configuration assigns a state to each cell. The set of all configurations is
denoted SL.

The state of cell i in configuration c is denoted c[i]. The square brackets
here are a matter of style: c[i] has exactly the same meaning as c(i), but
the former notation is clearer in the frequent case when it is nested within
other function applications. Also, it is common to think of configurations of
1-dimensional CAs as strings over the state set (see Section 2.3), in which
case the c[i] notation is intentionally reminiscent of the syntax for array
indices in many programming languages.

Let i ∈ L be a cell. The neighbourhood of i is the sequence of cells
〈i+ η1, . . . , i+ ηm〉 obtained by adding i to each element of the neighbour-
hood template (recall that + is the binary operation of the abelian group
L, whatever that operation may be).

The dynamics of the CA proceeds in discrete time steps t = 0, 1, 2, . . . ,
with the “current” configuration being updated on each time step. Let ct
denote the configuration at time t. The state of cell i at time t+1 is obtained
by applying the local rule to the states of i’s neighbourhood at time t:

ct+1[i] = f(ct[i+ η1], . . . , ct[i+ ηm]) . (2.1)

This process yields a function from configurations to configurations, denoted
F : SL → SL, called the global map of the CA.

CAs are examples of discrete dynamical systems. Indeed, CAs are dis-
crete in three different senses: they operate in discrete time steps, on a
discrete space (the lattice), with a discrete state at each point in space
(cell).

A configuration of the CA is a state of the dynamical system. (Note the
clash of notation: a state of the CA as defined above is not the same as the
state in dynamical systems terms. In this thesis, the word “state” generally
has the former meaning.) A sequence of configurations visited by the CA is
a trajectory, which may reach a fixed point (a repeating configuration) or an
attractor cycle (a repeating sequence of configurations). The portion of the
trajectory preceding the fixed point or attractor cycle is the transient.

2.2. EXAMPLE: CONWAY’S GAME OF LIFE 19

Some other concepts from the theory of dynamical systems, such as sen-
sitive dependence on initial conditions (Section 5.5) and basins of attraction
(Chapter 6), can usefully be applied to CAs.

2.2. Example: Conway’s Game of Life

Conway’s Game of Life was first described by Martin Gardner [Gar70],
having been suggested by John Conway in a letter to Gardner, and was later
described by Conway himself [BCG82]. Partly because both of these early
accounts are in the context of recreational mathematics and written for a
general audience, and partly because of the fascinating and aesthetically
pleasing patterns it produces when its evolution is animated on a computer
screen, Life is by far the most famous example of a cellular automaton.

Life is a CA with state set S = {0, 1}, lattice L = Z2 (in the infinite
case) or L = Zn1 × Zn2 (in the finite case), and neighbourhood template

T =

〈(−1,−1), (0,−1), (1,−1),
(−1, 0), (0, 0), (1, 0),
(−1, 1), (0, 1), (1, 1)

〉
. (2.2)

The neighbourhood of a cell consists of that cell and the eight cells imme-
diately adjacent on the horizontal, vertical and diagonals.

The local rule f : S9 → S is defined by

f



x−1,−1, x0,−1, x1,−1,

x−1,0, x0,0, x1,0,

x−1,1, x0,1, x1,1


 =





1 if x0,0 = 1 and σ ∈ {2, 3} ;

1 if x0,0 = 0 and σ = 3;

0 otherwise,

(2.3)

where

σ =
∑





x−1,−1, x0,−1, x1,−1,

x−1,0, x1,0,

x−1,1, x0,1, x1,1





(2.4)

is the sum of the states of the cell’s neighbourhood, excluding the cell itself.
The rule can be described in words as follows:

• If a cell is in state 1 and has two or three neighbours in state 1, it
remains in state 1.
• If a cell is in state 0 and has exactly three neighbours in state 1, it

enters state 1.
• In all other cases, the cell enters or remains in state 0.

Consider the following initial configuration, where cells in states 0 and
1 are drawn as white and black squares respectively:

20 2. CELLULAR AUTOMATA

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

...

...

a b
c d e

We now apply the local rule (Equation 2.3) across all cells. For example:

• Cell a is in state 0 and has three neighbours in state 1, so it enters
state 1;
• Cell b is in state 0 but has only two neighbours in state 1, so it

remains in state 0;
• Cell c is in state 1 but has only one neighbour in state 1, so it enters

state 0;
• Cell d is in state 1 and has three neighbours in state 1, so it remains

in state 1;
• Cell e is in state 1 and has two neighbours in state 1, so it remains

in state 1.

Continuing in this way, the next configuration is:

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

...

...

and the next three configurations are:

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

...

...

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

...

...

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

...

...

...

...

...

...

...

...

Notice that the fifth configuration is identical to the first, but shifted one
cell up and to the right. Due to the homogeneity of the CA’s lattice, this
pattern of cells in state 1 will continue to propagate diagonally in this way,
moving up and to the right by one cell every four generations. This particular
pattern is called the glider.

2.3. 1-DIMENSIONAL CAS AND ELEMENTARY CAS 21

Figure 2.1. Successive generations of a glider gun in Con-
way’s Game of Life. Note that the configuration at time t+30
is identical to that at time t with the addition of one extra
glider.

Conway’s Game of Life exhibits much more complex patterns than the
glider. For example, the configuration shown in Figure 2.1 is known as a
glider gun. Every 30 generations, a new glider is produced. This pattern
demonstrates that, assuming an infinite lattice, the number of cells in state 1
can increase without limit as the CA evolves (in this case, that number
increases by 5 every 30 generations).

The “Life Lexicon” [Sil06] lists several hundred patterns in Conway’s
Game of Life, of varying size and complexity.

Several other CAs have patterns similar to the gliders in Conway’s Game
of Life. Section 2.7 generalises the notion of gliders to other CAs.

2.3. 1-dimensional CAs and elementary CAs

A 1-dimensional CA has lattice ZN in the finite case, or Z in the infinite
case. (From this point, we frequently use N to denote the lattice size for
finite 1-D CAs.) A configuration of a finite 1-D CA is a function c : ZN → S.

22 2. CELLULAR AUTOMATA

It is convenient to write such a configuration as a string of length N over S,
effectively changing the set of all configurations from SZN to SN . Clearly this
notation is not quite so convenient in the infinite case, as the corresponding
strings over S are infinite.

It is common to specify the neighbourhood template of a finite 1-D
CA in terms of its radius. A CA with radius r has neighbourhood template
〈−r,−r + 1, . . . , r − 1, r〉, so that each neighbourhood consists of 2r+1 cells.

An elementary CA (ECA) is a 1-D CA with state set Z2 = {0, 1} and
radius r = 1. The local rule is thus a function f : Z23

2 → Z2; there are
256 such functions. Each local rule is assigned a number between 0 and 255
inclusive, by interpreting the string

f(1, 1, 1)f(1, 1, 0) . . . f(0, 0, 1)f(0, 0, 0) (2.5)

as an 8-bit binary number and converting to decimal.

Example 2.1. The decimal number 30 has binary representation 00011110,
and so ECA rule 30 has the local rule defined by

xyz 111 110 101 100 011 010 001 000
f(x, y, z) 0 0 0 1 1 1 1 0

(2.6)

Take the initial configuration c to consist of a single cell in state 1, with all
other cells in state 0:

c[i] =





1 if i = 0

0 if i 6= 0
(2.7)

Then, by applying the local rule at each cell, we obtain

F (c)[i] =





f(0, 0, 1) = 1 if i = −1

f(0, 1, 0) = 1 if i = 0

f(1, 0, 0) = 1 if i = 1

0 otherwise

(2.8)

and

F 2(c)[i] =





f(0, 0, 1) = 1 if i = −2

f(0, 1, 1) = 1 if i = −1

f(1, 1, 1) = 0 if i = 0

f(1, 1, 0) = 0 if i = 1

f(1, 0, 0) = 1 if i = 2

0 otherwise

(2.9)

and so on.

2.4. ESSENTIALLY DIFFERENT RULES 23

Figure 2.2. Space-time diagram showing 50 steps of the
evolution of the CA in Example 2.1 (ECA rule 30), from an
initial configuration consisting of a single cell in state 1.

Writing configurations as strings over S, we have

c0 = . . . 0001000 . . . (2.7′)

c1 = . . . 0011100 . . . (2.8′)

c2 = . . . 0110010 . . . (2.9′)

and so on.
In the 1-dimensional case, we can depict the sequence of configurations

visited by a CA using a space-time diagram. Take a 2-D array of pixels, and
let the pixel at position (x, y) (where the positive y-axis points downwards)
correspond to the state of cell x at time y. So the x-axis corresponds to
“space”, and the y-axis to “time”. We assign a colour to each state in S,
and colour the pixels accordingly; when the state set is Z2, we generally
use white for state 0 and black for state 1. The evolution described in
Equations 2.7 to 2.9, and the 47 subsequent configurations, are shown in
Figure 2.2. ♦

ECAs were first studied in detail by Stephen Wolfram in 1983 [Wol83],
who continued to investigate them extensively [Wol86b, Wol94]. ECAs con-
tinue to be the subject of present research. The reason for this continued
interest is that, despite the simplicity of their definition and the relatively
small size of their rule space, ECAs exhibit a wide variety of behaviour,
including Turing completeness (Section 2.8).

2.4. Essentially different rules

For an ECA local rule f , define the conjugate of f by

fc(x, y, z) = 1− f(1− x, 1− y, 1− z) (2.10)

and the reflection of f by

fr(x, y, z) = f(z, y, x) . (2.11)

24 2. CELLULAR AUTOMATA

Example 2.2. The conjugate of ECA rule 30 (Equation 2.6) is

fc(0, 0, 0) = 1− f(1, 1, 1) = 1 fc(1, 0, 0) = 0
fc(0, 0, 1) = 1− f(1, 1, 0) = 1 fc(1, 0, 1) = 0
fc(0, 1, 0) = 1− f(1, 0, 1) = 1 fc(1, 1, 0) = 0
fc(0, 1, 1) = 1− f(1, 0, 0) = 0 fc(1, 1, 1) = 1 ;

(2.12)

this is ECA rule 135. The reflection of rule 30 is

fr(0, 0, 0) = f(0, 0, 0) = 0 fr(1, 0, 0) = 1
fr(0, 0, 1) = f(1, 0, 0) = 1 fr(1, 0, 1) = 0
fr(0, 1, 0) = f(0, 1, 0) = 1 fr(1, 1, 0) = 1
fr(0, 1, 1) = f(1, 1, 0) = 0 fr(1, 1, 1) = 0 ;

(2.13)

this is ECA rule 86. ♦

These transformations leave the dynamics of the CA essentially un-
changed: if the initial configuration undergoes a similar transformation (ex-
change of states 0 and 1, or left-right reflection) then the subsequent con-
figurations undergo the same transformation but are otherwise unchanged.
Transformations of this type are discussed further in Section 7.2.

Say that two ECA rules are “equivalent” if one can be obtained from the
other by conjugation, by reflection, or by applying both of these operations
in sequence. This partitions the rule space into equivalence classes; choosing
a representative from each equivalence class yields the essentially different
ECAs. By convention, the representative from each class is the rule whose
number is smallest.

Theorem 2.3. There are 88 essentially different ECAs.

This well-known result is easy to verify by enumeration, but here we
provide an analytical proof. (As far as we are aware, this result is not
proved by this method in the literature; Li and Packard [LP90] use a similar
method, but do not invoke the Orbit Counting Theorem directly.)

Proof. Let R be the set of ECA rules, and let r : R → R and c :
R → R be the operations of reflection and conjugation respectively. Let
G = {I, r, c, r ◦ c} where I is the identity function and ◦ denotes functional
composition. It follows directly from the definitions that G is a group under
◦, and that G acts on R by function application (Definition A.20). By
the Orbit Counting Theorem (Theorem A.27), the number of essentially
different ECAs is

1
|G|

∑

g∈G
χ(g) =

χ(I) + χ(c) + χ(r) + χ(r ◦ c)
4

, (2.14)

2.4. ESSENTIALLY DIFFERENT RULES 25

where
χ(g) = |{f ∈ R : g(f) = f}| (2.15)

is the number of rules fixed by g.
Every rule is fixed by the identity function, so χ(I) = 256.
For a rule to be fixed by c, we must have

1− f(1, 1, 1) = f(0, 0, 0) (2.16)

1− f(1, 1, 0) = f(0, 0, 1) (2.17)

1− f(1, 0, 1) = f(0, 1, 0) (2.18)

1− f(1, 0, 0) = f(0, 1, 1) . (2.19)

Such a rule is completely determined by choosing f(0, 0, 0), f(0, 0, 1), f(0, 1, 0)
and f(0, 1, 1). There are 24 = 16 choices, thus χ(c) = 16. (Alternatively,
there are four constraints on the rule, so the number of choices is 28/24 = 16.)

For a rule to be fixed by r, we must have

f(0, 0, 1) = f(1, 0, 0) (2.20)

f(0, 1, 1) = f(1, 1, 0) . (2.21)

There are no constraints on f(0, 0, 0), f(0, 1, 0), f(1, 0, 1) and f(1, 1, 1).
Thus χ(r) = 26 = 64.

For a rule to be fixed by r ◦ c, we must have

1− f(1, 1, 1) = f(0, 0, 0) (2.22)

1− f(1, 1, 0) = f(1, 0, 0) (2.23)

1− f(1, 0, 1) = f(0, 1, 0) (2.24)

1− f(1, 0, 0) = f(1, 1, 0) . (2.25)

Thus χ(r ◦ c) = 16.
Substituting into Equation 2.14, there are

256 + 16 + 64 + 16
4

= 88 (2.26)

essentially different ECA rules. �

The 88 essentially different ECAs are tabulated in Appendix B.
The fact that there are only 88 of them makes ECAs a particularly

attractive subject for study: 88 is small enough to enumerate exhaustively,
especially when compared to the number of rules for “larger” CAs. To
emphasise this point, Table 2.1 shows the dramatic effect of increasing the
neighbourhood radius and/or the number of states by 1, on both the total
number of rules (given by |S||S|

2r+1

) and the number of essentially different
rules (obtained by a similar argument to the proof of Theorem 2.1; note

26 2. CELLULAR AUTOMATA

r |S| Total number of rules Essentially different rules
1 2 256 88
2 2 4.29× 109 1.07× 109

1 3 7.63× 1012 6.36× 1011

2 3 8.72× 10115 7.27× 10114

Table 2.1. Numbers of rules for 1-dimensional CAs with
the given neighbourhood radii and numbers of states.

that in the definition of “essentially different” for |S| > 2, the operation of
conjugation is replaced with the group of all permutations of S).

2.5. Classification

Wolfram [Wol84] observes that ECAs (and CAs in general [PW85]) seem
to exhibit four qualitative classes of behaviour (quoted descriptions are from
Wolfram [Wol84]):

Class 1: “Evolution leads to a homogeneous state”.
Class 2: “Evolution leads to a set of separated simple stable or pe-

riodic structures”.
Class 3: “Evolution leads to a chaotic pattern”.
Class 4: “Evolution leads to complex localized structures, sometimes

long-lived”.

Space-time diagrams illustrating these four classes are shown in Fig-
ure 2.3.

Li and Packard [LP90, LPL90] suggest a refinement of Wolfram’s clas-
sification, in which class 2 is subdivided into three further classes:

Class LP2: Evolution leads to a heterogeneous fixed point.
Class LP3: Evolution leads to periodic behaviour, with period greater

than 1.
Class LP4: Evolution leads to locally chaotic behaviour, with re-

gions of chaos separated by fixed walls.

An example of class LP4 is shown in Figure 2.4. Classes LP1, LP5 and LP6
are equivalent to Wolfram’s classes 1, 3 and 4 respectively.

It is worth noting that these classes are not formally defined, and clas-
sification of a given CA is a subjective matter. Much effort has been made
to “formalise” these classes, or rather, to align these qualitative classes with
quantitative properties which can be measured or proven. Sutner [Sut09]
gives an overview of some of these efforts. Culik and Yu [CY88] suggest a
formalism of Wolfram’s classes in terms of computability theory, and show
that classification according to this scheme is undecidable. This seems to

2.5. CLASSIFICATION 27

Class 1 Class 2

Class 3 Class 4

Figure 2.3. Examples of Wolfram’s four classes. Space-
time diagrams are shown for ECA rules 168 (class 1), 27
(class 2), 30 (class 3) and 110 (class 4). The lattice is Z50

for rules 168 and 27, and Z200 for the others. The initial
configuration in each case is random, in the sense that each
cell is assigned state 0 or 1, each with probability 1

2 .

suggest that Wolfram’s classification is undecidable, to the extent that no-
tions such as decidability can meaningfully be applied to something that is
not formally defined to begin with. Despite this, more statistical methods
(e.g. [OdOO01]) have been applied to the problem with some success.

Instead of starting with subjective descriptions of dynamics, an alter-
native approach to classification is to start with a formal classification and
relate it back to qualitative behaviour. For example, Kůrka [Kůr97] suggests
a classification scheme based on formal languages and the theory of dynam-
ical systems (the notion of equicontinuity, discussed in Section 5.5, forms a
part of this classification). While this approach has the advantage of provid-
ing unambiguous (and, hopefully, decidable) criteria for class membership,
it still leaves the question of relating the classes back to the behaviour of the
CA: Kůrka does give a mapping between his classification and Wolfram’s,
but by no means is this mapping obvious.

Although Wolfram’s classification is not without detractors (e.g. [Epp]),
it remains the most widely used classification scheme for CAs. We refer
to Wolfram’s classes throughout this thesis, but less as a rigid taxonomy

28 2. CELLULAR AUTOMATA

Figure 2.4. Space-time diagram for ECA rule 73 on the
lattice Z400. This is an example of a CA in Li and Packard’s
class LP4.

and more as a shorthand for the trichotomy of simple versus chaotic versus
complex behaviour.

Appendix B gives Wolfram classes for the 88 essentially different ECAs.
We determined these classes by the following method. For several values of
N (here N = 98, . . . , 102), and several trials for each value of N (here 50
trials), choose a random initial configuration and allow the CA to evolve for
a large number of time steps (here 500). There are three cases:

(1) If the final configuration is homogeneous for all N and all trials,
then the ECA is in class 1.

(2) By examining the final four configurations, determine whether the
ECA is periodic, modulo cyclic shift, with a period of 4 or less. If
so for all N and all trials, then the ECA is in class 2.

(3) In all other cases, the class is determined by inspection. In par-
ticular, this is the case if the ECA exhibits aperiodic (or periodic
with a period greater than 4) behaviour for any trial for any value
of N .

The intention here is not to obtain a complete classification, but to eliminate
those cases in which the classification is “obvious” so that only the non-
obvious cases (case (3) above) require human intervention. The classification
was found to be “obvious” in this sense for 68 of the 88 essentially different
ECAs. Of the remaining 20, two (rules 54 and 110) are in class 4, thirteen
(all the rules listed as class 3 in Appendix B) are in class 3, and five (rules 25,
26, 41, 94 and 154) are in class 2 but have periodic cycles of length greater
than 4.

2.7. GLIDERS 29

2.6. Speed of propagation

There is a limit to the speed at which information can propagate in a
CA. Let c be the Euclidean distance between a cell and its most distant
neighbour. The number of neighbours is finite, so c is finite. Now it is easy
to see that information cannot possibly propagate over a distance of more
than c cells in one time step; in effect, c is the “speed of light”. For a 1-D
CA with neighbourhood radius r, c = r; for Conway’s Game of Life, c =

√
2

(the distance between a cell and its diagonal neighbour).
We say a state q ∈ S is quiescent if f(q, . . . , q) = q. If a region of the

lattice has every cell in state q at time t, then that region, less a boundary
of width c, must remain in state q at time t+ 1.

In Example 2.1, state 0 is quiescent. At time t = 0, we know that
s0(i) = 0 for |i| > 0. Therefore at time t = 1, we will have s1(i) = 0 for
|i| > 1. In general we have st(i) = 0 for |i| > t, and so we only need to apply
the local rule to the 2t+ 1 cells i with |i| ≤ t, safely ignoring the rest of the
cells.

More generally, say that a configuration is finite if only finitely many cells
are not in some quiescent state q. Such an initial configuration guarantees
existence of a hypercube, outside of which all cells are quiescent; this “active
hypercube” then expands outwards at speed no greater than c. This idea
is analogous to the concept of light cones in physics. This allows us to
simulate an infinite lattice CA with finite (but unbounded as t increases)
computational resources, provided the CA has a quiescent state and the
initial configuration is finite.

2.7. Gliders

One phenomenon which is characteristic of class 4 CAs is that of “mov-
ing” structures. We have already seen an example of this: the glider in
Conway’s Game of Life (Section 2.2). This section generalises that notion.

Let c be a finite initial configuration of a CA with lattice L. Say that c
is a glider if, for some positive integer p and some non-zero v ∈ L, we have

F p(c)[i] = c[i− v] (2.27)

for all cells i.
So evolving the CA for p generations is equivalent to shifting the config-

uration c by an offset v. For the glider in Conway’s Game of Life, we have
p = 4 and v = (1,−1); by rotating the initial pattern, we can easily obtain
gliders in Life for which v is any of the four vectors (±1,±1).

The definition above requires the initial configuration to be finite (in
the sense of Section 2.6); in fact, it is often useful to relax this condition

30 2. CELLULAR AUTOMATA

Figure 2.5. Gliders in rule 110.

and instead require only that the initial configuration is periodic outside a
finite region of the lattice. This periodic pattern is the ether through which
the glider moves. Figure 2.5 shows several gliders in ECA rule 110, moving
through an ether which consists of repetitions of the string 00010011011111
(visible in the figure as a regular pattern of small triangles).

2.8. Turing completeness

It seems reasonable that simulation of a Turing machine must require
“complex localized structures, sometimes long-lived”, and so Turing com-
pleteness is sufficient for a CA to be in class 4. Wolfram [Wol84] conjectures
that the converse is also true: every class 4 CA is Turing complete.

Strictly speaking, since the length of a Turing machine’s tape is un-
bounded, Turing completeness is only possible in CAs with an infinite lat-
tice.

Several CAs can be shown to be Turing complete:

2.8.1. Smith’s CA

Smith [Smi71] shows that an arbitrary Turing machine (TM) with m

tape symbols and n states can be simulated by a 1-D CA with neighbourhood

2.8. TURING COMPLETENESS 31

template 〈−1, 0, 1, 2〉 and m + n states [Smi71, Theorem 7]. Furthermore,
the simulation runs in real-time, meaning that one step in the execution of
the TM is completed in one time step in the CA. Smith’s construction works
by associating the cells of the CA lattice with the cells of the TM tape, such
that the state of a tape cell is encoded in the state of the corresponding CA
cell. The CA rule is set up in such a way that it emulates the movement of
the tape head across the static tape, thus simulating the TM.

It is possible to make trade-offs between the neighbourhood size, state
set size and running time; indeed, Smith proves that the neighbourhood
template 〈0, 1〉 is sufficient, for a CA with m(n + 3) states running in 2-
times real time (i.e. with one step in the TM taking two steps in the CA)
[Smi71, Theorem 5].

2.8.2. Conway’s Game of Life

It is possible to construct logic gates, memory units etc. in Conway’s
Game of Life, by exploiting the different types of glider collision which can
occur. This possibility is put forward by Conway [BCG82], and a detailed
construction is provided by Rendell [Ren02]. Toffoli and Margolus [TM87]
point out that such a construction is “something of a tour de force — a bit
like showing that one can make a computer out of the collisions of billiard
balls!”

2.8.3. ECA rule 110

Cook [Coo04] proves that the interactions between gliders in rule 110
(see Figure 2.5) can be used to implement a Turing complete system known
as a cyclic tag system. If the construction in Conway’s Game of Life is
analogous to computing with billiard balls, the construction in rule 110 is
akin to computing with waves colliding in a trough of water.

In Appendix B, we identify two ECAs as class 4, namely rules 54 and 110.
If Wolfram’s conjecture is true, this implies that rule 54 is also Turing com-
plete; however, no proof (or disproof) of this exists.

2.8.4. Trid CAs

Cook’s result implies that any system capable of simulating ECA rule 110
is capable of universal computation. This gives an easy way of proving
Turing completeness for a variety of relatively simple systems.

A Trid CA is a 2-dimensional, binary state CAs with neighbourhood
template 〈(0, 1), (0, 0), (1, 0)〉. A Quad CA is defined similarly, with (1, 1)
appended to the neighbourhood template. Toffoli [Tof08] posed the ques-
tion of whether Quad or Trid CAs are Turing complete. Powley [Pow08]

32 2. CELLULAR AUTOMATA

shows that Trid CAs (and thus Quad CAs) are indeed Turing complete, by
emulating ECA rule 110 in a Trid CA.

2.8.5. Discussion

As is often the case, this discussion of Turing machines is useful only for
proving that CAs are in the class of computationally universal systems. If
we want to use a CA to carry out an actual computation, direct simulation
of a Turing machine is never the most practical choice. In particular, these
simulations fail to exploit the parallelism inherent in the structure of the
CA. The construction in Conway’s Game of Life is a possible exception, as
it simulates logic circuits instead of Turing machines, but it is still not the
most efficient use of the CA’s resources.

CHAPTER 3

Linear cellular automata

A common theme in mathematics is that linear systems tend to be easier
to analyse than nonlinear systems. This is certainly true for CAs.

The structure of this chapter is as follows. Section 3.1 gives the necessary
definitions. Section 3.2 shows how linear CAs can be studied in terms of
finite rings of polynomials, specifically by encoding configurations and local
rules as polynomials in such a way that the operation of the global map is
equivalent to multiplication of polynomials. Section 3.3 uses this to give a
“fast” algorithm for simulating linear CAs, specifically an algorithm that
can simulate t time steps of the CA in O(log t) time. Section 3.4 uses
polynomials to prove several properties of a particular linear CA, namely
ECA rule 90.

3.1. Definition

Consider a CA whose state set S is a commutative ring. Commutative
rings are defined in Definition A.29; the most important point is that S
has commutative operations of “addition” and “multiplication” that satisfy
the usual properties. A common choice for S is Zn, with the operations of
addition and multiplication modulo n.

Such a CA is linear, or additive, if its local rule has the form

f(x1, . . . , xm) = λ1x1 + · · ·+ λmxm (3.1)

for some constants λ1, . . . , λm ∈ S. In other words, the local rule is a linear
function (a polynomial of degree 1), with zero constant term. A linear
CA is non-trivial if more than one of the coefficients λ1, . . . , λm is nonzero,
otherwise it is trivial.

Example 3.1. Of the 88 essentially different ECA rules, six are linear:

f(x−1, x0, x1) = 0 (rule 0) (3.2)

f(x−1, x0, x1) = x1 (rule 170) (3.3)

f(x−1, x0, x1) = x0 (rule 204) (3.4)

33

34 3. LINEAR CELLULAR AUTOMATA

Rule 60 Rule 90 Rule 150

Figure 3.1. Space-time diagrams for the three non-trivial
linear ECAs, on an initial configuration consisting of a single
cell in state 1 (top) and an initial configuration in which each
cell is randomly assigned state 0 or 1 (bottom).

f(x−1, x0, x1) = x−1 + x0 (rule 60) (3.5)

f(x−1, x0, x1) = x−1 + x1 (rule 90) (3.6)

f(x−1, x0, x1) = x−1 + x0 + x1 (rule 150) (3.7)

Rules 0, 170 and 204 are trivial, and rules 60, 90 and 150 are non-trivial. In
terms of global maps, rule 0 immediately maps every configuration to the
homogeneous configuration of zeroes, rule 170 shifts the entire configuration
by one cell to the left, and rule 204 is the identity. The global dynamics of
the other three rules are illustrated in Figure 3.1. ♦

For two configurations u, v, define the sum u+ v by

(u+ v)[i] = u[i] + v[i] (3.8)

for all i ∈ L. Configurations of a linear CA obey a law of additive superpo-
sition:

Theorem 3.2. Let F be the global map for a linear CA, and let u, v be two
configurations. Then

F (u+ v) = F (u) + F (v) . (3.9)

Proof. Follows directly from the definitions. �

3.2. As polynomials

Martin et al [MOW84] study linear CAs in terms of finite rings of poly-
nomials. This technique allows a large body of work from algebra to be
applied to linear CAs.

3.2. AS POLYNOMIALS 35

Consider a finite 1-D linear CA on N cells, whose state set S is a field
(Definition A.30). A field is a ring in which every nonzero element has a
multiplicative inverse. For example, Zp is a field if (and only if) p is prime.

Denote by RSN the set of all polynomials of degree less than N with co-
efficients in S. Define two binary operations + and × on RSN , corresponding
to the usual operations of addition and multiplication of polynomials, but
“factoring out” the equation xN − 1 = 0. Effectively, all powers of x are
computed modulo N . Under these operations, RSN is a commutative ring.

Example 3.3. Let S = Z2, and let N = 4. Consider the following two
polynomials in RZ2

4 :

f(x) = x+ x2 + x3 (3.10)

g(x) = 1 + x2. (3.11)

Then

f(x) + g(x) = (x+ x2 + x3) + (1 + x2) (3.12)

= 1 + x+ 2x2 + x3 (3.13)

= 1 + x+ x3 (3.14)

f(x)× g(x) = (x+ x2 + x3)× (1 + x2) (3.15)

= (x+ x2 + x3) + (x3 + x4 + x5) (3.16)

= x+ x2 + x4 + x5 (3.17)

= x+ x2 + 1 + x (3.18)

= 1 + x2. (3.19)

In Equations 3.14, 3.17 and 3.19, we make use of the fact that 2 ≡ 0 in
Z2. In Equation 3.18, we “factor out” x4 − 1 = 0 to reduce indices to their
residues modulo 4, so that x4 becomes x0 = 1 and x5 becomes x1 = x. ♦

A formal construction of RSN is given in Appendix A.5.
There is a bijective mapping between configurations of the CA and el-

ements of RSN : specifically, map the configuration c to the polynomial Ac
defined by

Ac(x) = c[0] + c[1]x+ c[2]x2 + · · ·+ c[N − 1]xN−1 . (3.20)

Let the CA’s local rule be defined by

f(a−r, . . . , ar) = λ−ra−r + · · ·+ λrar . (3.21)

We associate with f a polynomial Tf :

Tf (x) = λ−rxr + · · ·+ λrx
−r . (3.22)

36 3. LINEAR CELLULAR AUTOMATA

Recall that powers of x are computed modulo N in RSN , so a polynomial
can have “negative” powers of x; specifically, x−i = xN−i.

Theorem 3.4. Let c be a configuration of a linear CA. Then

AF (c)(x) = Tf (x)Ac(x) . (3.23)

In other words, applying the global map F to a configuration and then finding
the associated polynomial is equivalent to multiplying the configuration’s as-
sociated polynomial by the polynomial Tf . This is illustrated in the following
commutative diagram:

F

Tf

c F (c)

Ac AF (c)

Proof. The xi term in Tf (x)Ac(x) is

r∑

j=−r

(
λjx

−j) (c[i+ j]xi+j
)

=




r∑

j=−r
λjc[i+ j]


xi (3.24)

= f(c[i− r], . . . , c[i+ r])xi (3.25)

= F (c)[i]xi , (3.26)

which is the xi term in AF (c)(x). Hence the polynomials Tf (x)Ac(x) and
AF (c)(x) are equal. �

Example 3.5. The polynomial associated with ECA rule 60 (Equation 3.5)
is

Tf (x) = x+ 1 . (3.27)

Let N = 8, and consider the configuration c = 00110001. The associated
polynomial is

Ac(x) = x2 + x3 + x7 . (3.28)

Now

Tf (x)Ac(x) = (x+ 1)(x2 + x3 + x7) (3.29)

= x3 + x4 + x8 + x2 + x3 + x7 (3.30)

= 1 + x2 + x4 + x7 . (3.31)

The configuration associated with this polynomial is 10101001. It is easy to
verify that F (c) = 10101001. ♦

3.3. FAST SIMULATION OF LINEAR CAS 37

1: let tktk−1 . . . t0 be the binary representation of t . k = dlog2 te
2: p(x)← Tf (x)
3: q(x)← 1
4: for i = 0, . . . , k do
5: if ti = 1 then
6: q(x)← q(x)× p(x)
7: p(x)← p(x)2 . now p(x) = Tf (x)2i+1

8: now q(x) = Tf (x)t

Algorithm 3.1: Finding Tf (x) in time O(log t).

3.3. Fast simulation of linear CAs

For a general (nonlinear) CA, there is no faster way to compute the
configuration at time t than letting the CA run for t time steps. For 1-D
linear CAs, however, it is possible to compute the configuration at time t
in O(log t) operations. To see this, note that the configuration at time t is
Tf (x)tAc(x), where Tf (x) is the polynomial associated with the local rule
and Ac(x) is the polynomial associated with the configuration at time 0.
Now Tf (x)t can be found in time O(log t), by writing t in binary notation
and repeatedly squaring Tf (x); see Algorithm 3.1.

In fact, the repeated squaring is not necessary if the state set is Z2:

Lemma 3.6. In RZ2
N , we have
(

r∑

i=−r
aix

i

)2k

=
r∑

i=−r

(
aix

2ki
)

(3.32)

for all nonnegative integers k.

This result applies to linear CAs by substituting λ−i for ai, giving an
expression for Tf (x)2k

.

Proof. By induction on k. The key observation is that when an ex-
pression of the form (

r∑

i=−r
aix

2ki

)2

(3.33)

is expanded, all but the
(
x2ki

)2
terms have a coefficient of 2 (which is

equivalent to 0 in Z2) and thus vanish. �

Example 3.7. The polynomial associated with ECA rule 60 (Equation 3.5)
is

Tf (x) = x+ 1 . (3.34)

By Lemma 3.6, we have
Tf (x)2k

= x2k
+ 1 (3.35)

38 3. LINEAR CELLULAR AUTOMATA

for all nonnegative integers k.
Given that 100 = 64 + 32 + 4, we thus have

Tf (x)100 = Tf (x)64Tf (x)32Tf (x)4 (3.36)

= (x64 + 1)(x32 + 1)(x4 + 1) (3.37)

= x100 + x96 + x68 + x64 + x36 + x32 + x4 + 1 . (3.38)

Let N = 9. In RZ2
9 , this reduces to

Tf (x)100 = x1 + x6 + x5 + x1 + x0 + x5 + x4 + 1 (3.39)

= x4 + x6 . (3.40)

Let c = 000110001. Then

Tf (x)100Ac(x) = (x4 + x6)(x3 + x4 + x8) (3.41)

= x7 + x8 + x9 + x10 + x12 + x14 (3.42)

= 1 + x+ x3 + x5 + x7 + x8 . (3.43)

This implies that F 100(c) = 110101011, which can easily be verified. ♦

3.4. Properties of ECA rule 90

Martin et al [MOW84] use algebraic techniques to prove several prop-
erties of the linear ECA rule 90. The properties themselves are fairly unre-
markable, given that rule 90 is not among the more complex ECAs, but it
is worthwhile noting the relative ease with which they are proved, and con-
trasting this with the difficulties encountered when trying to prove similar
properties for nonlinear CAs.

From Equation 3.6, the polynomial associated with rule 90 is

Tf (x) = x+ x−1. (3.44)

A Garden of Eden configuration is a configuration c such that there is no
configuration b with F (b) = c. Garden of Eden configurations are discussed
further in Chapter 4.

Lemma 3.8 ([MOW84, Lemma 3.1]). Configurations containing an odd
number of cells in state 1 are Garden of Eden configurations.

Proof. Notice that, for a polynomial A(x), the sum of A’s coefficients is
given by A(1). So for the polynomial Ac(x) associated with a configuration
of an ECA, Ac(1) is congruent modulo 2 to the number of cells in c in state
1. In other words, Ac(1) = 1 if and only if the number of cells in state 1 is
odd.

3.4. PROPERTIES OF ECA RULE 90 39

Now let c0 be a configuration, and consider the next configuration c1 =
F (c0). We have

Ac1(x) = Tf (x)Ac0(x) = (x+ x−1)Ac0(x). (3.45)

But (1 + 1−1) = 0 in Z2, so we must have Ac1(1) = 0. This shows that an
even number of cells in c1 are in state 1.

This argument works for all configurations c0, so a configuration with an
odd number of cells in state 1 must be a Garden of Eden configuration. �

Theorem 3.9 ([MOW84, Theorem 3.1 (b)]). If N is odd, exactly half of all
configurations are Garden of Eden configurations.

Proof. By Lemma 3.8, it suffices to show that configurations with an
even number of cells in state 1 are not Garden of Eden configurations. Let c
be such a configuration. It can be shown that, since Ac(1) = 0 and x− 1 is
a factor of xN − 1 for all N , then x− 1 is a factor of Ac(x). We are working
in Z2, so x − 1 = x + 1. Thus there exists a polynomial B(x) in RSN such
that

As(x) = (x+ 1)B(x). (3.46)

Since N is odd, it is easy to verify that

x+ 1 = (x+ x−1)(x2 + x4 + · · ·+ xN−1) (3.47)

in RSN . Substituting into Equation 3.46 gives

Ac(x) = (x+ x−1)(x2 + x4 + · · ·+ xN−1)B(x) (3.48)

= Tf (x)(x2 + x4 + · · ·+ xN−1)B(x). (3.49)

Thus the configuration associated with the polynomial (x2+· · ·+xN−1)B(x)
is mapped to c by the global map, and so c is not a Garden of Eden config-
uration. �

Theorem 3.10 ([MOW84, Theorem 3.1 (a)]). If N is even, exactly three
quarters of all configurations are Garden of Eden configurations.

Proof (sketch). Let c0, c1 be configurations such that F (c0) = c1.
We have

Ac1(x) = (x+ x−1)Ac0(x), (3.50)

and so
Ac1(x) = (x2 + 1)B(x) (3.51)

for B(x) = x−1Ac0(x). It can be shown, making use of the fact that N is
even, that degB(x) < N − 2. Thus there are 2N−2 possible choices of B(x),
hence 2N−2 possibilities for Ac1(x), hence 2N−2 possibilities for c1. These

40 3. LINEAR CELLULAR AUTOMATA

2N−2 possibilities are one quarter of the entire configuration space, thus the
remaining three quarters are all Garden of Eden configurations. �

Martin et al also prove some results about the topology of the transition
graphs (Definition 6.1) for rule 90:

Theorem 3.11 ([MOW84, Theorem 3.3]). If N is odd, all trees in the
transition graph consist of a single edge.

This result is illustrated in Figure 6.6.

Theorem 3.12 ([MOW84, Theorem 3.4]). If N is even, all trees in the
transition graph have the following properties:

(1) The distance from the root vertex to every leaf vertex is

1
2

max
{

2j : 2j is a factor of N
}

; (3.52)

(2) The root vertex has in-degree 3;
(3) Every non-root non-leaf vertex has in-degree 4.

This result is illustrated in Figure 6.7, where Equation 3.52 gives the
distance from root to leaf as 1

222 = 2.

Theorem 3.13 ([MOW84, Lemma 3.4]). Let ΠN be the length of the cycle
obtained from an initial configuration with a single cell in state 1 and all
other cells in state 0. Then all other cycle lengths on the lattice ZN are
factors of ΠN .

In fact, Theorem 3.13 holds for all linear CAs.

Theorem 3.14 ([MOW84, Lemmas 3.5 and 3.6]). If N is a power of 2,
ΠN = 1. If N is even but not a power of 2, ΠN = 2ΠN

2
.

The characterisation of ΠN is not quite so neat when N is odd:

Theorem 3.15 ([MOW84, Theorem 3.5]). If N is odd, ΠN is a factor of
2j − 1 where

j = min
{
i > 0 : 2i ≡ ±1 mod N

}
(3.53)

For example, Theorem 3.14 gives Π12 = 2Π6 = 4Π3. Now 21 ≡ −1
mod 3, so Theorem 3.15 tells us that Π3 is a factor of 21 − 1. This forces
Π3 = 1, thus Π12 = 4.

Also, since 25 = 32 ≡ −1 mod 11, Theorem 3.15 tells us that Π11 is a
factor of 25 − 1 = 31. But 31 is prime, so we must have either Π11 = 1 or
Π11 = 31. It turns out that Π11 = 31.

3.5. SUMMARY 41

Martin et al observe that ΠN = 2j − 1 for the majority of odd N , the
first few exceptions being

N = 37, 95, 101, 141, 197, 199, 203, (3.54)

In the notation of Equation 8.26, j is the value of the suborder function
of 2 modulo N : j = sordN (2).

3.5. Summary

The methods used by Martin et al to study rule 90 generalise to other
linear CAs, including those in higher dimensions: rules and configurations
in a D-dimensional CA are represented by polynomials in D variables. Of
course, the methods do not generalise to nonlinear CAs.

We normally think of emergence as occurring in systems where “the
whole is greater than (or at least different from) the sum of the parts”.
However, the principle of additive superposition (Theorem 3.2) suggests that
the whole of a linear CA is exactly the sum of the parts. Does this mean
that linear CAs cannot exhibit emergent properties? It is certainly true that
linear CAs have interesting properties; whether these properties are classed
as “emergent” or not depends more on the definition of emergence being
used than on the nature of the system itself.

CHAPTER 4

Preimages

The preimages of a CA configuration u are those configurations v such
that F (v) = u. In other words, the preimages of the configuration at time t
are all the possible configurations at time t− 1.

A configuration of a CA is said to be reachable if it has at least one
preimage, and unreachable otherwise. An unreachable configuration can
only appear as the initial configuration of the CA; a reachable configuration
can also appear on subsequent time steps. Unreachable configurations are
often referred to as Garden of Eden configurations.

If no configuration of the CA has more than one preimage, then the CA
is said to be injective. Equivalently, a CA is injective if and only if its global
map is an injective (one-one) function. If every configuration is reachable,
the CA is said to be surjective; this is the case if and only if the global
map is a surjective (onto) function. If a CA is both injective and surjective,
so that the global map is a bijection, then the CA is said to be reversible.
Configurations of a reversible CA have exactly one preimage, so the CA
“running in reverse” is a deterministic system (although not necessarily a
CA itself).

It is well known that a function on a finite set is injective if and only if
it is surjective. Hence the words “injective”, “surjective” and “reversible”
are synonymous for CAs on finite lattices, although not for CAs on infinite
lattices.

Reversible CAs are exceptional: most CAs have Garden of Eden configu-
rations and configurations with multiple preimages. In this case, the CA “in
reverse” is not deterministic. Among the essentially different ECAs, only
rules 204 (identity), 170 (shift left), 51 (exchange states 0 and 1) and 15
(exchange 0 and 1 and shift to the right) are reversible. Some ECAs are re-
versible for particular numbers of cells N ; for example, rule 150 is reversible
if and only if N is not a multiple of 3.

This chapter discusses the problems of finding and counting preimages
of CA configurations. Section 4.1 gives an efficient algorithm for finding
preimages, and Section 4.2 shows that this algorithm can be made even
more efficient if the CA is linear. Section 4.3 describes how the number of
preimages can be found without finding the preimages themselves.

43

44 4. PREIMAGES

1: procedure FindPreimages(c)
2: for a ∈ S2r do
3: BuildPreimage(c, a)
4: procedure BuildPreimage(c, a)
5: N ← length(c)
6: k ← length(a) . we know 2r ≤ k < N
7: for b ∈ S do
8: if f(a[k − 2r], . . . , a[k − 1], b) = c[k − r] then . b is valid choice
9: if k + 1 = N then . length(ab) = N

10: if F (ab) = c then . see note in text
11: output ab as a preimage of c
12: else . length(ab) < N
13: BuildPreimage(c, ab)

Algorithm 4.1: The reverse algorithm, for finding the preimages of a given
configuration c.

4.1. The reverse algorithm

Wuensche [WL92] gives an algorithm for finding preimages of configura-
tions in 1-dimensional cellular automata. The algorithm works by iteratively
building preimages from left to right. Suppose we have the partial preim-
age a0 . . . ak−1, where k < N . If we append state b, the newly completed
neighbourhood of cell k − r is ak−2r . . . ak−1b. For this to be a valid partial
configuration, we want f(ak−2r . . . ak−1b) = ck−r. If this is the case then
the algorithm continues with the new partial configuration, otherwise this
choice of b is rejected. This procedure continues until the partial preimage
has length N .

At each stage in the algorithm, all possible choices for new state b must
be tried. This is generally done by iterating over the choices for b, and
backtracking whenever the algorithm either finds a candidate preimage or
reaches a dead end where no choice of b is valid. Alternatively, a parallel im-
plementation of the algorithm could explore all choices of b simultaneously.

Algorithm 4.1 describes the reverse algorithm in full, using recursion to
implement backtracking. Note that this algorithm only works for N > 2r;
for smaller N , exhaustive search can be used instead.

It is not strictly necessary to check F (ab) = c at line 10: we already
know, from previous executions of line 8, that c and F (ab) agree on cells
r to N − 1 − r inclusive, so only the 2r cells outside this range need to be
checked.

Clearly the time complexity of this algorithm is exponential with respect
to N in the worst case, as the number of preimages is exponential in the

4.2. THE REVERSE ALGORITHM FOR LINEAR CAS 45

worst case. However, this worst case is relatively rare, and in most typical
cases the running time is closer to linear than exponential.

4.2. The reverse algorithm for linear CAs

The need for backtracking or parallelism in the reverse algorithm arises
from the possibility of multiple ways to extend the partial configuration. In
certain cases, there is at most one way to extend the partial configuration,
and so the backtracking or parallelism can be eliminated. This is the case
when Wuensche’s Z parameter (Section 5.2) is equal to 1. This section
describes a family of such cases. (As far as we are aware, this work is
original.)

Note that there being only one way to extend the partial preimage does
not imply that there is only one preimage. The algorithm begins with mul-
tiple partial preimages, so may still end with multiple preimages.

Recall from Section 3.1 that a linear CA has state set Zs, and local rule

f(x−r, . . . , xr) = λ−rx−r + · · ·+ λrxr (4.1)

for some constants λ−r, . . . , λr ∈ Zs. For a linear CA, the condition in
Algorithm 4.1 line 8 becomes

λ−ra[k − 2r] + · · ·+ λr−1a[k − 1] + λrb = c[k − r] , (4.2)

or equivalently,

λrb = c[k − r]− λ−ra[k − 2r]− · · · − λr−1a[k − 1] . (4.3)

If λr has a multiplicative inverse in Zs, then there is exactly one solution
for b in this equation, and that solution can easily be computed. Thus the
algorithm can be rewritten as shown in Algorithm 4.2, or without recursion
as in Algorithm 4.3. For λr to have a multiplicative inverse, λr must be
nonzero, and λr and s must be coprime (having no common factors other
than 1). In particular, this is the case if s is prime (so that the state set Zs
is a field), or if λr is either prime or equal to 1.

The algorithm can be modified to apply to a wider class of linear CAs.
Instead of requiring that λr has an inverse, we can require that the rightmost
nonzero coefficient (λi such that λi+1 = · · · = λr = 0) has an inverse. In
this case, extending a partial preimage of length k “completes” the neigh-
bourhood of cell k − i; the unknown states to the right of cell k − 1 can be
ignored since the associated coefficients are zero.

We can also modify the algorithm so that preimages are built right-to-
left instead of left-to-right; in this case, we require that the leftmost nonzero
coefficient has an inverse. With these modifications, the algorithm applies

46 4. PREIMAGES

1: procedure BuildPreimage(c, a)
2: N ← length(c)
3: k ← length(a)
4: b← unique solution to Equation 4.3
5: if k + 1 = N then
6: if F (ab) = c then
7: output ab as a preimage of c
8: else
9: BuildPreimage(c, ab)

Algorithm 4.2: The reverse algorithm for linear CAs in which the coeffi-
cient λr has a multiplicative inverse.

1: procedure BuildPreimage(c, a)
2: N ← length(c)
3: while length(a) < N do
4: b← unique solution to Equation 4.3
5: append b to a
6: if F (a) = c then
7: output a as a preimage of c

Algorithm 4.3: A non-recursive version of Algorithm 4.2.

to all linear ECAs except rule 0, and indeed to every nonzero linear CA
whose state set is a field.

This algorithm places an upper bound of s2r on numbers of preimages in
these linear CAs: each call to BuildPreimage yields at most one preimage,
and BuildPreimage is called exactly s2r times by FindPreimages.

4.3. Counting preimages with de Bruijn matrices

McIntosh [McI90] describes a method of counting preimages for CA con-
figurations, by means of graphs (or more correctly, adjacency matrices of
graphs) first introduced by de Bruijn [dB46]; see also [Ral82]. Jeras and
Dobnikar [JD06] describe the method more fully.

For a state s ∈ S, the de Bruijn graph Gs is the directed bipartite graph
(Definition A.55) with vertex set

{
uL : u ∈ S2r

}
∪
{
uR : u ∈ S2r

}
(4.4)

and edge set

{(x−r . . . xr−1)L → (x−r+1 . . . xr)R : f(x−r, . . . , xr) = s} . (4.5)

In other words, the vertex set consists of two copies of S2r, with subscripts L
and R. The graph is bipartite, so all edges are directed from L to R. There
is an edge from vertex uL to vertex vR, where u, v ∈ S2r, if and only if the
following two conditions hold: the last 2r − 1 characters of u are the same

4.3. COUNTING PREIMAGES WITH DE BRUIJN MATRICES 47

as the first 2r − 1 characters of v, and the string of length 2r + 1 obtained
by appending the last character of v to u (or equivalently, prepending the
first character of u to v) is mapped to s by the local rule f .

Example 4.1. The de Bruijn graphs for an ECA have vertex set

{00L, 01L, 10L, 11L, 00R, 01R, 10R, 11R} , (4.6)

and there is an edge from abL to bcR if and only if f(a, b, c) = s.
ECA rule 30 is defined by

xyz 111 110 101 100 011 010 001 000
f(x, y, z) 0 0 0 1 1 1 1 0

(4.7)

The de Bruijn graphs for states 0 and 1 are

00L

01L

10L

11L

00R

01R

10R

11R

00L

01L

10L

11L

00R

01R

10R

11R

respectively. ♦

The preimage network for a configuration c is the graph with vertex set
{
u0 : u ∈ S2r

}
∪ · · · ∪

{
uN : u ∈ S2r

}
, (4.8)

and edge set

{(x−r . . . xr−1)i → (x−r+1 . . . xr)i+1 : f(x−r, . . . , xr) = c[i]} . (4.9)

In other words, the preimage network is constructed by “concatenating” the
de Bruijn graphs for states c[0], . . . , c[N − 1], so that the right-hand vertices
of one graph become the left-hand vertices of the next.

Example 4.2. The preimage network for configuration 10001101 of ECA
rule 30 is

000

010

100

110

001

011

101

111

002

012

102

112

003

013

103

113

004

014

104

114

005

015

105

115

006

016

106

116

007

017

107

117

008

018

108

118

♦

48 4. PREIMAGES

Theorem 4.3. Consider the preimage network for configuration c. Let Pu
be the number of paths in the preimage network from u0 to uN , and let
P =

∑
u∈S2r Pu. Then c has exactly P preimages.

Proof. We proceed by showing that preimages of c are in one-one cor-
respondence with those paths counted by P .

Suppose that v is a preimage of c, so that F (v) = c. By definition of the
global map, this means that

f(v[i− r], . . . , v[i+ r]) = c[i] (4.10)

for all i, where the indices are computed modulo N . By definition of the
preimage network, this implies that there exists an edge

(v[i− r] . . . v[i+ r − 1])i → (v[i− r + 1] . . . v[i+ r])i+1 (4.11)

for all i. These edges form a path in the preimage network, from
(v[N − r] . . . v[r − 1])0 to (v[N − r] . . . v[r − 1])N . Thus for each preimage
there is a path counted by P .

Conversely, consider a path counted by P . By definition of the preimage
network, such a path can be written as

(v[N−r] . . . v[r−1])0 → (v[N−r+1] . . . v[r])1 → · · · → (v[N−r] . . . v[r−1])N
(4.12)

for some states v[0], . . . , v[N − 1]. Existence of an edge

(v[i− r] . . . v[i+ r − 1])i → (v[i− r + 1] . . . v[i+ r])i+1 (4.13)

implies that
f(v[i− r], . . . , v[i+ r]) = c[i] . (4.14)

This holds for all i, so F (v) = c by definition of the global map. Thus for
each path counted by P there is a preimage. Hence the result. �

Example 4.4. The configuration 10001101 of ECA rule 30 has two preim-
ages, namely 11101000 and 00000101. In the preimage network, these cor-
respond to the paths

010

111 112

103

014

105

006 007

018

and

4.3. COUNTING PREIMAGES WITH DE BRUIJN MATRICES 49

100

001 002 003 004

015

106

017

108

respectively. Note that these are the only two paths in the graph from a
vertex u0 to the corresponding vertex u8; the paths

begin and end at “different” vertices, and so do not correspond to preimages.
♦

The de Bruijn matrix for state s, denoted Ds, is the adjacency matrix
(Definition A.57) of the de Bruijn graph for s.

Example 4.5. The de Bruijn matrix for a state s of an ECA is

Ds =




δ(000) δ(001) 0 0
0 0 δ(010) δ(011)

δ(100) δ(101) 0 0
0 0 δ(110) δ(111)


 , (4.15)

where

δ(abc) =





1 if f(a, b, c) = s

0 otherwise.
(4.16)

The de Bruijn matrices for ECA rule 30 are

D0 =




1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 1


 and D1 =




0 1 0 0
0 0 1 1
1 0 0 0
0 0 0 0


 . (4.17)

♦

Theorem 4.6. For a configuration c, the number of paths in the preimage
network from vertex u0 to vertex vN is given by the entry in the matrix

Dc[0] × · · · ×Dc[N−1] (4.18)

in the row corresponding to u and the column corresponding to v.

This result is related to the following well-known result from graph the-
ory: if A is the adjacency matrix of a (non-bipartite) graph, then the entry

50 4. PREIMAGES

in row u, column v of the matrix An is the number of paths of length n from
vertex u to vertex v.

Proof of Theorem 4.6. Proceed by induction on N . If N = 1, the
matrix in question is simply the de Bruijn matrix Dc[0], and the preimage
network is simply the de Bruijn graph for c[0]. The u, v matrix entry is 1 if
and only if there is an edge from u to v, otherwise it is 0. Also, there is a
single path from u to v if and only if there is an edge from u to v, otherwise
there are no paths. Thus the result holds in this case.

As an inductive hypothesis, suppose that the result holds for N = M−1.
By definition of matrix multiplication, the u, v entry in Dc[0]×· · ·×Dc[M−1]

is u ·v, where u is the uth row in Dc[0]× · · · ×Dc[M−2], v is the vth column
in Dc[M−1], and ‘·’ denotes the vector dot product.

By the inductive hypothesis, the wth entry in u is the number of paths
from vertex u to vertex w in the corresponding preimage network. By def-
inition of the de Bruijn matrix, the wth entry in v is 1 if there is an edge
from w to v, or 0 otherwise. The product of these two entries is the number
of paths from u to w if there is an edge from w to v, or 0 otherwise. In other
words, recalling that the preimage network for c[0] . . . c[M − 1] is obtained
by “appending” the de Bruijn graph for c[M − 1] to the preimage network
for c0 . . . c[M − 2], the product is the number of paths from u to v via w.
The dot product u · v is the sum of these products for all w, and so is the
total number of paths from u to v. Hence the result for N = M , and so for
all N by induction. �

The trace of a matrix, denoted Tr, is the sum of the entries on the main
diagonal. The following theorem is the main result of this section.

Theorem 4.7. The number of preimages of a configuration c is given by

Tr
(
Dc[0] × · · · ×Dc[N−1]

)
. (4.19)

Proof. By Theorem 4.3, the number of preimages is
∑

u∈S2r Pu, where
Pu is the number of paths from u0 to uN . By Theorem 4.6, Pu is the entry
in row u, column u of Dc[0] × · · · ×Dc[N−1]. Thus the number of preimages
is the sum of these diagonal entries. �

Note that this result allows the number of preimages to be found in time
O(N). This is unusual in this thesis, and in the study of CAs in general: due
to the exponential nature of the configuration space, it is far more common
for time complexities to be exponential in N .

4.3. COUNTING PREIMAGES WITH DE BRUIJN MATRICES 51

Example 4.8. The number of preimages for configuration 10001101 of ECA
rule 30 is

Tr(D1 ×D0 ×D0 ×D0 ×D1 ×D1 ×D0 ×D1) (4.20)

= Tr




0 0 0 0
0 1 0 0
1 0 1 1
0 0 0 0


 (4.21)

= 0 + 1 + 1 + 0 (4.22)

= 2 . (4.23)

Note that the off-diagonal nonzero entries in the matrix correspond to the
two paths identified in Example 4.4 as not corresponding to preimages. ♦

CHAPTER 5

Other properties of cellular automata

This chapter reviews some miscellaneous properties of CAs. Section 5.1
describes Langton’s λ parameter, a simple parameter on the CA’s local rule
table. Studying how the CA’s Wolfram class changes with λ suggests that
complex (class 4) behaviour exists at a phase transition between periodic
(class 2) and chaotic (class 3) behaviour. Section 5.2 describes Wuensche’s
Z parameter, which measures the “determinism” of the reverse algorithm
described in Section 4.1. Section 5.3 describes two entropy measures on
space-time patterns of CAs, and suggests that these two measures together
give an indication of a CA’s Wolfram class.

The sections described above are somewhat empirical; the remainder of
this chapter is more theoretical. Section 5.4 introduces the common descen-
dent problem for CAs. This is the decision problem which effectively asks
whether two configurations are in the same basin of attraction. In general,
for CAs on infinite lattices, this problem is undecidable. Finally, Section 5.5
shows how ideas from dynamical systems theory, particularly the concept of
sensitive dependence on initial conditions, can be applied to CAs.

5.1. Langton’s λ parameter

5.1.1. Definition

Consider a CA with state set S. Choose an arbitrary state q ∈ S, and
call it the quiescent state (although we do not require that it is quiescent
in the sense of Section 2.6). Let nq be the number of neighbourhood states
mapped to state q by f :

nq = |{(x1, . . . , xm) ∈ Sm : f(x1, . . . , xm) = q}| . (5.1)

Then Langton’s λ parameter [Lan90] is defined by

λ =
|S|m − nq
|S|m . (5.2)

In other words, λ is the proportion of neighbourhood states which f maps
to non-quiescent states (states other than q).

Langton’s λ parameter is a measure of the homogeneity of the local
update rule. If λ = 0, all neighbourhood states are mapped to q and so the

53

54 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

rule is as homogeneous as possible. Conversely, if λ = 1− 1
|S| for each choice

of q, then f maps to each state with equal frequency, and so the rule is as
heterogeneous as possible.

5.1.2. Dynamics and λ

Langton [Lan90] studies the qualitative dynamics of 1-D CAs on the
periodic lattice ZN , with four states and neighbourhood radius 2. The λ
parameter is increased from λ ≈ 0 to λ ≈ 0.75, by starting with the zero
rule and progressively changing entries in the rule table from q to other
states.

In the following descriptions, the length of transients refers to the num-
ber of generations before the CA settles into its long-term behaviour, what-
ever that long-term behaviour may be.

0 ≤ λ ≤ 0.15: The CA evolves to a homogeneous configuration. The
length of transients ranges from a single generation (λ ≈ 0) to five
generations (λ ≈ 0.15). See Figure 5.1 (a).

0.2 ≤ λ ≤ 0.3: Periodic structures appear, having periods 1 or 2. The
length of transients continues to grow with λ. See Figure 5.1 (b).

0.35 ≤ λ ≤ 0.4: Periodic structures with larger periods (up to 40 for
λ ≈ 0.4) appear, and transients grow more rapidly (60 generations
for λ ≈ 0.4). See Figure 5.1 (c).

λ ≈ 0.45: Moving periodic structures (i.e. gliders in the sense of Sec-
tion 2.7) appear. Their presence causes a sharp increase in the
length of transients, since the slow-moving gliders must collide and
annihilate each other before the CA settles into its long-term, pe-
riodic dynamics. See Figure 5.2 (a).

λ ≈ 0.5: The area of non-quiescent cells now tends to expand as well
as contract, whereas for λ < 0.5 the tendency was to contract or re-
main stable. This fluctuation in the active area seems to be caused
by a large number of gliders, whose collisions can result either in
annihilation of the gliders, or creation of new gliders. The long-
term behaviour is periodic, but the transients persist for around
12000 generations. See Figure 5.2 (b).

λ ≈ 0.55: Langton describes this as a “new dynamical regime”. The
tendency is now to settle into chaotic, rather than periodic, be-
haviour. See Figure 5.2 (c).

0.6 ≤ λ ≤ 0.75: The CA continues to exhibit chaotic behaviour in the
long term, with the length of transients now decreasing as λ in-
creases. See Figure 5.2 (d), (e).

In summary, this progression seems to show the following correlation
between λ and Wolfram’s classes:

5.1. LANGTON’S λ PARAMETER 55

(a) (b) (c)

Figure 5.1. Typical space-time diagrams for CAs with
|S| = 4, r = 2, and (a) λ = 0.15; (b) λ = 0.2; (c) λ = 0.4.
[Lan90, Fig. 1]

(a) (b) (c) (d)

(e)

Figure 5.2. Typical space-time diagrams for CAs with
|S| = 4, r = 2, and (a) λ = 0.45; (b) λ = 0.5; (c) λ = 0.55;
(d) λ = 0.65; (e) λ = 0.75. [Lan90, Fig. 1]

56 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

Class 1: 0 ≤ λ ≤ 0.15;
Class 2: 0.2 ≤ λ ≤ 0.4;
Class 4: 0.45 ≤ λ ≤ 0.5;
Class 3: 0.55 ≤ λ ≤ 0.75.

The same progression, but with different values of λ, is seen for other
CAs. This suggests that complex (class 4) behaviour occurs at the phase
transition between ordered (class 2) and chaotic (class 3) dynamics. It is
worth emphasising that the exact values of λ at which the phase transitions
take place are different for different runs of this experiment, but the sequence
of phase transitions (i.e. the sequence of Wolfram classes encountered as λ
increases) is always the same.

Langton points out that λ is a good indicator of class for CAs with
large neighbourhoods and many states, but not so good for CAs with small
neighbourhoods and fewer states. In particular, for ECAs, λ is “only roughly
correlated with dynamical behavior” [Lan90]. Indeed, Marr and Hütt [MH05]
observe that examples of all four of Wolfram’s classes can be found among
the ECAs with λ = 0.5.

5.2. Wuensche’s Z parameter

5.2.1. Definition

Wuensche’s Z parameter [WL92] arises from Wuensche’s reverse algo-
rithm (see Section 4.1). The Z parameter is a measure of the degree of
nondeterminism or parallelism in the algorithm. Suppose that we have a
partial preimage for some configuration, and wish to choose a state with
which to extend the preimage. There are three possible situations:

The deterministic case: Only one choice of state is valid. In Algo-
rithm 4.1, this means the if statement of line 8 is true for exactly
one iteration of the for loop of line 7.

The ambiguous case: There is more than one valid choice of state.
The forbidden case: There is no valid choice.

Note that the reverse algorithm as described in Section 4.1 works from
left to right; it is possible to define a similar algorithm that works from right
to left.

The Z parameter measures the probability of encountering the deter-
ministic case, as opposed to the other two cases, at each step of the reverse
algorithm. If Zleft is the probability of the deterministic case when com-
puting preimages from left to right, and Zright similarly when working from
right to left, we take Z = max {Zleft, Zright}.

5.2. WUENSCHE’S Z PARAMETER 57

5.2.2. Calculating Z for ECAs

Let c be a configuration of an ECA, and suppose we have a partial
preimage p of length k < N . What are the valid choices of state b such that
pb is a partial preimage of length k+ 1? For the deterministic case, we must
have exactly one choice of b such that

(1) f(p[k − 2], p[k − 1], b) = c[k − 1],
(2) f(p[k − 1], b, x) = c[k] for all x, or
(3) f(b, x, y) = c[k + 1] for all x, y.

The respective probabilities of these situations are:

(1) The proportionR1 of pairs (α, β) which, for some x, give f(α, β, 0) =
x and f(α, β, 1) 6= x;

(2) The proportion R2 of states α which, for some x and for all y, give
f(α, 0, y) = x and f(α, 1, y) 6= x;

(3) R3 = 1 if, for some x and for all y, z, we have f(0, y, z) = x and
f(1, y, z) 6= x; R3 = 0 otherwise.

Example 5.1. Consider ECA rule 184:

xyz 111 110 101 100 011 010 001 000
f(x, y, z) 0 0 0 1 0 0 1 1

(5.3)

The only pair satisfying condition (1) is (1, 0), so R1 = 1
4 .

State 0 satisfies condition (2), since f(0, 0, 0) = f(0, 0, 1) = 1 and
f(0, 1, 0) = f(0, 1, 1) = 0. However, state 1 does not satisfy (2), since
f(1, 0, 0) 6= f(1, 0, 1). Thus R2 = 1

2 .
Condition (3) is not satisfied, so R3 = 0. ♦

Now the probability Zleft is the union of the independent probabilities
R1, R2 and R3:

Zleft = R1 + (1−R1)R2 + (1−R1)(1−R2)R3 . (5.4)

We calculate Zright in an analogous fashion, effectively by reversing the order
of f ’s parameters in the calculations of R1, R2 and R3.

Example 5.2. Continuing Example 5.1, for rule 184 we have

Zleft =
1
4

+
(

1− 1
4

)
1
2

+
(

1− 1
4

)(
1− 1

2

)
0 =

5
8
. (5.5)

It turns out that Zright = 5
8 also, so we have

Z = max {Zleft, Zright} =
5
8
. (5.6)

♦

58 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

Values of Z for the 88 essentially different ECAs are shown in Appen-
dix B.

5.2.3. Dynamics and Z

The Z parameter is a measure of the “convergence” of the CA. Small
Z suggests that there are configurations with a large number of preimages,
which means that many trajectories converge on those configurations. This
kind of convergence seems to suggest class 2, or class 1 in the extreme, so
Wuensche [Wue02] suggests that Z varies from 0 to 1 as the dynamics of
the CA vary from “order” to “chaos”. This is in contrast to Langton’s λ
parameter, where the dynamics vary from “order” to “chaos” to “order”
as λ varies from 0 to 1 − 1

|S| to 1. However, as with Langton’s λ, class 4
behaviour generally occurs at the transition between ordered and chaotic
dynamics.

By a similar “convergence” argument, we can also consider Z as a mea-
sure of the “bushiness” of the transition graph (Definition 6.1). The in-
degree of a vertex in the transition graph is precisely the number of preim-
ages of the corresponding configuration, so small Z implies that there are
vertices with large in-degree.

Note that those linear CAs meeting the criteria for the reverse algo-
rithm described in Section 4.2 have Z = 1. As noted at the beginning of
Section 4.2, Z = 1 does not imply surjectivity.

5.3. Word entropy and Shannon entropy

Marr and Hütt [MH05] propose a pair of entropy measures, which mea-
sure the statistical properties of a sampling of space-time patterns generated
by a CA.

Definition 5.3 (Shannon entropy). Denote by pi(x) the probability of state
x ∈ S appearing in the sequence of states for cell i. The Shannon entropy
for cell i is

Si = −
∑

x∈S
pi(x) log2 pi(x). (5.7)

The Shannon entropy S for the entire CA is an average over all cells.

In a class 1 CA, we expect S = 0: there is a state x such that, in the
long term, we have pi(x) = 1 for all cells i. We also expect S = 0 in a
similar situation where the state x is allowed to be different for each cell
i; this occurs for the identity rule, for instance, or more generally for any
CA that eventually reaches a fixed point. Conversely, in a class 3 CA, we
expect S to be maximal (S = log2 |S|) since all states should occur with
equal probability.

5.3. WORD ENTROPY AND SHANNON ENTROPY 59

Figure 5.3. The WS plane. Values for several 1-D CAs
(binary state set, neighbourhood size 11, lattice Z500) are
plotted. Space-time diagrams for the particular points (a)–
(g) are shown. [MH05, Fig. 1]

Definition 5.4 (Word entropy). Let l be a positive integer, and denote by
pi(l) the probability of cell i being constant for l consecutive time steps; that
is, the probability that

ct[i] = ct+1[i] = · · · = ct+l−1[i] (5.8)

for some t, where ct denotes the configuration of the CA at time t. Then
the word entropy for cell i over L time steps is

Wi = −
L∑

l=1

pi(l) log2 pi(l). (5.9)

The word entropy W for the entire CA is an average over all cells.

We expect W = 0 in a class 1 CA, since all cells are eventually constant,
giving pi(l) = 1 for all l. Conversely, large W implies that pi(l) is around
1
2 (or more precisely, 1

e ≈ 0.37), so constant and non-constant intervals are
equally likely in i’s sequence of states. This seems to imply the presence of
structure across multiple scales, of the type we might expect from a class 4
CA.

A plot of W against S, along with space-time diagrams for some rep-
resentative points within this plot, is shown in Figure 5.3. Marr and Hütt
divide the WS plane according to Wolfram’s classes as shown in Figure 5.4;
this division is certainly plausible based on the points identified in Figure 5.3
and the intuitions for extreme values of W and S, but clearly it is intended
only as an indication rather than a formal classification.

60 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

Figure 5.4. The regions of the WS plane which Marr and
Hütt identify with Wolfram’s classes. [MH05, Fig. 2]

5.4. The common descendent problem

The common descendent problem is the decision problem for the follow-
ing question:

Let c and d be two initial configurations for a given CA.
Do t and t′ exist such that F t(c) = F t

′
(d)?

In other words, do the trajectories starting from c and d have configurations
in common?

Clearly the common descendent problem is decidable on finite lattices:
there are only finitely many configurations, so enumeration suffices. Peder-
sen [Ped92] investigates this problem for CAs on the infinite 1-D lattice Z
by way of the theory of semigroups (Definition A.3), and in particular the
word problem on semigroups.

A semigroup S can be defined by a presentation S = 〈X;R〉, where:

(1) X is a set of generators; that is, a subset of S such that every
element of S can be written as a product of elements of X.

(2) R is a set of relations; that is, equations of the form

x1 ∗ x2 ∗ · · · ∗ xk = y1 ∗ y2 ∗ · · · ∗ yl (5.10)

where xi, yj ∈ X. The set R is a basis of equations in X; that is,
any equation which holds in X can be derived from the equations
in R.

The word problem for a semigroup S = 〈X;R〉 is the decision problem
for the following question:

Given x1, x2, . . . , xk, y1, y2, . . . , yl ∈ X, does the equation

x1 ∗ x2 ∗ · · · ∗ xk = y1 ∗ y2 ∗ · · · ∗ yl (5.11)

5.5. EQUICONTINUITY AND SENSITIVE DEPENDENCE 61

hold in S? Equivalently, can Equation 5.11 be derived
from the equations in R?

Effectively, the word problem is a problem of formal language theory. We
can think of the equations in R as productions in a grammar, and we are
asking whether these productions can be applied to transform x1x2 . . . xk

and y1y2 . . . yl into the same string.
Clearly the word problem is decidable if S is finite, so again, we are only

interested in the infinite case.
Pedersen [Ped92] shows how to associate a semigroup with a given CA,

in such a way that products of generators correspond to configurations, and
repeated application of the relations corresponds to applying the global map
to those configurations. The details of this construction are given in [Ped92],
and reproduced in [Pow07].

This construction leads to the following result:

Theorem 5.5 ([Ped92, Theorem 1]). The common descendent problem is
decidable for a given CA if and only if the word problem is decidable for the
corresponding semigroup.

There exist semigroups for which the word problem is undecidable [Pos47],
which suggests that there exist CAs for which the common descendent prob-
lem is undecidable. Indeed, the common descendent problem must be un-
decidable for Turing complete CAs, given that the halting problem is un-
decidable for a universal Turing machine. It is also easy to see that the
common descendent problem is trivially decidable for class 1 CAs, since the
homogeneous configuration is a descendent common to all configurations.
Pedersen conjectures that the common descendent problem is decidable for
class 2 CAs, but undecidable for class 3 and 4 CAs.

5.5. Equicontinuity and sensitive dependence

Sensitive dependence on initial conditions is an important concept in
dynamical systems theory. Sensitive dependence describes the tendency
for trajectories in the system which start off close together to diverge as
time progresses. A popular example of this (e.g. [Gle88]) is the “butterfly
effect”, the idea being that the perturbation of the state of the planet’s
weather system caused by the movement of a butterfly’s wing is sufficient
to dramatically alter the subsequent behaviour of the system.

To apply the notion of sensitive dependence to cellular automata, we
first need a measure of the “distance” between two configurations of a given
CA. More specifically, we need to define a metric (Definition A.38) on the

62 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

configuration space. (Metrics on the configuration space are also discussed
in Chapter 10.)

Consider a CA with state set S and infinite D-dimensional lattice ZD.
Gamber [Gam06] defines a metric d on the set of configurations SZD

as
follows. Let c and s be configurations, and define d(c, s) by

d(c, s) =





2−k if k = min
{
‖i‖ : i ∈ ZD, c[i] 6= s[i]

}

0 if such a k does not exist
(5.12)

where ‖i‖ denotes the maximum absolute value among i’s components:

‖(i1, i2, . . . , iD)‖ = max {|i1| , |i2| , . . . , |iD|} . (5.13)

Thus k measures the size of the largest hypercube, centred at the origin of
the lattice, within which the two configurations are identical. Specifically, k
is the perpendicular distance of each face of the hypercube from the origin,
or half the side length. Intuitively, two configurations are close together
according to d if the differences between the two configurations are a large
distance from the origin. If k does not exist (i.e. if the configurations are
completely identical) then k is effectively infinite.

Example 5.6. Consider a 2-D CA with lattice Z2 and state set {0, 1},
and consider the following three configurations, where all cells outside the
depicted regions are in state 0:

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·

...

...

...

...

...

...

...

...

...

...

...

...

...

...

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·

...

...

...

...

...

...

...

...

...

...

...

...

...

...

· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·· · · · · ·

...

...

...

...

...

...

...

...

...

...

...

...

...

...

c u v

Suppose that the origin is the central cell in each diagram. The cell at
coordinates (1, 2) is the only difference between configurations c and u, so
d(c, u) = 2−2 = 1

4 . However, for c and v, cell (−1,−1) is different, so
d(c, v) = 2−1 = 1

2 .
If we instead take the origin to be the top right cell in each diagram, we

get d(s, q) = 1
4 and d(s, r) = 1

16 . ♦

Definition 5.7. A configuration c is an equicontinuity point if, for all con-
figurations s close to c, the subsequent trajectories from s and c remain close

5.5. EQUICONTINUITY AND SENSITIVE DEPENDENCE 63

together for all time:

∀ε > 0,
∃δ > 0 such that
∀s ∈ SL with d(c, s) < δ,

d(F tc, F ts) < ε for all t.

(5.14)

We say that the CA is equicontinuous if every configuration is an equicon-
tinuity point.

Definition 5.8. Let c be a configuration of a CA. We say that c is a sen-
sitive point if there is a configuration s which is close to c, but where the
subsequent trajectories from s and c eventually diverge:

∃ε > 0 such that
∀δ > 0,
∃s ∈ SL with d(c, s) < δ such that
d(F tc, F ts) ≥ ε for some t.

(5.15)

We say that the CA exhibits sensitive dependence on initial conditions if
every configuration is a sensitive point.

In a sense, equicontinuity is the opposite of sensitive dependence. In an
equicontinuous system, a perturbation which occurs a large distance away
from the origin cannot possibly affect the origin; in a system with sensitive
dependence, it is always possible to find such a perturbation which, no
matter how far from the origin it occurs, will end up affecting the origin.

Gamber describes several other properties of CAs arising from the theory
of metric spaces, and proves a number of theorems relating these properties
to equicontinuity and sensitive dependence.

5.5.1. Periodicity

Definition 5.9. We say a CA with global update rule F is eventually peri-
odic or pre-periodic if there exist integers k, p with k ≥ 0, p > 0 and

F k+p = F k. (5.16)

If k = 0, we say that the CA is periodic.

So if a CA is eventually periodic, then for every initial configuration c,
we have F k+p(c) = F k(c). Note that the same values of k and p must work
for every initial configuration. However, the CA is eventually periodic even
if different initial configurations have different periods and transient lengths,
by taking k as the maximum transient length and p as the lowest common
multiple of the periods.

64 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

Theorem 5.10 ([Gam06, Theorem 3.2]). A CA is equicontinuous if and
only if it is eventually periodic.

Sketch proof. The “only if” part is true because it is always possible
to find a spatially periodic configuration close to any given configuration.
The trajectory from a spatially periodic configuration is eventually periodic
for all i ∈ ZD. Clearly the trajectory from s is periodic. Since equicontinuity
forces the trajectories from c and s to remain close together, it also forces the
trajectory from c to be eventually periodic, since it restricts that trajectory
to a finite region of configuration space.

Let us now consider the “if” case. If the CA is eventually periodic, then
there is a maximum distance over which information can propagate, given
that there is an upper bound on the speed of propagation (Section 2.6 and
information can only propagate for the first k + p time steps. Thus any
difference between configurations which is more than this distance from the
origin cannot possibly affect the origin. Equicontinuity follows. �

Theorem 5.11 ([Gam06, Theorem 3.3]). A CA is equicontinuous and sur-
jective if and only if it is periodic.

Sketch proof. This follows almost immediately from Theorem 5.10.
Periodicity clearly implies surjectivity: if a configuration is on a cycle then
it certainly has a preimage, and all configurations of a periodic CA are on
cycles.

For the converse, it suffices to show that surjectivity implies that an
eventually periodic CA is in fact periodic. In fact, it is easier to see the
contrapositive: if a CA is eventually periodic but not periodic, then it cannot
be surjective.

Suppose that the CA is eventually periodic, with k and p as in Defini-
tion 5.9, and suppose further that k > 0. A trajectory in the CA consists of
a “tail” of length no more than k, leading onto a cycle:

≤ k

Furthermore, if k is minimal for this CA, there must be at least one such
tail of length k exactly. But the CA is surjective, so the configuration s at
the end of the tail must have a preimage.

5.5. EQUICONTINUITY AND SENSITIVE DEPENDENCE 65

spreimage of s

k

k + 1

Thus there is a tail of length k + 1, so we have obtained a contradiction.
Therefore an eventually periodic CA with k > 0 cannot be surjective. �

5.5.2. Almost equicontinuity

A CA is almost equicontinuous if the set of equicontinuity points con-
tains an intersection of dense open sets (Definitions A.44 and A.48). An
intersection of dense open sets is itself dense. So if a CA is almost equicon-
tinuous, then the set of equicontinuity points is dense. This means that, for
any configuration c and any positive integer k, we can find a configuration
e, with e an equicontinuity point, such that c and e are identical within a
hypercube of side length k.

Gamber [Gam06, Theorem 6.3] shows that a CA is almost equicontinu-
ous if it has a fully blocking pattern of a sufficient size. A fully blocking pat-
tern is a pattern of states fixed under F when it appears in a configuration.
Thus a fully blocking pattern acts as a barrier to information propagation
in the CA.

5.5.3. Summary

Figure 5.5 summarises the relationships between the properties described
in this section, and shows how they partition the rule space.

Equicontinuity and sensitivity seem to be characteristic of Wolfram’s
classes 2 and 3 respectively. By analogy with the discussion of Langton’s λ
parameter in Section 5.1, we might expect class 4 behaviour to appear on
the boundary between equicontinuity and sensitivity.

66 5. OTHER PROPERTIES OF CELLULAR AUTOMATA

Figure 5.5. How the properties described in Section 5.5
partition the rule space. [Gam06, Figure 16]

Part 2

New results

CHAPTER 6

Transition graphs

While we can easily depict the evolution of a CA from a particular initial
configuration, e.g. by drawing a space-time diagram, it is sometimes useful
to get a picture of the overall dynamics of a CA from all (or at least a large
number of) initial configurations. One way of doing this is by drawing a
directed graph (Definition A.54) called a transition graph.

Definition 6.1. Consider a CA with state set S, lattice L and global update
rule F . The transition graph for this CA is G = (SL, E), with

E =
{

(s, F (s)) : s ∈ SL
}

(6.1)

That is, the vertices represent the configurations, and the edges represent
transitions from configuration to configuration: there is an edge from vertex
r to vertex s if and only if F (r) = s, i.e. if and only if the CA evolves from
configuration r to configuration s in one time step.

The transition graph is the functional graph [Har69] for the function F .
Functional graphs have the property that every vertex has out-degree 1, and
such a graph always has a “circles of trees” topology: one or more disjoint
cycles, with trees rooted at the vertices in the cycles; edges within the trees
are directed towards the root. Another name for this type of graph is a
pseudoforest, with each connected component being a pseudotree [GT88].

Examples of transition graphs are shown in Figures 6.1 to 6.3. Transition
graphs for the 88 essentially different ECAs are shown in Appendices C
and D, for the finite lattices Z10 and Z11 respectively.

These graphs are most closely associated with Wuensche [WL92, Wue97,
Wue02], but were used earlier by Wolfram et al [MOW84]. Some authors
refer to transition graphs as state transition diagrams; those authors use the
word “state” to mean the global configuration, and not the local state of a
cell as in our terminology.

In dynamical systems terms, paths in the graph are trajectories. The
cycles in the graph are attractors, and each connected component of the
graph (consisting of one cycle and the trees rooted at its vertices) is a basin
of attraction. Thus we refer to the connected components of the transition
graph as its basins.

69

70 6. TRANSITION GRAPHS

2 copies 10 copies

2 copies 1 copy

Figure 6.1. Transition graph for ECA rule 110 on the peri-
odic lattice Z10. Edges in trees are directed towards the cycle;
edges in cycles are directed clockwise. Numbers of “copies”
refer to the numbers of connected components (basins) in the
transition graph which are isomorphic to the graph shown.

This chapter reviews some results from the literature on transition graphs,
and gives some new algorithms and results. Section 6.1 describes how to find
the basin of attraction containing a given configuration. Section 6.2 gives an
algorithm for testing whether trees are isomorphic, which is used frequently
in the following section (Section 6.3) on drawing transition graphs. Here
“drawing” refers both to finding the vertices and edges of the graph, and to
laying the graph out on the page. Finally, Section 6.4 gives some properties
of transition graphs for linear CAs. Chapters 7 and 8 study automorphisms
(symmetries or self-isomorphisms) of transition graphs.

6.1. Finding the attractor

In which basin of attraction is a given configuration?
First, we need some way of identifying the basin of attraction. One

obvious choice is to identify it with the configuration which comes first in

6.1. FINDING THE ATTRACTOR 71

1 copy 2 copies

1 copy 2 copies

Figure 6.2. Transition graph for ECA rule 30 on the peri-
odic lattice Z10.

lexicographical order amongst all configurations on the attractor cycle. This
configuration can easily be found once we have found some configuration on
the cycle, by circumnavigating the cycle and keeping a record of the lex-
icographically first configuration seen so far. Thus the problem of finding
configuration c’s basin of attraction reduces to that of finding any configu-
ration on the attractor cycle reached from c.

72 6. TRANSITION GRAPHS

4 copies 4 copies 4 copies

4 copies 10 copies 4 copies

Figure 6.3. Transition graph for ECA rule 142 on the pe-
riodic lattice Z10.

The näıve way of finding the attractor cycle is as follows: repeatedly
apply the global map F to s, remembering all visited configurations. When
we reach a configuration visited before, that configuration must be on the
attractor cycle. If the length of the transient is lt and the length of the cycle
is lc, this algorithm has complexity O(lt + lc) in both space and time. It
seems likely that this is the best we can do in terms of time complexity, but
we can do much better in terms of space complexity.

The tortoise and hare algorithm (or more prosaically, Floyd’s cycle find-
ing algorithm) is often used to detect cycles in linked list data structures.
Floyd [Flo67] gives a nondeterministic version of the algorithm for finding
cycles in graphs; Knuth [Knu69, page 7, exercise 6(b)] attributes the de-
terministic algorithm to Floyd, but without citation. See also [Ost08]. For
finding cycles in functional graphs (of which, incidentally, the singly linked
list is an example), the deterministic version suffices.

6.2. TESTING FOR ISOMORPHISMS 73

The tortoise and hare algorithm proceeds as follows. Let c be a config-
uration, and define two sequences of configurations by

T0 = c (6.2)

Ti+1 = F (Ti) (6.3)

H0 = F (c) (6.4)

Hi+1 = F 2(Hi) . (6.5)

If Ti = Hi for some i, then the configuration Ti is on the attractor cycle. In-
tuitively, we have two agents traversing the graph: the “tortoise” T and the
“hare” H. The hare is given a head-start of one step, and moves two steps
per unit time, while the tortoise moves only one step per unit time. After
d(lt − 1)/2e time units, the hare reaches the attractor cycle, and proceeds
to circumnavigate it. The tortoise, however, does not reach the cycle until
lt time steps have passed. The two agents may not meet immediately, but
the tortoise is a steps “ahead” of the hare, with 0 ≤ a < lc. The hare closes
this lead by one step per unit time, and so the two agents meet after a time
steps.

The time complexity of the tortoise and hare algorithm is O(lt + lc), as
it was for the näıve algorithm (although the leading constant is larger for
the tortoise and hare algorithm, as it requires three times as many evalu-
ations of F per time step). However, there is no need to keep a record of
visited configurations, so the tortoise and hare algorithm’s space complexity
is constant. Given that lt and lc can grow exponentially with respect to the
number of cells, this is a significant improvement on the näıve algorithm.

Whichever algorithm is used to find the cycle, the representative config-
uration for the basin can be found in time O(lc) and constant space. This
extra step does not affect the asymptotic complexity of either algorithm.

Note that, unlike the näıve algorithm, the tortoise and hare algorithm
does not in general find the point where the transient meets the attractor.
However, since we need only to identify some configuration on the cycle, this
does not actually make any difference.

6.2. Testing for isomorphisms

Campbell and Radford [CR91] give an algorithm for testing whether
two trees are isomorphic. The idea is to construct a string which uniquely
describes the “shape” of the tree, so that two trees have the same string if
and only if they are isomorphic. This is done recursively as follows:

(1) A single vertex tree has string 01.

74 6. TRANSITION GRAPHS

(2) Consider a tree rooted at vertex r, where the subtrees rooted at r’s
children have strings s1, . . . , sk. Permute the children of r so that
s1, . . . , sk are in lexicographical order. Then the tree rooted at r
has string 0s1 . . . sk1.

Example 6.2. In the following tree, each vertex is labelled with the string
representing the subtree rooted there:

0 001011 001011 0011 1

0 01 01 1 0 01 01 1 0 01 1

01 01 01 01 01

The whole tree has string 000101100101100111. ♦

Theorem 6.3. Two trees have the same string representation if and only if
they are isomorphic.

Proof. Proceed by induction on the depth of the tree. A tree of depth
0 consists of a single vertex; all such trees are isomorphic and have string
01, so the result is true in this case.

Suppose, as an inductive hypothesis, that the result holds for trees of
depth less than d. Let T be a tree of depth d, whose root vertex is r, where
the children of r are c1, . . . , ck. Similarly let T ′ be another tree of depth d,
whose root r′ has children c′1, . . . , c

′
k′ . We wish to show that T and T ′ are

isomorphic if and only if they have the same string representation.
Note that T and T ′ are isomorphic if and only if there is a bijection

α : {c1, . . . , ck} →
{
c′1, . . . , c

′
k′
}

(6.6)

such that the subtree of T rooted at cj is isomorphic to the subtree of T ′

rooted at α(cj), for all j. (Such a bijection clearly does not exist if k 6= k′,
but the following argument still applies, since T and T ′ are clearly not
isomorphic in this case.) The subtrees in question all have depth less than
d, so by the inductive hypothesis, T and T ′ are isomorphic if and only if
there is a bijection α such that the subtrees rooted at cj and α(cj) have the
same string representation.

Let si be the string representation of the tree rooted at ci, and similarly
for s′j and c′j . Then the bijection α described above exists if and only if
the multisets {s1, . . . , sk} and

{
s′1, . . . , s

′
k′
}

are equal. (Again, this is clearly
false if k 6= k′.) But the string representation of T is obtained by concatenat-
ing the elements of {s1, . . . , sk} in lexicographical order, prepending 0 and

6.2. TESTING FOR ISOMORPHISMS 75

appending 1, and similarly for T ′. Thus these multisets are equal if and only
if the string representations of T and T ′ are equal. Hence the result. �

If we only want to test whether two trees are isomorphic, then their
strings can be condensed as the algorithm proceeds. This is the approach
taken by Campbell and Radford [CR91]: as h ranges from the depth of the
trees down to zero, the strings for the vertices at level h of both trees are
found, and the two lists of strings are sorted and compared. If the lists are
different then the trees are not isomorphic; if they are the same, each vertex
is assigned a new, shorter string, which encodes the position in the sorted
list of its old string.

Condensing the strings is beneficial for a single isomorphism test: shorter
strings require less storage space, and less time to test for equality. How-
ever, the condensed strings are only meaningful in the context of a particular
instance of the algorithm. For our purposes, there are two advantages to
leaving the strings in their uncondensed form. First, the strings can be
cached between isomorphism tests, so that the string for each tree need only
be computed once even if that tree is tested for isomorphism against many
other trees. Second, the tree (without vertex labels) can be reconstructed
from the uncondensed string, so the string can be used as a compact repre-
sentation of the tree.

Some properties of the tree can be extracted directly from the uncon-
densed string, without reconstructing the tree. (These results are outside
the scope of [CR91], and we are not aware of them appearing elsewhere in
the literature.) For example:

Theorem 6.4. The number of 0s at the beginning of the string representa-
tion of a tree is one greater than the depth of that tree.

Corollary 6.5. If two trees T1, T2 have depths d1, d2 respectively with d1 >

d2, then the string representing T1 lexicographically precedes the string rep-
resenting T2. In other words, lexicographical ordering of strings orders trees
in descending order of depth.

Proof of Theorem 6.4. Proceed by induction on the depth of the
tree. The only tree of depth 0 is the single vertex tree, which has string 01.
The result holds in this case.

Consider a tree T of depth d > 0 rooted at vertex r, and suppose, as an
inductive hypothesis, that the result holds for all trees of depth less than d.
The subtrees rooted at r’s children have depth less than d, and at least one
of these subtrees has depth d− 1.

Note that Corollary 6.5 holds if Theorem 6.4 holds for trees of depths d1

and d2. Thus the inductive hypothesis implies Corollary 6.5 with d1, d2 < d.

76 6. TRANSITION GRAPHS

Suppose that the strings representing the subtrees, arranged in lexicograph-
ical order, are s1, . . . , sk. By Corollary 6.5, s1 must correspond to one of the
subtrees of depth d − 1. Thus, by the inductive hypothesis, s1 begins with
d 0s, and thus the string representing T (i.e. 0s1 . . . sk1) begins with d + 1
0s. Hence the result. �

Theorem 6.6. The number of 0s (or equivalently 1s) in the string repre-
sentation of a tree is equal to the number of vertices in the tree.

Proof. Follows immediately from the definition. �

Theorem 6.7. The number of occurrences of the substring 01 in the string
representation of a tree is equal to the number of leaf vertices in the tree.

Proof. Follows immediately from the definition. �

6.3. Drawing transition graphs

Functional graphs, and thus transition graphs, are planar, meaning that
it is always possible to draw them in such a way that no edges intersect.
This is obvious, given that trees are planar and functional graphs are “circles
of trees”.

Several software packages exist for drawing graphs, one of the best known
being the open source Graphviz package [GN00]. Graphviz consists of several
command-line programs, each of which takes as input a textual description
of a graph (a list of vertices and edges) and produces as output an image
of the graph in one of several graphics file formats, or alternatively a list of
vertex coordinates suitable for further processing.

Two programs from the Graphviz package are used here, namely neato

and dot. The neato program uses a physics-inspired algorithm due to Ka-
mada and Kawai [KK89], in which the vertices of the graph are modelled
as particles connected by springs. The dot program is intended for drawing
trees, and works by determining the rank (distance from the root) of each
vertex, assigning y coordinates to vertices based on their rank, and choosing
x coordinates to eliminate edge intersections and minimise edge lengths.

Perhaps the simplest way to draw a transition graph is to feed a spec-
ification of the entire graph into neato. This specification can easily be
generated, by iterating through all configurations of the CA, and outputting
an edge c → F (c) for each configuration c. A transition graph produced in
this way is shown in Figure 6.4. This approach is not ideal: it often fails to
eliminate all edge intersections, and there is no guarantee that isomorphic
trees or basins will be drawn in an identical way.

Rather than drawing the entire transition graph at once, it is preferable
to draw each basin individually. The transition graph for an individual basin

6.3. DRAWING TRANSITION GRAPHS 77

Figure 6.4. The transition graph for ECA rule 110 on the
lattice Z10, drawn using neato.

can be constructed by using the tortoise and hare algorithm (Section 6.1)
to find the vertices on the cycle, and iteratively using the reverse algorithm
(Section 4.1) to construct the trees from root to leaves.

Wuensche [WL92] draws the basins by laying out each tree individually
and arranging them in a circle. However, Wuensche uses a rather simplistic
tree layout algorithm that allows edges to intersect; see Figure 6.5.

The transition graphs in this thesis are drawn by a similar method to
Wuensche’s, but using the rather more sophisticated tree layout algorithm
of dot. The algorithm is outlined in Algorithm 6.1, but the basic idea is
to use dot to obtain vertex coordinates for each of the trees rooted on the
cycle, and transform these coordinates to arrange the trees in a circle. The
layout for each tree is cached and reused for isomorphic copies of that tree;
Section 6.2 gives an algorithm for determining when trees are isomorphic.
In fact, the implementation of this algorithm uses the strings described in
Section 6.2 as its internal representation of trees, so isomorphism is tested
by string comparison.

78 6. TRANSITION GRAPHS

Figure 6.5. A basin from the transition graph for ECA
rule 110 on the lattice Z10. Reproduced from [WL92].

33 copies 1 copy

Figure 6.6. Transition graph for ECA 90 on the periodic
lattice Z11.

Examples of transition graphs drawn using this algorithm are shown in
Figures 6.1, 6.2, 6.3, 6.6 and 6.7, with many more examples in Appendices C
and D.

6.4. Transition graphs for linear CAs

Martin et al [MOW84] show that linearity (see Chapter 3) imposes sev-
eral restrictions on the transition graph. Figures 6.6 and 6.7 show transition
graphs for a linear CA.

Lemma 6.8 ([MOW84, Lemma 3.3]). In the transition graph for a linear
CA, all trees rooted at vertices in cycles are isomorphic.

6.4. TRANSITION GRAPHS FOR LINEAR CAS 79

1: procedure DrawGraph
2: let T be the set of trees rooted on cycles
3: for t ∈ T do
4: process t through dot, obtaining coordinates for t’s vertices
5: let B be the set of basins
6: for b ∈ B do
7: w ← 0
8: for each tree t rooted on b’s cycle do
9: determine width(t) from the dot output of Line 4

10: w ← w + width(t)
11: δ ← 2π/w
12: θ ← 0
13: for each tree t rooted on b’s cycle do
14: for each edge u→ v in t do
15: pu ← coordinates of u from the dot output of Line 4
16: pv ← coordinates of v from the dot output of Line 4
17: draw a line from Polarise(pu) to Polarise(pv)
18: θ ← θ + δ × width(t)
19: function Polarise((x, y))
20: φ← θ + δ × x
21: ρ← y
22: return (ρ cosφ, ρ sinφ)

Algorithm 6.1: The layout algorithm for transition graphs.

4 copies 6 copies 60 copies

Figure 6.7. Transition graph for ECA 90 on the periodic
lattice Z12.

Note that this result applies to all trees in a given transition graph,
whether rooted at vertices in the same cycle or in different cycles. An
immediate consequence of this result is that two basins are isomorphic if
and only if their cycles have the same length.

Now that we know the trees are all isomorphic, the following result gives
us some insight into their structure. This result is not explicitly stated by
Martin et al, but is an obvious corollary to stated results.

80 6. TRANSITION GRAPHS

Lemma 6.9. All reachable configurations of a linear CA have the same
number of preimages.

Proof. The zero configuration is always reachable (since F (0) = 0 for
a linear CA), so it suffices to show that any reachable configuration has the
same number of preimages as the zero configuration.

By additive superposition (Theorem 3.2), for all configurations u, v we
have F (u) = F (v) if and only if u = v+q for some preimage q of the zero con-
figuration [MOW84, Lemma 3.2]. Let w be a reachable configuration, and
choose a preimage v of w. Then the preimages of w are the configurations

{u : F (u) = F (v) = w} = {v + q : F (q) = 0} . (6.7)

Note that v + q = v + q′ implies q = q′, so each value of q yields a unique
element of this set. In other words, the preimages of w are in one-one corre-
spondence with the possible values of q, which themselves are the preimages
of the zero configuration. �

Suppose that the zero configuration has p preimages. If we restrict our
attention to a tree in the transition graph, we see that all non-root non-leaf
vertices have in-degree p. However, one of the preimages of the root vertex
is the preceding vertex in its cycle, so within the tree the root vertex has
in-degree p− 1. This can be seen in Figure 6.7, where p = 4.

Some other properties of transition graphs for linear CAs, particularly
for ECA rule 90, are given in Section 3.4.

CHAPTER 7

Counting automorphisms of transition graphs

A high degree of symmetry is apparent in the transition graphs shown
in Appendices C and D. Many of the individual basins are isomorphic to
each other, many basins within themselves exhibit rotational symmetry, and
trees tend to contain subtrees which are isomorphic to each other. These
symmetries are all examples of automorphisms of the transition graph.

This chapter investigates automorphisms of transition graphs. Sec-
tion 7.1 gives a formal definition of automorphisms. Section 7.2 introduces a
physics-inspired notion of symmetries of a CA, and shows (in Corollary 7.9)
that the symmetries of the CA are precisely the automorphisms of the tran-
sition graph.

Some transition graphs have more symmetry than others. For example,
referring back to the examples of transition graphs in Chapter 6, class 3
rule 30 (Figure 6.2) appears less symmetric than class 4 rule 110 (Figure 6.1),
which in turn appears less symmetric than class 2 rule 142 (Figure 6.3).

One measure of the degree of symmetry of a graph is its number of auto-
morphisms: the more automorphisms, the more symmetry. In this chapter,
we investigate the following question: is the order of the automorphism
group of the transition graph correlated with the Wolfram class of the CA,
with class 1 and class 2 CAs having the most automorphisms, class 3 CAs
having the least, and class 4 CAs having an intermediate number?

To investigate this question, we first need a method for computing the
number of automorphisms. Section 7.3 presents such a method, and Sec-
tion 7.4 uses it to compute numbers of automorphisms for the 88 essentially
different ECAs. Considering the number of automorphisms as a function of
the number of cells N partitions the space of ECA rules into three classes,
differentiating the non-trivial linear rules and the rules with chaotic be-
haviour or long transients from the remainder.

The method of Section 7.3 gives a recursive expression for the number
of automorphisms. This expression can be split into three distinct parts,
corresponding to the three types of symmetry (isomorphic basins, rotational
symmetry, isomorphic trees) mentioned at the beginning of this chapter.
Section 7.5 briefly investigates these three parts, and shows that they all

81

82 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

have a roughly equal contribution to the total number of automorphisms
(or at least that one of them does not dominate the others).

7.1. Automorphisms

Definition 7.1. An isomorphism from graph G = (V, E) to graph G′ =
(V ′, E ′) is a bijection α : V → V ′ such that

(x, y) ∈ E ⇐⇒ (α(x), α(y)) ∈ E ′ . (7.1)

An automorphism on graph G is an isomorphism from G to G.

In other words, an isomorphism is a bijection from vertices of G to ver-
tices of G′ that preserves edges: there is an edge between two vertices in G
if and only if there is an edge between the two corresponding vertices in G′.
An automorphism is a permutation of the vertex set that preserves edges.

Theorem 7.2. For a given graph, the set of all automorphisms forms a
group under composition of functions.

Proof. Each of the group axioms follows almost immediately from the
definition. �

It is reasonable to talk about the group of automorphisms for a graph
as being the group of symmetries for that graph. For example, the auto-
morphisms of the graph

a b

cd

are in one-to-one correspondence with the symmetries of the square (see
Example A.12).

7.2. Symmetries

Consider Conway’s Game of Life (Section 2.2), evolving from a given ini-
tial configuration. If we rotate the initial configuration through 90◦, the en-
tire evolution will be rotated through 90◦, but will otherwise be unchanged.
Likewise, if we reflect the initial configuration in a vertical axis, the evolu-
tion will be reflected but otherwise identical. However, if we were to swap
the values of 0 and 1 in the initial configuration, or apply a shear trans-
formation, the evolution would be changed completely for almost all initial
configurations.

7.2. SYMMETRIES 83

It seems natural to identify transformations such as the rotation and
reflection identified above as symmetries of the CA.

Definition 7.3. Consider a CA with global map F . The symmetries of the
CA are the bijections on the configuration space which commute with F ,
i.e. the bijections α with F ◦ α = α ◦ F . This is illustrated in the following
commutative diagram:

F

F

α α

c F (c)

α(c) α(F (c)) = F (α(c))

So, if the sequence of configurations resulting from initial configuration
s0 is

s0, s1, s2, . . . , (7.2)

and if α is a symmetry of the CA, then the sequence of configurations re-
sulting from initial configuration α(s0) is

α(s0), α(s1), α(s2), . . . (7.3)

Symmetries can equivalently be defined in terms of topological conjuga-
tions:

Definition 7.4. Consider two functions F,G : X → X, where X is a
discrete topological space (Definition A.53). A bijection α : X → X is a
topological conjugation from F to G if G ◦ α = α ◦ F .

The symmetries of a CA are thus the topological conjugations from the
global map to itself. The definition of a discrete topological space is not
particularly important for our purposes; suffice it to say, the configuration
space of a CA is always a discrete topological space.

There is a class of symmetries possessed by every CA:

Definition 7.5. Consider a CA with lattice L, and choose v ∈ L. Then the
transformation σv with

σv(c)[i] = c[i+ v] for all i ∈ L (7.4)

is a symmetry of the CA. We call σv a shift symmetry, because it corresponds
to a shift (or translation) of the configuration by a fixed offset v.

84 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

Note that the set of symmetries {σv : v ∈ L} forms a group. The fact
that the shifts are symmetries for every CA is not surprising, given that
spatial homogeneity is inherent in the definition of a CA.

There are two other common (although not ubiquitous) symmetries for
1-D CAs:

Definition 7.6. Consider a CA with 1-D lattice L (so L = Z or ZN), and
choose v ∈ L. If the transformation ρv with

ρv(c)[i] = c[v − i] for all i ∈ L (7.5)

is a symmetry, we call it a reflection symmetry.

The symmetry ρv corresponds to a reflection about the point v
2 . Note

that any reflection can be obtained from any other by appropriate compo-
sition with shifts, so it suffices to take a single reflection symmetry about a
convenient point.

Definition 7.7. Consider a CA with state set {0, 1}. If the transformation
C with

C(c)[i] = 1− c[i] for all i ∈ L. (7.6)

is a symmetry, we call it the conjugation symmetry.

The conjugation symmetry generalises to CAs with larger state sets:
any permutation of the state set can potentially yield a symmetry. The
conjugation symmetry corresponds to the only non-identity permutation of
{0, 1}.

Compare these transformations on configurations with the similarly named
transformations on rules defined in Section 2.4. Indeed, a CA has reflection
symmetry if and only if its local rule is its own reflection, and similarly for
conjugation.

It is conventional to talk in terms of groups of symmetries acting on
sets of objects; see Definition A.20. It is easy to show that the set of all
symmetries for a particular CA forms a group under composition of func-
tions. By Example A.21, it follows that the group of symmetries acts on the
configuration space. Thus the language of group actions can be used when
discussing symmetries of CAs.

Theorem 7.8. Consider a function F : X → X. A bijection α : X → X is
an automorphism of the functional graph of F if and only if α is a topological
conjugation from F to F .

This follows immediately from the definitions. Applying this theorem to
transition graphs, we obtain the following result:

7.3. COUNTING AUTOMORPHISMS 85

Corollary 7.9. A bijection α is a symmetry of a CA if and only if α is an
automorphism of the CA’s transition graph.

7.3. Counting automorphisms

Let A(f,N) denote the order (number of elements) of the automorphism
group for the transition graph of ECA rule f on the lattice of N cells. It is
easy to find A(f,N) for some ECAs:

Example 7.10. For rule 204 (the identity rule), the transition graph con-
sists of 2N basins, each containing a single configuration. Every permutation
of configurations is an automorphism, and so there are 2N ! automorphisms
in total. Clearly this is an upper bound on the number of automorphisms
for any ECA. ♦

Example 7.11. For rule 0, the transition graph is

· · ·
2N−1 vertices︷ ︸︸ ︷

Any permutation of the indicated 2N − 1 vertices (corresponding to the
configurations other than the all-zeroes configuration) is an automorphism,
and so there are (2N − 1)! automorphisms in total. ♦

The results in this section describe how A(f,N) may be computed in
the general case, by induction over the “circles of trees” structure of the
transition graph. Intuitively:

(1) An automorphism of the transition graph is obtained by permuting
the basins in a way that preserves their isomorphism classes, and
applying an automorphism to each basin individually;

(2) An automorphism of a basin is obtained by “rotating” the configu-
rations on the cycle in a way that preserves the isomorphism classes
of the trees rooted on the cycle, and applying an automorphism to
each of these trees individually;

(3) An automorphism of a tree (rooted on the cycle or not) is obtained
by permuting the preimages of the root in a way that preserves the
isomorphism classes of the trees rooted at those preimages, and
applying an automorphism to each of these subtrees individually;

86 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

r

q1 q2 q3

p1 p2 p3 p4 p5

Figure 7.1. The tree used in Example 7.13.

(4) There is only one automorphism of a single vertex tree, namely the
identity function.

Note that item (3) is recursive, with item (4) as base case. In all cases,
a permutation which “preserves isomorphism classes” is one which maps
subgraphs to isomorphic subgraphs; such a permutation can be obtained by
permuting the elements of each isomorphism class amongst themselves.

The following result, applied recursively, gives the number of automor-
phisms of a tree:

Lemma 7.12. Consider a tree with root vertex v, and let {u1, . . . , un} be the
vertices in the tree such that there is an edge from ui to v. Denote by {ui} / ∼=
the set of isomorphism classes of {u1, . . . , un}, considering two vertices to
be isomorphic if the subtrees rooted at those vertices are isomorphic. Denote
by A(v) the order of the isomorphism group of the tree rooted at v. Then
A(v) is defined inductively by

A(v) =


 ∏

I∈{ui}/∼=
|I|!






n∏

i=1

A(ui)


 . (7.7)

We refer to the vertices u1, . . . , un as the children of vertex v.
In terms of transition graphs, the configurations u1, . . . , un are the preim-

ages of v, with one exception: if v is on a cycle, then the preimage which
precedes it on the cycle is not included, because we do not consider the
corresponding vertex to be in the tree.

Example 7.13. Consider the tree in Figure 7.1. The isomorphism classes
of r’s children are {q1, q2} and {q3}. Substituting into Equation 7.7 gives

A(r) = (|{q1, q2}|!× |{q3}|!) (A(q1)A(q2)A(q3)) (7.8)

= 2A(q1)2A(q3) , (7.9)

7.3. COUNTING AUTOMORPHISMS 87

α(r) α(q1) α(q2) α(q3) α(p1) α(p2) α(p3) α(p4) α(p5)
r q1 q2 q3 p1 p2 p3 p4 p5

r q1 q2 q3 p2 p1 p3 p4 p5

r q1 q2 q3 p1 p2 p4 p3 p5

r q1 q2 q3 p2 p1 p4 p3 p5

r q2 q1 q3 p3 p4 p1 p2 p5

r q2 q1 q3 p4 p3 p1 p2 p5

r q2 q1 q3 p3 p4 p2 p1 p5

r q2 q1 q3 p4 p3 p2 p1 p5

Table 7.1. The automorphisms for the graph in Example 7.13.

noting that A(q2) = A(q1) since the trees rooted at q1 and q2 are isomorphic.
Now q1’s children form a single isomorphism class {p1, p2}, so

A(q1) = |{p1, p2}|!A(p1)A(p2) = 2× 12 = 2 , (7.10)

using the fact that p1 has no children and so A(p1) = 1, and similarly for
A(p2). Similarly,

A(q3) = |{p5}|!A(p5) = 1 . (7.11)

Substituting into Equation 7.9 gives

A(r) = 2× 22 × 1 = 8. (7.12)

In this example, it is not difficult to list all automorphisms, and verify
that there are indeed eight of them. See Table 7.1. ♦

Now that we can find the number of automorphisms in a tree, the fol-
lowing result gives the number of automorphisms of a basin of attraction:

Lemma 7.14. Consider a basin B in a transition graph, and suppose that
the vertices of the basin’s cycle are 〈v1, . . . , vm〉. Let q > 0 be minimal such
that, for all i, the tree rooted at vi is isomorphic to the tree rooted at vi+q.
Clearly q must divide m. Then the order of the automorphism group of the
basin is

A(B) =
m

q

m∏

i=1

A(vi) , (7.13)

with A(vi) as defined in Lemma 7.12.

Example 7.15. Consider the graph in Figure 7.2. Here m = 6 and q = 2,
so Lemma 7.14 gives

A(H) =
6
2

6∏

i=1

A(ri) . (7.14)

88 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

r1

q1

q2
r2r3

q3

q4

r4

r5

q5

q6

r6

Figure 7.2. The graph used in Example 7.15.

Since A(r1) = A(r3) = A(r5) and A(r2) = A(r4) = A(r6) by isomorphism of
trees, we have

A(H) = 3×A(r1)3 ×A(r2)3 . (7.15)

By Lemma 7.12 we have A(r1) = 2 and A(r2) = 1, so

A(H) = 3× 23 × 13 = 24. (7.16)

Table 7.2 enumerates the automorphisms, showing that there are indeed
24 of them. ♦

Theorem 7.16. Consider a transition graph composed of basins {B1, . . . , Bk},
and denote the set of isomorphism classes of {B1, . . . , Bk} by {Bi} / ∼=.
Then the order of the automorphism group of the transition graph is

A(f,N) =


 ∏

I∈{Bi}/∼=
|I|!






k∏

i=1

A(Bi)


 , (7.17)

with A(Bi) as defined in Lemma 7.14.

Numbers of automorphisms for transition graphs tend to be combinato-
rially large, as we shall see later. Thus it is often more useful to work with
their logarithms.

7.4. NUMERICAL RESULTS 89

α(r1) α(r2) α(r3) α(r4) α(r5) α(r6) α(q1) α(q2) α(q3) α(q4) α(q5) α(q6)
r1 r2 r3 r4 r5 r6 q1 q2 q3 q4 q5 q6

r1 r2 r3 r4 r5 r6 q2 q1 q3 q4 q5 q6

r1 r2 r3 r4 r5 r6 q1 q2 q4 q3 q5 q6

r1 r2 r3 r4 r5 r6 q2 q1 q4 q3 q5 q6

r1 r2 r3 r4 r5 r6 q1 q2 q3 q4 q6 q5

r1 r2 r3 r4 r5 r6 q2 q1 q3 q4 q6 q5

r1 r2 r3 r4 r5 r6 q1 q2 q4 q3 q6 q5

r1 r2 r3 r4 r5 r6 q2 q1 q4 q3 q6 q5

r3 r4 r5 r6 r1 r2 q3 q4 q5 q6 q1 q2
...

...
...

...
r3 r4 r5 r6 r1 r2 q4 q3 q6 q5 q2 q1

r5 r6 r1 r2 r3 r4 q5 q6 q1 q2 q3 q4
...

...
...

...
r5 r6 r1 r2 r3 r4 q6 q5 q2 q1 q4 q3

Table 7.2. The automorphisms for the graph in Example 7.15.

Corollary 7.17. In the notation of Lemmas 7.12 and 7.14 and Theo-
rem 7.16, we have

logA(v) =
∑

I∈{ui}/∼=
log |I|! +

n∑

i=1

logA(ui) , (7.18)

logA(B) = logm− log q +
m∑

i=1

logA(vi) , (7.19)

and

logA(f,N) =
∑

I∈{Bi}/∼=
log |I|! +

k∑

i=1

logA(Bi) . (7.20)

Computing A(f,N) requires that the entire transition graph of 2N ver-
tices be generated and traversed, so the computational time complexity is
at least exponential with respect to N . We have computed A(f,N) for the
88 essentially different ECAs for all N ≤ 17, and this seems to approach the
limit of what can be computed on a modern desktop PC within a reasonable
length of time. Furthermore, the exponential complexity means that even
an orders-of-magnitude increase in computational power would not signif-
icantly increase this limit. However, the data we are able to generate are
sufficient to make some interesting observations.

7.4. Numerical results

Figure 7.3 plots A(f,N) for each of the 88 essentially different ECAs,
and Table 7.3 gives selected numerical values. By inspection of Figure 7.3,

90 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

N

lo
g 10

 lo
g 10

 A
(f

,N
)

Figure 7.3. Plot of log10 log10A(f,N) against N , for 8 ≤
N ≤ 17 and for all 88 essentially different ECA rules.

N
Set Rule 10 11 12 13 14 15 16 17
L 204 3.422 3.770 4.115 4.455 4.792 5.126 5.458 5.788

15 2.419 2.430 3.034 3.041 3.645 3.649 4.254 4.257
60 1.976 0.923 2.765 1.221 3.335 3.616 3.994 3.053

Z 90 2.451 1.935 3.141 2.318 3.614 3.617 4.354 4.283
105 2.644 1.984 3.149 2.833 3.646 3.868 4.555 4.311
150 2.642 2.282 3.149 3.133 3.646 3.923 4.555 4.612
154 2.091 2.077 2.945 2.674 3.269 3.268 4.252 3.856
30 0.624 0.937 1.106 0.724 1.336 1.594 1.369 1.296

C 45 1.144 1.388 1.756 1.822 1.293 2.115 1.987 1.833
106 1.389 1.590 1.906 1.991 2.258 2.468 2.627 2.849

Table 7.3. Values, to 3 decimal places, of
log10 log10A(f,N) for rule 204 (the identity rule, for
which log10 log10A(f,N) is maximal) and the rules in sets
Z and C.

the ECAs can be partitioned into three sets depending on the behaviour of
A(f,N) with respect to N : the first and largest set shows an approximate
linear relationship between log10 log10A(f,N) and N , the second shows al-
ternation between larger and smaller values for successive values of N , and
the third shows a reduced rate of growth with neither linear nor alternat-
ing behaviour. We denote these sets L, Z and C respectively, according
to whether the relationship between log10 log10A(f,N) and N is “linear”,
“zigzag”, or “chaotic”.

7.4. NUMERICAL RESULTS 91

6 8 10 12 14 16
0

1

2

3

4

5

6

N

lo
g 10

lo
g 10

A
(f

,N
)

(a)

6 8 10 12 14 16
0

1

2

3

4

5

6

N
lo

g 10
lo

g 10
A

(f
,N

)

(b)

Figure 7.4. As Figure 7.3, but for 6 ≤ N ≤ 17, and only
showing the ECAs in (a) set Z; (b) set C.

7.4.1. Set L: approximate linear relationship

The majority of ECAs show an approximately linear relationship be-
tween log10 log10A(f,N) and N . Furthermore, all of the lines have approx-
imately the same gradient.

Set L contains examples from all four of Wolfram’s classes, including the
identity rule 204 and the “Turing complete” rule 110.

7.4.2. Set Z: alternating between large and small values

Figure 7.4 (a) plots A(f,N) for ECA rules 15, 60, 90, 105, 150, and 154.
For N ≤ 14, these rules are characterised by A(f,N) alternating between
large values for even N , and smaller values for odd N . This pattern seems
to break down, or at least become less pronounced, for 15 ≤ N ≤ 17.

All but one of the rules in set Z are linear (Chapter 3), or linear plus
a constant term. All four non-trivial rules of this type (rules 60, 90, 105
and 150) are in Z, as is one of the trivial rules (rule 15); the four remaining
trivial rules (0, 51, 170 and 204) are in L.

The single non-linear rule in Z, rule 154, shares one property with the
non-trivial linear rules: from an initial configuration consisting of a single
cell in state 1, a self-similar “Sierpiński gasket” pattern is produced. On
other initial configurations, rule 154 produces periodic patterns, in contrast
to the chaotic patterns produced by the non-trivial linear rules.

Recall from Section 6.4 that transition graphs for linear CAs have several
special properties. In Section 8.1 we use these properties to investigate
numbers of automorphisms for linear CAs, thus shedding some light on the
behaviour of the number of automorphisms with respect to N for set Z.

92 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

(a) (b)

Figure 7.5. Evolution of ECA rule 106 from (a) the config-
uration . . . 001100 . . . ; (b) a random initial configuration. To
make the patterns clearer, each configuration has been offset
to the right by one cell relative to the previous configuration.

7.4.3. Set C: neither linear nor alternating

Figure 7.4 (b) plots A(f,N) for rules 30, 45, and 106. This plot shows
neither a linear nor an oscillating relationship, and the rate of growth of
A(f,N) with respect to N seems significantly lower than that for the ECAs
in sets L and Z.

Wolfram [Wol86a] identifies rules 30 and 45 as being particularly suited
to random number generation: if the initial configuration assigns state 1
to a single cell and state 0 to all others, then the sequence of states taken
by that special cell subsequently is, by several measures, a good pseudo-
random sequence over Z2. Rules 30 and 45 do seem to be unique in this
respect: other “chaotic” ECAs which fall into Wolfram’s class 3 generally
only exhibit this property on a random initial configuration; we may think
of them as merely “preserving” the randomness already present in the initial
configuration, whereas rules 30 and 45 are uniquely capable of “generating”
randomness from an ordered initial configuration.

The evolution of rule 106 from a single cell in state 1 is rather uninter-
esting: the state 1 simply propagates to the left by one cell per generation.
However, two adjacent cells in state 1 yield the self-similar pattern shown in
Figure 7.5 (a). On a random initial configuration, rule 106 produces chaotic
patterns interspersed with ordered regions, as depicted in Figure 7.5 (b).
Again, rule 106 seems to be unique among the ECAs: self-similar patterns

7.6. CONCLUSION 93

are not uncommon, but the pattern depicted in Figure 7.5 (a) seems more
complex than the “Sierpiński gasket”-like patterns typical of other ECAs.

One property that rules 30, 45 and 106 seem to share, and that dis-
tinguishes them from other ECAs, is that their transition graphs tend to
contain long transients. Indeed, this is one of the properties that make
rules 30 and 45 suitable for random number generation.

7.4.4. Discussion

We have obtained a classification of the ECAs according to how their
numbers of automorphisms vary with the number of cells. This seems to
identify three classes of CA: those with long transients (set C), those that
are linear or “almost” linear (set Z), and the rest (set L). This is not a
direct analogue of Wolfram’s classification, in that it does not correspond
to the same trichotomy of ordered versus chaotic versus complex behaviour.
However, the sets Z and C are (with some exceptions) subclasses of Wol-
fram’s class 3, with C containing CAs in which chaotic behaviour is “created”
in long transients, and Z containing CAs in which the randomness of the
initial configuration is “preserved” as a result of the principle of additive
superposition for linear CAs (Theorem 3.2).

7.5. Splitting the expression

From Corollary 7.17, the logarithm of the number of automorphisms of
the transition graph can be written in the form

 ∑

I∈{Bi}/∼=
log |I|!


+

(
k∑

i=1

(logmi − log qi)

)
+

(
k∑

i=1

m∑

i=1

logA(vi)

)
. (7.21)

These three terms correspond respectively to permutations of basins, rota-
tions of basins, and automorphisms of trees.

Figure 7.6 plots separately the three terms in Equation 7.21. These plots
show that none of these terms dominates the overall expression in general,
although the difference between the three classes seems most dramatic for
the third (tree automorphisms) term. Furthermore, these plots show that
there are fluctuations in the first two terms even for some CAs in set L,
which is not so apparent in Figure 7.3. The presence or absence of these
fluctuations may form the basis of a classification subdividing set L, but this
is a subject for future work.

7.6. Conclusion

This chapter began by posing the question of whether the number of au-
tomorphisms is correlated with the Wolfram class of the CA, with “simple”

94 7. COUNTING AUTOMORPHISMS OF TRANSITION GRAPHS

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

8 10 12 14 16
−1

0

1

2

3

4

5

6

N

lo
g 1
0
lo
g 1
0
A

Automorphisms of trees

Rotations of basins

Permutations of basins

Figure 7.6. Plots of the three terms in Equation 7.21, for
the ECAs in each of the three classes L, Z and C.

(classes 1 and 2) CAs having the most automorphisms, and “chaotic” (class
3) CAs having the fewest. There is certainly some truth in this: the mem-
bers of set C (including rules 30 and 45) have fewer automorphisms than
those of set Z, the difference increasing with N . However, membership of
set C seems to have more to do with transient length than with Wolfram
class.

One disappointing aspect of this work is that the vast majority (79 out
of 88) of ECA rules, including examples from all four of Wolfram’s classes,
are in set L. It would be interesting to see whether this remains true for

7.6. CONCLUSION 95

larger values of N (N ≥ 100 say), although investigating this would require
a different, possibly approximate, method. For example, one might try to
express the number of automorphisms so that it is a sum of contributions
from each vertex, so that the whole number can be approximated by sam-
pling over the vertex set. However, it is not obvious how to arrange this so
that the contributions from each vertex are roughly equal. This is essential:
if a handful of vertices have a much larger contribution than the others, then
the result obtained will be too dependent on whether the sample includes
those vertices.

The interesting aspect of this work is not necessarily the numbers them-
selves, or even the classification, but rather the suggestion of a relationship
between “symmetry” and “complexity”. The relationship between sets L
and C already suggest that, for sufficiently large N , chaotic ECAs such as
rules 30 and 45 exhibit far fewer symmetries than the more orderly CAs in
set L. It is tempting to conjecture that, as N is made larger still, complex
ECAs such as rule 110 will exhibit a critical amount of symmetry some-
where in the region between sets L and C. This would be in keeping with
the “edge of chaos” phenomena observed with parameters such as Langton’s
λ (Section 5.1) and Wuensche’s Z (Section 5.2).

An important result in physics is Noether’s theorem, which, informally,
states that there is a correspondence between symmetries of a physical sys-
tem and conservation laws of that system [Bae02]. Conservation laws on
cellular automata have been studied [TS90, HT91]. Boykett [Boy03] conjec-
tures an analogue of Noether’s theorem for CAs, but for a different definition
of symmetry. It would be interesting to investigate whether our definition
of symmetry has an analogue of Noether’s theorem.

CHAPTER 8

Counting automorphisms for linear CAs

In Section 7.3 we give recursive expressions for the number of automor-
phisms of a transition graph for a CA in general, in terms of the sizes of
isomorphism classes of certain families of subgraph. Unfortunately, we are
unable to extend this method to large lattices, due to the exponential size of
the transition graph. However, this limitation can be overcome in the case of
the linear CAs, by exploiting the special properties of their transition graphs
described in Section 6.4. Section 8.1 describes the method, and Sections 8.2
and 8.3 apply it to a particular linear ECA to extend the numerical results
of Section 7.4.

This work is not directly related to the classification problem, but is
an interesting diversion nonetheless, and relates to the theme mentioned in
Chapter 1 of overcoming the exponential nature of the configuration space.

8.1. Counting automorphisms

Theorem 8.1. Consider a transition graph for a linear CA, in which the
distinct cycle lengths are l1, . . . , lk, and there are mi cycles of length li. Sup-
pose that each of the trees in this transition graph has A(v) automorphisms.
Then the transition graph has

A(f,N) =
k∏

i=1

(
mi!× lmi

i ×A(v)limi

)
(8.1)

automorphisms.

Proof. Recall that all trees rooted at vertices in cycles are isomorphic
in a transition graph for a linear CA (Lemma 6.8).

Consider a basinBi whose cycle length is li. In the notation of Lemma 7.14
we have m = li, and q = 1 since all trees are isomorphic. Substituting into
Equation 7.13, we have

A(Bi) =
li
1

li∏

i=1

A(v) = liA(v)li . (8.2)

97

98 8. COUNTING AUTOMORPHISMS FOR LINEAR CAS

Figure 8.1. A basin in the transition graph for the lin-
ear CA with state set Z2 and local rule f(x−3, . . . , x3) =
x−3 + x0 + x2 + x3, on N = 12 cells. The entire transi-
tion graph comprises 40 isomorphic copies of this basin, five
basins with cycle length 3, and one basin with cycle length 1.
The trees are unbalanced. For example, the configurations
u = 111111111111 and v = 001100110011 are preimages of
the zero configuration 000000000000, and neither u nor v is
on the cycle. Configuration u is reachable (one of its preim-
ages is 000100010001), but v is unreachable, as are the other
five non-zero preimages of the zero configuration.

Two basins are isomorphic if and only if they have the same cycle length.
Thus the basins form k isomorphism classes of sizes m1, . . . ,mk. Thus The-
orem 7.16 gives

A(f,N) =

(
k∏

i=1

mi!

)(
k∏

i=1

A(Bi)mi

)
(8.3)

=
k∏

i=1

(
mi!×

(
liA(v)li

)mi
)

(8.4)

=
k∏

i=1

(
mi!× lmi

i ×A(v)limi

)
, (8.5)

as required. �

Note that the overall exponent of A(v) in A(f,N) is
∑k

i=1 limi, which
is the number of configurations which appear in cycles.

Say that a tree is balanced if all leaf vertices are the same distance from
the root. Trees in transition graphs for linear CAs are not always balanced,
although empirical investigation shows counterexamples to be rare enough
to make balanced trees worth studying. The trees shown in Figures 6.6
and 6.7 are balanced; Figure 8.1 shows an example of a transition graph
with unbalanced trees.

8.1. COUNTING AUTOMORPHISMS 99

The depth of a balanced tree is the distance from the root to a leaf. The
trees shown in Figure 6.6 have depth 1, and those shown in Figure 6.7 have
depth 2.

Theorem 8.2. Consider a balanced tree of depth d in which the root vertex
has in-degree p− 1, and all other non-leaf vertices have in-degree p. Such a
tree has

AT (d, p) =
p!p

d−1

p
(8.6)

automorphisms.

Proof. If d = 0, the tree consists of a single vertex (the root vertex).
Clearly this vertex has zero in-degree, and so we must have p = 1. (Indeed,
the converse of this argument also holds, so that d = 0 if and only if p = 1.)
This “tree” has only a single automorphism (the identity), and

AT (0, 1) =
1!1
−1

1
= 1 (8.7)

as required.
Suppose d > 0, and proceed by induction on d. If d = 1, then the tree

has p − 1 leaf vertices, each an immediate predecessor of the root vertex.
The automorphisms of this tree are precisely the permutations of the leaves,
of which there are (p− 1)!. Substituting d = 1 into Equation 8.6 yields

AT (1, p) =
p!p

0

p
=
p!
p

= (p− 1)! , (8.8)

as required.
Now let d > 1, and assume, as an inductive hypothesis, that

AT (d− 1, p) =
p!p

d−2

p
. (8.9)

Denote by Td the tree, as described in the statement of the theorem, of depth
d. Now Td can be obtained from Td−1 by taking each leaf v in Td−1, and
adding p new leaves as immediate predecessors of v (so that v is no longer
a leaf but the root of a subtree of depth 1).

An automorphism of Td is an automorphism of Td−1 composed with an
automorphism of each of the new subtrees added in transforming Td−1 into
Td. There are (p−1)pd−2 such subtrees, each having p! automorphisms, and

100 8. COUNTING AUTOMORPHISMS FOR LINEAR CAS

so Td has

AT (d, p) = AT (d− 1, p)× p!(p−1)pd−2
(8.10)

=
p!p

d−2 × p!(p−1)pd−2

p
(8.11)

=
p!(1+p−1)pd−2

p
(8.12)

=
p!p

d−1

p
(8.13)

automorphisms, as required. �

Here p is the number of preimages for a reachable configuration (recall
from Lemma 6.9 that all reachable configurations of a linear CA have the
same number of preimages). Chapter 9 describes how p may be computed.

8.2. Example: elementary rule 90

Recall that rule 90 is the linear ECA with local rule

f(x−1, x0, x1) = x−1 + x1 . (8.14)

The properties of rule 90 are studied extensively by Martin et al [MOW84];
see Sections 3.4 and 6.4. In this section, we use these properties to derive an
expression for the numbers of automorphisms in rule 90’s transition graphs.

The results in Section 6.4 describe some of the properties of the transition
graph for a linear CA. For rule 90, we can go further than this, and can
completely describe the trees in the transition graphs:

Lemma 8.3. Let N be odd. The transition graph for rule 90 on N cells has
the following properties:

(1) All trees consist of a single edge [MOW84, Theorem 3.3], and thus
are balanced and have depth d = 1;

(2) Reachable configurations have two preimages, so p = 2 [MOW84,
Theorem 3.2];

(3) The number of vertices in cycles is 2N−1, i.e. precisely half of all
vertices [MOW84, Corollary to Theorem 3.3].

Lemma 8.4. Let N be even, and let D2(N) be the largest power of 2 which
divides N :

D2(N) = max
{

2j : 2j |N
}
. (8.15)

The transition graph for rule 90 on N cells has the following properties:

(1) All trees rooted at vertices in cycles are balanced and have depth
d = 1

2D2(N) [MOW84, Theorem 3.4];

8.2. EXAMPLE: ELEMENTARY RULE 90 101

(2) Reachable configurations have four preimages, so p = 4 [MOW84,
Theorem 3.2];

(3) The number of vertices in cycles is 2N−D2(N) [MOW84, Corollary
to Theorem 3.2].

The only elements missing for a complete description of the transition
graph are the cycle lengths and their multiplicities. As far as we are aware,
there is no simple expression for these. Martin et al [MOW84] give an algo-
rithm for computing the cycle lengths and multiplicities. A full description
is beyond the scope of this thesis, but Appendix E gives an implementation.

The following theorem is obtained from Theorems 8.1 and 8.2 in the
cases described in Lemmas 8.3 and 8.4:

Theorem 8.5. Suppose that, on some number of cells N , rule 90 has cycles
of distinct lengths l1, . . . , lk, with mi cycles of length li. Let

AcT =





1 if N is odd

242N−2
/42N−D2(N)

if N is even ,
(8.16)

where D2(N) is as defined in Equation 8.15. Then the transition graph for
rule 90 on N cells has

A(90, N) =

(
k∏

i=1

mi!× lmi
i

)
×AcT (8.17)

automorphisms.

Proof. By Theorem 8.1, it suffices to show that

AcT =
k∏

i=1

AT (d, p)limi , (8.18)

where AT (d, p) is as defined in Theorem 8.2, and d and p are chosen appro-
priately. Note that

c =
k∑

i=1

limi (8.19)

is the total number of vertices on cycles, and so
k∏

i=1

AT (d, p)limi = AT (d, p)c . (8.20)

If N is odd, Lemma 8.3 gives d = 1 and p = 2. Now

AT (1, 2) =
2!2

0

2
= 1 . (8.21)

102 8. COUNTING AUTOMORPHISMS FOR LINEAR CAS

Indeed, it is easy to see that a tree consisting of a single edge admits only
a single automorphism, namely the identity. Thus we have AT (1, 2)c = 1 as
required, regardless of the value of c.

If N is even, Lemma 8.4 gives d = 1
2D2(N) and p = 4, so

AT (d, p) =
4!4

1
2 D2(N)−1

4
(8.22)

=
242D2(N)−2

4
. (8.23)

Lemma 8.4 also gives c = 2N−D2(N), so

AT (d, p)c =
242D2(N)−2×2N−D2(N)

42N−D2(N)
(8.24)

=
242N−2

42N−D2(N)
(8.25)

as required. �

8.3. Numerical results for rule 90

Theorem 8.5 yields the number of automorphisms for rule 90 on N cells,
if the cycle lengths li and multiplicities mi are known. Martin et al [MOW84]
give an algorithm for computing the lis and mis. This allows us to compute
numbers of automorphisms for any value of N , although naturally some
values of N require more computation than others.

Some results are shown in Figure 8.2. Observe that the relationship
between the double logarithm of the number of automorphisms and N is
approximately linear when N is even; fewer automorphisms occur when N

is odd, and there seems to be a lower bound achieved on some (but not all)
prime values of N .

Martin et al [MOW84] define the suborder function of 2 modulo N ,
denoted sordN (2), by

sordN (2) =





min
{
j : 2j ≡ ±1 mod N

}
if N is odd

0 if N is even.
(8.26)

The suborder function is plotted in Figure 8.3. The suborder function
sordN (2) has an upper bound of 1

2(N − 1), achieved on some (but not all)
prime values of N .

Comparing Figure 8.3 with Figure 8.2, a correlation is apparent: values
of N which yield many automorphisms give small values of sordN (2), and
vice versa. Indeed, numerical fitting gives that, for N < 185,

log10 log10A(90, N) ≈ 0.30N − 0.28 sordN (2)− 0.04 . (8.27)

8.4. CONCLUSION 103

The error in this approximation is illustrated in Figures 8.4 and 8.5.
Theorem 8.5 states that, if N is odd, the number of automorphisms is

given by

A(90, N) =

(
k∏

i=1

mi!× lmi
i

)
. (8.28)

The lis are factors of the maximal cycle length ΠN , and by Lemma 3.15,
ΠN is a factor of 2sordN (2) − 1. The mis have no immediately apparent
relationship with sordN (2). Thus it is somewhat mysterious that, of all the
quantities which determine the cycle lengths and multiplicities, it should be
sordN (2) which, along with N , ends up dominating the expression for the
number of automorphisms.

8.4. Conclusion

Section 7.4 investigates numerically how the number of automorphisms
of the transition graph varies with the number of cells. Upon first inspection,
this variation seems (with a few exceptions) to be more erratic for the linear
CAs than for the nonlinear CAs: in Figure 7.3, it is the linear ECAs which
display the most dramatic “zig-zag” patterns. Intuitively, it seems that the
non-trivial linear CAs are much more sensitive to changes in the number of
cells. Perhaps this is not so surprising: for example, if N is a power of 2, it
can be shown that the only attractor for rule 90 on N cells is a fixed point,
namely the zero configuration. So there are cases where a small change
in the number of cells significantly changes the CA’s qualitative dynamics:
indeed, changing the number of cells for rule 90 from a non-power of 2 to a
power of 2 changes the Wolfram class of the CA from 3 to 1.

Of course, the range of the data shown in Figure 7.3 is insufficient to
draw any real conclusions; it is only when the numerical results are extended
to much larger values of N , such as in Figure 8.2, that a pattern becomes
apparent. The numerical results also show the argument above regarding
power-of-2 values of N to be somewhat misleading: in fact, it is around
the powers of 2 that we observe the smallest fluctuations in numbers of
automorphisms.

The data plotted in Figure 7.4 (a) suggest that the numbers of automor-
phisms for other linear CAs exhibit similar behaviour to that for rule 90. To
test this theory, it is desirable to generalise the results of Section 8.2 to other
linear CAs. In particular, to apply Theorems 8.1 and 8.2 (which take care
of the common, though not universal, case where the trees are balanced),
four quantities must be known:

(1) The number of predecessors of a reachable configuration;
(2) The depth of a tree (or equivalently, the maximum transient length);

104 8. COUNTING AUTOMORPHISMS FOR LINEAR CAS

(3) The set of cycle lengths;
(4) The multiplicity of each cycle length.

Chapter 9 describes how the first of these quantities can be determined. For
the other three, it seems plausible that results can be found for individual
linear CAs via similar techniques to those used by Martin et al [MOW84]
for rule 90. Whether results can be found which apply to all linear CAs
remains to be seen.

This work is based entirely on two facts about transition graphs for linear
CAs: all the trees are isomorphic, and every non-leaf vertex has the same
in-degree. These properties certainly do not hold in general, so the approach
described here is not applicable to nonlinear CAs. To extend those numerical
results to larger N , a completely different approach would be needed.

8.4. CONCLUSION 105

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

N

lo
g 10

lo
g 10

A
(9

0,
N

)

Figure 8.2. Plot of log10 log10A(90, N) (lower line) against
N , for 3 ≤ N ≤ 185. For comparison, log10 log10A(204, N) =
2N ! is also plotted (upper line).

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

n

so
rd

n(2
)

Figure 8.3. Plot of the suborder function of 2 modulo n.

106 8. COUNTING AUTOMORPHISMS FOR LINEAR CAS

0 10 20 30 40 50 60
0

10

20

30

40

50

60

log
10

log
10

A(90,N)

0.
30

 N
 −

 0
.2

8
so

rd N
(2

)
−

 0
.0

4

Figure 8.4. Plot of the two sides of Equation 8.27. The
diagonal “y = x” line is plotted for comparison.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

lo
g 10

lo
g 10

A
(9

0,
N

)
−

 (
0.

30
 N

 −
 0

.2
8

so
rd N
(2

)
−

 0
.0

4)

N

Figure 8.5. Plot of the difference between the two sides of
Equation 8.27 against N .

CHAPTER 9

Preimages of homogeneous configurations

Theorem 8.2 gives the number of automorphisms of a balanced tree in a
transition graph for a linear CA, in terms of two parameters: the depth d of
the tree, and the in-degree p of the non-root non-leaf vertices. This p is the
number of preimages of a reachable configuration; recall from Lemma 6.9
that all reachable configurations of a linear CA have the same number of
preimages, and from the proof of Lemma 6.9 that the zero configuration of
a linear CA is always reachable. Thus the problem of finding p reduces to
that of counting the preimages of the zero configuration.

This chapter describes two different approaches to counting the preim-
ages of the zero configuration. In fact, the methods are equally applicable
to any homogeneous configuration (that is, any configuration in which all
cells have the same state). The methods do not use the properties of linear
CAs, so they are also applicable to homogeneous configurations of nonlinear
CAs.

The first approach (Section 9.1) works by considering the possible lengths
of sequences of consecutive cells in the same state. When the number of
preimages is considered as a function of the number of cells, we see three
distinct types of behaviour: constancy, periodicity, and exponential growth.
The string length approach gives an intuitive understanding of when and
why these behaviours arise.

The second approach (Section 9.2) applies results from spectral graph
theory to the de Bruijn graphs of the CA. Specifically, we consider the
eigenvalues of the de Bruijn matrices. While this method is not quite as
intuitive as considering string lengths, it is far more useful for producing
numerical results.

In Section 9.3, we show that this second approach can also be applied to
configurations which are heterogeneous but periodic, with period less than
N . It can also be applied if the period is N (and thus can be applied to
all configurations); however, the period N case is precisely the same as the
application of de Bruijn matrices described in Section 4.3, so nothing further
is gained in this case.

107

108 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

9.1. String lengths

In this section, we determine numbers of preimages by considering the
possible lengths of sequences of consecutive cells in the same state.

9.1.1. For ECAs

Every heterogeneous configuration of an ECA is a cyclic shift of a con-
figuration of the form

0l0,11l1,1 . . . 0l0,k1l1,k , (9.1)

for some positive integers k, l0,1, . . . , l1,k. In other words, every heteroge-
neous configuration can be written, modulo cyclic shift, as strings of zeroes
alternated with strings of ones.

Example 9.1. Consider the configuration

1110010001111010001111011 . (9.2)

Shifting this configuration by 3 cells to the left gives

0010001111010001111011111 , (9.3)

which can be written as

02110314011103140115 , (9.4)

which is in the form of Equation 9.1 with k = 5, l0,1 = 2, l1,1 = 1, l0,2 = 3,
l1,2 = 4, and so on. ♦

Since the state set has only two elements, heterogeneity is sufficient to
ensure that the configuration contains at least one string of each state: if a
configuration does not contain a string of 1s, say, then it must consist solely
of 0s, and is thus homogeneous.

Consider the homogeneous configuration qN . Let x be a state, and let
x = 1 − x be the other state, so that {x, x} = {0, 1}. Assume that there
exist preimages of qN which contain the state x (this assumption may turn
out to be false; see case (1) below). Consider the permitted lengths lx,i of
strings composed of x in such preimages. The assumption that the preimage
contains x guarantees that these strings do not cover the entire lattice, so
each string has a beginning and an end. By considering the effect of the
local rule at the beginning, middle and end of the strings, we can write
down necessary conditions for various string lengths:

a. lx,i = 1 can occur only if f(x, x, x) = q;
b. lx,i = 2 can occur only if f(x, x, x) = f(x, x, x) = q;
c. lx,i ≥ 3 can occur only if f(x, x, x) = f(x, x, x) = f(x, x, x) = q.

9.1. STRING LENGTHS 109

Note that condition c implies condition b; that is, if lx,i ≥ 3 is permitted then
lx,i = 2 is also permitted. Also note that these conditions are necessary but
not sufficient: for example, if f(x, x, x) 6= q and f(x, x, x) 6= q, then lx,i = 1
cannot occur, even if condition a holds.

We have the following three cases:

(1) If none of these conditions are met then our initial assumption, that
there are preimages containing both states x and x, is contradicted.
Thus qN has no heterogeneous preimages.

(2) Suppose that, for each choice of x, there is precisely one possibility
for lx,i; say l0,i = l0 and l1,i = l1. This means that, for each x, either
condition a or condition b (but not both, and not condition c) is
met. Thus l0, l1 ∈ {1, 2}. Then a heterogeneous preimage of qN ,
modulo cyclic shift, has the form

0l01l1 . . . 0l01l1 . (9.5)

This defines a valid configuration if and only if N is divisible by
l0 + l1. This configuration is unique up to cyclic shifts, and there
are precisely l0 + l1 distinct configurations which are cyclic shifts
of this configuration. Thus the number of heterogeneous preimages
of qN in this case is




l0 + l1 if l0 + l1|N
0 otherwise.

(9.6)

Note that, since l0, l1 ∈ {1, 2}, we have l0 + l1 ∈ {2, 3, 4}.
(3) Suppose that there is more than one possibility for lx,i, for either

value of x (or indeed for both). Each time a string of x appears,
there are several choices for its length. As N increases, so does
the number of strings of x and thus the number of choices. A
“combinatorial explosion” takes place as N grows larger, and so
the number of preimages grows exponentially with respect to N .

These three cases account for the heterogeneous preimages. In addition,
there may be zero, one or two homogeneous preimages: specifically, xN is a
preimage of qN if and only if f(x, x, x) = q. The number of homogeneous
preimages is thus independent of N .

Example 9.2. Recall the rule table for ECA rule 110:

xyz 111 110 101 100 011 010 001 000
f(x, y, z) 0 1 1 0 1 1 1 0

(9.7)

110 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

For q = 0 and x = 0, none of the conditions a, b or c hold, since f(1, 0, 1) 6= 0
and f(0, 0, 1) 6= 0. Thus the configuration 0N has no heterogeneous preim-
ages. However, we have f(0, 0, 0) = 0 and f(1, 1, 1) = 0, so the homogeneous
configurations 0N and 1N are preimages of 0N .

For q = 1 and x = 0, condition a holds since f(1, 0, 1) = 1. Neither
condition b nor condition c hold, since f(1, 0, 0) 6= 1. For q = 1 and x = 1,
conditions a and b hold, but condition c does not, since f(1, 1, 1) 6= 1. Thus
a heterogeneous preimage of 1N has the form

01l1,101l2,1 . . . 01lk,1 , (9.8)

modulo cyclic shift, where each li,1 ∈ {1, 2}. We already know that both
homogeneous configurations are preimages of 0N , so by elimination 1N has
no homogeneous preimages. ♦

Note that if we have case 2 with lx = 2 (so that condition b holds for
this choice of x), then xN cannot be a preimage, since f(x, x, x) = q would
imply condition c. Thus, in case 2 with lx = 2 for one of the choices of x,
there is at most one homogeneous preimage; if lx = 2 for both choices of x,
then there are no homogeneous preimages.

In summary, when the number of preimages of the homogeneous config-
uration qN is considered as a function of N , there are three possible classes
of behaviour:

(1) The number of preimages is constant. Indeed, the preimages are
themselves homogeneous, and their number can be determined by
considering f(0, 0, 0) and f(1, 1, 1) as described above.

(2) The number of preimages is periodic, with period 2, 3 or 4.
(3) The number of preimages grows exponentially with respect to N .

Furthermore, these three possibilities can easily be distinguished by exam-
ining the rule table. The results of this for the 88 essentially different ECAs
are presented in Table F.1.

Example 9.3. Continuing from Example 9.2, we see that the number of
preimages of 0N is constant with respect to N ; specifically, 0N always has
exactly two preimages.

The number of preimages of 1N grows exponentially with N : such a
preimage contains at least N/3 strings of 1s, with two choices for the length
of each string, so the number of preimages certainly exceeds 2N/3. ♦

Example 9.4. It is relatively rare for numbers of preimages for an ECA to
exhibit period 4 behaviour as a function of N . Indeed, we can show that only
ECA rule 90 exhibits period 4 behaviour for preimages of the configuration
1N .

9.1. STRING LENGTHS 111

For period 4 behaviour, the only permitted string length for both states
must be 2. For strings of 0s of length 2 to be permitted, we must have

f(1, 0, 0) = f(0, 0, 1) = 1 . (9.9)

For strings of lengths other than 2 to be forbidden, we must have

f(1, 0, 1) = f(0, 0, 0) = 0 . (9.10)

A similar argument for strings of 1s shows that

f(1, 1, 0) = f(0, 1, 1) = 1 (9.11)

and
f(0, 1, 0) = f(1, 1, 1) = 0 . (9.12)

But these conditions completely determine the ECA’s rule table, and we
find that the rule thus defined is rule 90.

By the same method, we can show that the only ECA exhibiting period 4
behaviour for preimages of 0N is rule 165. This is the rule obtained from rule
90 by exchanging states 0 and 1. By the convention that each equivalence
class is represented by its member with the smallest rule number, rule 165
is not among the 88 essentially different ECA rules. ♦

9.1.2. Beyond ECAs

The situation becomes considerably more complicated when we enlarge
the CA’s neighbourhood radius. For example, consider the binary state,
radius 3 CA whose local rule f is defined by

f(0, 1, 0, 1, 0, 1, 0) = 0 (9.13)

f(1, 0, 1, 0, 1, 0, 1) = 0 (9.14)

f(0, 0, 0, 1, 1, 1, 0) = 0 (9.15)

f(1, 0, 0, 0, 1, 1, 1) = 0 (9.16)

...

f(0, 0, 1, 1, 1, 0, 0) = 0 (9.17)

f(x−3, . . . , x3) = 1 otherwise. (9.18)

Here the preimages of configuration 0N are those configurations consisting
of repetition of the string 01, or repetition of the string 000111. In terms
of string lengths, there are two distinct cases: either both string lengths are
1, or both string lengths are 3. Thus the possible lengths of strings of 0s
depend on the possible lengths of strings of 1s, and vice versa. This kind of
interdependence never occurs among the ECAs.

112 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

The situation also becomes more complicated if we enlarge the CA’s
state set. Central to the results for ECAs is the fact that every heterogeneous
configuration of a binary state CA can be written, modulo cyclic shift, as
strings of 0s alternated with strings of 1s, as in Equation 9.1. A string of
0s must always be followed by a string of 1s, and vice versa. Furthermore,
a heterogeneous configuration must contain, but not consist entirely of, a
string of 0s. However, in a ternary state CA, a string of 0s may be followed
by a string of 1s or a string of 2s, and indeed there is no guarantee that a
heterogeneous configuration must contain a string of 0s at all.

9.2. De Bruijn matrices

The approach to counting preimages described in the previous section
gives us an intuition for why the number of preimages is sometimes periodic
with respect to N : if the possible string lengths are suitably constrained,
then they can form a complete configuration only when N is a multiple of
the appropriate value. However, the string length approach is somewhat la-
borious for producing numerical results, and becomes extremely complicated
when applied to CAs beyond the ECAs.

This section describes an alternative approach, based on de Bruijn ma-
trices (see Section 4.3). This approach can be considered as an application of
spectral graph theory to de Bruijn graphs. Spectral graph theory is the study
of graphs via the eigenvalues and eigenvectors of their adjacency matrices;
see e.g. [CDS95].

The following is the main result for this section:

Theorem 9.5. Let q be a CA state, and let Dq be the corresponding de Bruijn
matrix. Suppose that the eigenvalues of Dq are λ1, . . . , λk. Then the homo-
geneous configuration qN has exactly

λN1 + · · ·+ λNk (9.19)

preimages.

The proof of this result uses the following lemmas:

Lemma 9.6. Suppose that matrices A and B share the eigenvectors v1, . . . ,vn,
with corresponding eigenvalues a1, . . . , an and b1, . . . , bn respectively. Then
AB has eigenvectors v1, . . . ,vn, with corresponding eigenvalues a1b1, . . . , anbn.

Proof. Follows immediately from the definition of eigenvalues and eigen-
vectors. �

Lemma 9.7. Let A be a square matrix with eigenvectors v1, . . . ,vn and cor-
responding eigenvalues a1, . . . , an. Then, for any positive integer k, the ma-
trix Ak has eigenvectors v1, . . . ,vn with corresponding eigenvalues ak1, . . . , a

k
n.

9.2. DE BRUIJN MATRICES 113

Proof. By induction on k, using Lemma 9.6. �

Proof of Theorem 9.5. By Theorem 4.7, qN has TrDN
q preimages.

It is a well-known result that the trace of a matrix is the sum of its
eigenvalues [Gan60, Chapter IV, Section 5]. Thus the number of preimages
of qN is the sum of the eigenvalues of the matrix DN

q . By Lemma 9.7, the
eigenvalues of DN

q are the Nth powers of the eigenvalues of Dq, namely
λN1 , . . . , λ

N
k . Therefore qN has

λN1 + · · ·+ λNk (9.20)

preimages. �

This result means that, once the eigenvalues of Dq are known, finding
the number of preimages of qN for any value of N is as simple as raising the
eigenvalues to the Nth power and summing the results. Furthermore, Dq

is a |S|2r square matrix, so it has |S|2r eigenvalues; the size of the matrix
and the number of eigenvalues do not depend on N . With respect to N , the
time taken by this algorithm is proportional to the time required to raise a
complex number to the Nth power.

9.2.1. For ECAs

Example 4.5 gives an expression for the de Bruijn matrices of an ECA.
We can apply Theorem 9.5 to find numbers of preimages for homogeneous
configurations of ECAs.

Example 9.8. The de Bruijn matrices for ECA rule 18 are

D0 =




1 0 0 0
0 0 1 1
0 1 0 0
0 0 1 1


 and D1 =




0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0


 . (9.21)

The eigenvalues of D1 are all zero, so 1N has no preimages. The eigen-
values of D0 are

0, 1,
1 +
√

5
2

,
1−
√

5
2

, (9.22)

and so 0N has

1 +
1

2N

((
1 +
√

5
)N

+
(

1−
√

5
)N)

(9.23)

preimages.
These results are consistent with those given in Table F.1: the num-

ber of preimages of 1N is indeed constant (in fact it is zero); for large N ,

114 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

Equation 9.23 is dominated by
(

1 +
√

5
2

)N
≈ 1.618N (9.24)

and so the number of preimages of 0N grows exponentially with N . ♦

Recall that the eigenvalues of a matrix A are the solutions for λ in the
equation

det(A− λI) = 0 , (9.25)

where I is the identity matrix. The expression det(A− λI) is a polynomial
in λ, called the characteristic polynomial. If the entries of A are real (as the
entries of de Bruijn matrices always are), then the characteristic polynomial
has real coefficients, and thus its roots (the eigenvalues of A) must be real
or occur in complex conjugate pairs.

If two matrices have the same characteristic polynomial, they have the
same eigenvalues. Among the de Bruijn matrices for all 88 essentially dif-
ferent ECAs, there are 23 distinct characteristic polynomials. These are
enumerated in Table F.2, their roots are given in Table F.3, and the cor-
respondence between characteristic polynomials and ECA rules is given in
Table F.4. From these tables and Theorem 9.5 we can determine the number
of preimages as a function of N .

Figure 9.1 plots the number of preimages of 1N against N , for ECA rule
94 (corresponding to characteristic polynomial c10). The overall trend is
exponential, but some fluctuation is also apparent. What is the source of
this fluctuation?

As N grows large, the expression

λN1 + · · ·+ λNk (9.26)

is dominated by the terms corresponding to those λi whose modulus is max-
imal. More explicitly, let

|λ|max = max {|λi| : i = 1, . . . , k} (9.27)

Λ = {λi : i = 1, . . . , k, |λi| = |λ|max} (9.28)

so that |λ|max is the maximal modulus, and Λ is the set of λi on which this
maximum is attained. Then, for large N ,

k∑

i=1

λNi ≈
∑

λi∈Λ

λNi . (9.29)

There are several possibilities:

(1) If Λ = {x} for some real x > 1, then the sum grows exponentially
with N in the manner of xN .

9.2. DE BRUIJN MATRICES 115

0 10 20 30 40 50
N

10

100

1000

104

Preimages

Figure 9.1. Plot of number of preimages in ECA rule 94 for
the homogeneous configuration 1N , against number of cells
N . Note that the y-axis scale is logarithmic.

(2) If Λ = {x} for some real 0 < x < 1, then the sum decays exponen-
tially with N in the manner of xN .

(3) If Λ = {1}, then the sum approaches 1 as N grows large (the sum
over Λ being 1 for all N).

(4) If Λ = {0}, then all of the λi must be zero and so the sum is zero.
(5) If Λ = {x} for some real x < 0, the behaviour is analogous to the

first three cases, but the sum oscillates between positive and neg-
ative. In other words, the behaviour for Λ = {x} is the behaviour
for Λ = {−x} multiplied by (−1)N .

(6) If Λ = {z, z̄} for some conjugate pair of complex numbers z, z̄, then
the sum has the form

2rN cosNθ . (9.30)

This follows immediately from writing zN+z̄N in polar form, where
r and θ are the modulus and argument of z.

Ignoring the rN term (which gives exponential growth or decay
depending on whether r is greater or less than 1), this is almost
periodic with respect to N ; whether it is actually periodic depends
on whether 2π

θ (the ratio of the oscillation period to the “sampling”
period corresponding to the integer values of N) is rational or ir-
rational.

116 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

20 40 60 80 100
N

-6

-4

-2

2

4

6

sinh-1HΛ2+Λ3+Λ4L

Figure 9.2. As Figure 9.1, but with the dominant expo-
nential term subtracted. For this plot, we take the inverse
hyperbolic sine of the data, to give the y-axis a “signed log-
arithmic” scale.

(7) If Λ is a union of two or more of these possibilities, then the overall
behaviour is the sum of the corresponding individual behaviours.

For our sum λN1 +· · ·+λNk , we can only have cases 1 to 4. This is because
λN1 + · · ·+ λNk is a number of preimages, and so it cannot be negative.

In each of the exponential cases (c10 to c23 inclusive) enumerated in
Table F.3, we have case 1. Let λ1 be the eigenvalue with largest magnitude,
and omit it to consider the sum

λN2 + · · ·+ λNk . (9.31)

An example of this is plotted in Figure 9.2. It is now apparent that the
“fluctuations” noted in Figure 9.1 are in fact oscillations.

The sum without λ1 can be negative, and so all of the cases enumerated
above are possible. In many of the cases listed in Table F.3, we have case 6:
a conjugate pair of complex numbers dominate, so the overall behaviour is
sinusoidal oscillation.

From Equation 9.30, the magnitude of the oscillation is 2rN , so the
oscillation decays as N tends to infinity if and only if r < 1. This is the
case for all but three of the cases in Table F.2, the exceptions being c10,
c18 and c19. Of these, the latter two have r = 1 (so the magnitude of the
oscillation is constant with respect to N), so only c10 gives rise to oscillations
whose magnitude grows with N . Thus, among the 88 essentially different
ECAs, such growing oscillations only occur with ECA rules 94 and 122 for

9.3. PREIMAGES OF HETEROGENEOUS PERIODIC CONFIGURATIONS 117

homogeneous configuration 1N (they also occur for those rules, not among
the 88 essentially different rules, that are equivalent to rule 94 or rule 122).
Although the oscillations in Figure 9.1 appear to decrease in magnitude,
they do in fact grow exponentially, just not as rapidly as the λ1 term.

We can continue to examine the sums in this way until no more terms
remain, thus decomposing the overall behaviour into a sum of exponential
growths, decays, and sinusoidal oscillations.

9.2.2. Beyond ECAs

De Bruijn matrices are equally applicable to more general 1-D CAs.
In general, for a k-state CA with neighbourhood radius r, the de Bruijn
matrices are square matrices with k2r rows and columns. Furthermore,
Theorem 9.5 applies to general 1-D CAs, the matrix in question having k2r

eigenvalues. When the number of preimages is written as a sum of Nth
powers of eigenvalues, the cases enumerated in the previous section still
apply, so the qualitative types of behaviour are the same as for ECAs.

9.3. Preimages of heterogeneous periodic configurations

Theorem 9.5 can be generalised to any situation where the matrix prod-
uct

Dc[0] × · · · ×Dc[N−1] (9.32)

can be expressed as a power of a matrix. For example, consider a configu-
ration c with spatial period p, so that c[i + p] = c[i] for all i. The spatial
period p must be a factor of the number of cells N , so N/p is an integer.
The corresponding product of de Bruijn matrices is

(
Dc[0] × · · · ×Dc[p−1]

)N/p
. (9.33)

By a similar argument to the proof of Theorem 9.5, if the eigenvalues of
Dc[0] × · · · ×Dc[p−1] are λ1, . . . , λk, then the number of preimages is

λ
N/p
1 + · · ·+ λ

N/p
k . (9.34)

As before, the λi are either real or occur in complex conjugate pairs, so
the types of qualitative behaviour exhibited by this expression as a function
of N are the same as those described above for preimages of homogeneous
configurations for ECAs.

All configurations of a finite CA are periodic with period p = N . In
this case, the powers of N/p disappear, and the above method reduces to
simple application of Theorem 4.7. In other words, this method is useful
only if p < N ; it still works for p = N , but it does not reduce the amount
of computation required.

118 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

Example 9.9. As observed in Section 2.7, a common phenomenon in ECA
rule 110 is that of gliders moving through a spatially and temporally periodic
ether. We may ask whether there is any configuration in which the gliders or
other structures present are annihilated, leaving only ether. In other words,
does an ether configuration have any preimages which are not themselves
ether configurations?

Modulo cyclic shift, an ether configuration is composed of repetitions of
the string e = 00010011011111. So an ether configuration can only exist
when the number of cells N is a multiple of 14. Let

De = D3
0D1D

2
0D

2
1D0D

5
1 , (9.35)

where D0 and D1 are the de Bruijn matrices for rule 110. Thus an ether
configuration has

TrDN/14
e (9.36)

preimages (N/14 is the number of repeats of the ether pattern). Direct
calculation shows that

De =




0 0 0 0
0 0 0 0
0 0 0 0
0 2 3 2


 , (9.37)

and that the eigenvalues of De are 0, 0, 0, 2. Therefore the number of preim-
ages is 2N/14.

In the N = 14 case, the preimages of e are

p = 11110001001101 (9.38)

and
q = 11110001110101 . (9.39)

Configuration p is simply e shifted cyclically by four cells to the right, and
is thus also an ether configuration. Configuration q is not an ether configu-
ration.

For larger N , the preimages are all possible sequences composed of rep-
etitions of p and q. For example, for N = 14× 3, the eight preimages of eee
are

ppp, ppq, pqp, pqq, qpp, qpq, qqp, qqq . (9.40)

Precisely one of the preimages (namely pp . . . p) is an ether configuration,
leaving 2N/14 − 1 non-ether preimages.

9.4. CONCLUSION 119

The de Bruijn matrices corresponding to p and q are

Dp =




0 1 1 0
0 1 1 0
0 1 1 0
0 0 0 0


 and Dq =




0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 0


 . (9.41)

These matrices do not have the same eigenvectors, so Lemma 9.6 does not
apply. However, direct calculation shows that

D2
p = 2Dp (9.42)

DqDp = Dp (9.43)

DpDq = 2Dq (9.44)

D2
q = Dq , (9.45)

and so any product involving Dp and Dq can be reduced to a scalar multiple
of Dp or Dq, whichever appears last in the product. Furthermore, TrDp = 2
and TrDq = 1, so the trace of a product involving Dp and Dq is 2c, where
c is the number of times Dp occurs. For example, for N = 14× 3:

(1) Tr(D3
p) = 23 = 8, so ppp has eight preimages;

(2) Tr(D2
pDq) = 22 = 4, so ppq has four preimages;

(3) Similarly, pqp and qpp each have four preimages;
(4) pqq, qpq and qqp each have two preimages;
(5) qqq has one preimage.

The configuration q has one preimage, namely

s = 11011111011100 . (9.46)

Thus the preimages of a configuration composed of p and q are precisely
those configurations obtained by replacing each q with s, and each p with
the cyclic shift by four cells to the right of either p or q. These configurations
are “pre-preimages” of an ether configuration, or configurations from which
an ether configuration is reached after two time steps.

Configuration s has five preimages, so this kind of analysis becomes
rather more difficult at this point. In terms of transition graphs, we have
reached a particularly “branchy” vertex in the tree. Further investigation
of these transients is a subject for future work. ♦

9.4. Conclusion

We have given two different methods of counting preimages of homoge-
neous configurations. The second method is more useful in terms of produc-
ing numerical data; the first gives more insight into the causes of the data’s

120 9. PREIMAGES OF HOMOGENEOUS CONFIGURATIONS

qualitative relationship with N , and into what the preimages actually are,
but is rather cumbersome as a tool for calculation.

Both methods can explain why the number of preimages sometimes os-
cillates with respect to N . The first method shows that oscillations occur
when the preimages have spatial periodicity, which can only occur when the
number of cells is a multiple of the spatial period. The second method’s
explanation is less illuminating but more general: as a sum of powers of
complex numbers occurring in conjugate pairs, the expression for the num-
ber of preimages often contains terms of the form 2rN cosNθ, and cosNθ
is periodic with respect to N (or “nearly periodic” if θ is not a rational
multiple of π).

In studying the subset of initial configurations that eventually lead to a
homogeneous configuration, we are effectively identifying the subspace of the
CA’s configuration space on which the CA is in Wolfram’s class 1. Numbers
of preimages for homogeneous configurations do not directly tell us the size
of this region (as we do not count those initial configurations that yield
homogeneous configurations after more than one time step), but they may
serve as an indication.

CHAPTER 10

Distribution of transition distances

In a continuous dynamical system, we generally expect trajectories to be
continuous: the state at time t+ε (for small positive ε) is usually close to the
state at time t, so that there are no discontinuous jumps in the trajectory.
This is certainly true of classical physical systems. However, it is not true
for discrete dynamical systems in general, nor for CAs in particular: for
most reasonable geometric definitions of distance in the configuration space
of a CA, there is no reason to expect the configuration at time t + 1 to be
close to the configuration at time t.

This chapter investigates transition distances in CAs: for a configuration
c, what is the distance between c and F (c)? First, we must define what
is meant by the “distance” between two configurations. In mathematics,
distance is measured by a metric (Definition A.38), a function mapping
pairs of elements to nonnegative real numbers, which satisfies the properties
we might expect of a measure of distance.

One metric on the configuration space of a CA is the Hamming distance,
which is defined as the number of cells at which the configurations differ.
More formally, define a function δ̄ : S2 → {0, 1} by

δ̄(x, y) =





0 if x = y

1 if x 6= y
(10.1)

(note that δ̄ = 1 − δ, where δ is Kronecker’s delta function). Then the
Hamming distance dh : SL × SL → R is defined by

dh(u, v) =
∑

i∈L
δ̄(u[i], v[i]) . (10.2)

Geometrically, the configuration space of a binary state CA on the lattice ZN
is the vertex set of an N -dimensional hypercube, and the Hamming distance
is the Manhattan distance (shortest distance along edges; see Example A.40)
between vertices.

Section 10.1 gives numerical results for the transition Hamming distances
for the 88 essentially different ECAs. These results suggest a conjecture: in
the limit as N tends to infinity, that the Hamming distances are normally
distributed. We do not prove or disprove this conjecture, but Section 10.2

121

122 10. DISTRIBUTION OF TRANSITION DISTANCES

20 25 30 35 40 45 50 55 60
0

100

200

300

400

500

600

700

800

900

1000

Hamming distance

O
cc

ur
re

nc
es

Figure 10.1. Histogram of Hamming distances between
configurations and their successors under ECA rule 110. The
number of cells is N = 100, and 10000 configurations were
sampled at random, by assigning to each cell the state 0 or
1 with equal probability.

presents strong evidence in its favour by studying the moments of the dis-
tributions. Section 10.3 shows that transition Hamming distances are con-
nected to numbers of preimages, so that the work in this chapter relates to
the de Bruijn matrices introduced in Section 4.3.

The remainder of this chapter broadens the numerical study beyond
that of Section 10.1, by studying subsets of the configuration space such as
individual basins of attraction (Section 10.4), multiple transitions instead
of single transitions (Section 10.5), and metrics other than the Hamming
distance (Section 10.6). In the first two cases we see no deviation from the
apparent normal distribution in the limit; for other metrics, we conjecture
that the distribution of transition distances has the “same shape” as the
underlying distribution of configurations’ distances from the zero configura-
tion. The normal distribution of Hamming distances is a corollary to this
new conjecture, as here the underlying distribution is binomial and thus
normal in the limit.

10.1. Numerical results

Figure 10.1 shows the distribution of Hamming distances between con-
figurations and their successors under rule 110, and Figure 10.2 shows the
distributions for all 88 essentially different ECAs.

Figure 10.2 suggests that the distribution always has something close
to a “bell curve” shape. The only exceptions to this are rules 51 (the rule
which exchanges states 0 and 1, so that the Hamming distance is always N)

10.1. NUMERICAL RESULTS 123

0
1

2
3

4
5

6
7

8
9

10

11
12

13
14

15
18

19
22

23
24

25

26
27

28
29

30
32

33
34

35
36

37

38
40

41
42

43
44

45
46

50
51

54

56
57

58
60

62
72

73
74

76
77

78

90
94

10
4

10
5

10
6

10
8

11
0

12
2

12
6

12
8

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
6

15
0

15
2

15
4

15
6

16
0

16
2

16
4

16
8

17
0

17
2

17
8

18
4

20
0

20
4

23
2

Figure 10.2. Histograms of Hamming distances for all 88
essentially different ECAs. As in Figure 10.1, the number of
cells is N = 100 and the number of samples is 10000. In each
case, the x-axis ranges from 0 to 100, and the y-axis is scaled
to accommodate the data.

124 10. DISTRIBUTION OF TRANSITION DISTANCES

and 204 (the identity rule, for which the Hamming distance is always 0),
although both of these cases can be considered as “bell curves” with zero
width.

Rule 0 maps every configuration to the zero configuration, so the Ham-
ming distance is precisely the number of 1s in the initial configuration. These
numbers form a binomial distribution with p = 1

2 . However, it is easy to
verify that the distribution is not binomial for all rules: in particular, there
exist pairs of rules with the same mean but different variances.

We may ask how the Hamming distances are distributed as N becomes
large. In the limit as N tends to infinity, a binomial distribution tends to
a normal distribution, so this is certainly the case for rule 0. This, along
with the bell curve shapes observed in Figure 10.2, suggests the following
conjecture:

Conjecture 10.1. In the limit as the number of cells N tends to infinity, the
Hamming distances between configurations and their successors are normally
distributed.

We do not have a formal proof (or disproof) of this conjecture. However,
the next section does present some compelling evidence in its favour.

10.2. Moments

10.2.1. Definitions

This section gives some standard definitions from probability theory,
such as may be found in any textbook on the subject (e.g. [PP02]).

Consider a nonempty multiset X of numbers. The kth raw moment (or
kth moment about the origin) of X is the mean of the kth powers of the
elements of X:

m′k =
1
|X|

∑

x∈X
xk . (10.3)

The first raw moment is the mean of X, denoted µ.
The kth central moment (or kth moment about the mean) is obtained by

shifting X so that its mean is zero:

mk =
1
|X|

∑

x∈X
(x− µ)k . (10.4)

The second central moment is the variance, denoted σ2. The positive square
root of the variance is the standard deviation, denoted σ.

10.2. MOMENTS 125

The kth central moment can be computed from the first k raw moments
[PP02, Equation 5-71]:

mk =
k∑

j=0

(
k

j

)
(−1)k−j m′j µ

k−j (10.5)

(note that the zeroth raw moment is m′0 = 1).
The kth standardised moment (or normalised kth central moment) is

defined by
γk−2 =

mk

σk
. (10.6)

By definition, the first and second standardised moments have values 0 and
1 respectively. The third standardised moment γ1 is the skewness, and the
fourth γ2 is the kurtosis. Note that the standardised moments are undefined
if the variance is zero, which occurs if and only if all the elements in X are
equal.

The first few standardised moments for a normal distribution, starting
with γ1, are 0, 3, 0, 15, 0, 105, In general, a distribution is not uniquely
determined by its moments. However, if the moments are finite and the sum

φ(t) =
∞∑

k=0

(it)km′k
k!

(10.7)

converges absolutely near t = 0, then φ(t) is the characteristic function
of the distribution, which does determine the distribution uniquely [PP02,
Equation 5-105]. Thus, if the distributions are sufficiently well-behaved,
having the same moments is a good indicator that two distributions are in
fact the same.

In light of this, we recast Conjecture 10.1 in terms of moments:

Conjecture 10.2. In the limit as the number of cells N tends to infin-
ity, the distribution of Hamming distances between configurations and their
successors has the same moments as a normal distribution.

10.2.2. p-parameters

In this section, we define a family of parameters on the CA’s local rule
table. Subsequently, we derive expressions for the moments of the Hamming
distance distributions in terms of these parameters.

Let j1 . . . jL be a sequence of nonnegative integers. Then the p-parameter
pj1...jL is defined by

pj1...jL =
1

|S|L+2r

∑

x1−r∈S
· · ·

∑

xL+r∈S
f̄x(1)j1 . . . f̄x(L)jL (10.8)

126 10. DISTRIBUTION OF TRANSITION DISTANCES

where
f̄x(i) = δ̄(xi, f(xi−r, . . . , xi+r)) (10.9)

and adopting the convention that 00 = 1, so that f̄x(i)0 = 1 regardless of
the value of f̄x(i).

Note that, since f̄x(i) ∈ {0, 1}, we have f̄x(i)ji = f̄x(i) whenever ji is
nonzero. Thus the p-parameter depends only on which of the jis are zero
and which are nonzero, independent of the actual values of the nonzero jis.

Intuitively, pj1...jL is the proportion of partial configurations x1−r . . . xL+r

in which all cells i with ji 6= 0 have their states changed by application of the
global map. This is because f̄x(1)j1 . . . f̄x(L)jL = 1 if and only if f̄x(i)ji = 1
for all i, otherwise the product is zero. If ji = 0 then f̄x(i)ji = 1 always,
otherwise f̄x(i)ji = 1 if and only if f̄x(i) = 1; that is, if and only if cell i has
its state changed. This is illustrated by the following example:

Example 10.3. Let us compute p102 for ECA rule 110. By definition,

p102 =
1
25

∑

x0∈S
· · ·
∑

x4∈S
f̄x(1)1f̄x(2)0f̄x(3)2 . (10.10)

Since f̄x(i) ∈ {0, 1}, this simplifies to

p102 =
1
32

∑

x0∈S
· · ·
∑

x4∈S
f̄x(1)f̄x(3) . (10.11)

The 32 cases for x0 . . . x4 are enumerated in Table 10.1. As an example,
consider the case where x0 . . . x4 = 01101. Here we have

f̄x(1) = δ̄(x1, f(x0, x1, x2)) (10.12)

= δ̄(1, f(0, 1, 1)) (10.13)

= δ̄(1, 1) = 0 (10.14)

and

f̄x(3) = δ̄(x3, f(x2, x3, x4)) (10.15)

= δ̄(0, f(1, 0, 1)) (10.16)

= δ̄(0, 1) = 1 , (10.17)

and so f̄x(1)f̄x(3) = 0× 1 = 0.
The sum of the f̄x(1)f̄x(3) column in Table 10.1 is 6, so we have p102 =

6
32 = 3

16 .
Intuitively, f̄x(1)f̄x(3) = 1 if and only if both cells 1 and 3 have their

states changed by the global map, otherwise f̄x(1)f̄x(3) = 0. Thus the sum
of f̄x(1)f̄x(3) over all partial configurations x0 . . . x4 is the number of those
partial configurations for which both cells 1 and 3 change state, and dividing

10.2. MOMENTS 127

x0 . . . x4 f̄x(1) f̄x(3) f̄x(1)f̄x(3)
00000 0 0 0
00001 0 1 0
00010 0 0 0
00011 0 0 0
00100 1 0 0
00101 1 1 1
00110 1 0 0
00111 1 1 1
01000 0 0 0
01001 0 1 0
01010 0 0 0
01011 0 0 0
01100 0 0 0
01101 0 1 0
01110 0 0 0
01111 0 1 0
10000 0 0 0
10001 0 1 0
10010 0 0 0
10011 0 0 0
10100 1 0 0
10101 1 1 1
10110 1 0 0
10111 1 1 1
11000 0 0 0
11001 0 1 0
11010 0 0 0
11011 0 0 0
11100 1 0 0
11101 1 1 1
11110 1 0 0
11111 1 1 1

Table 10.1. Enumeration of cases for computation of p102

for ECA rule 110 (see Example 10.3).

this by the total number of partial configurations (25) gives the proportion.
♦

Let i1, . . . , ik be a sequence of integers, not necessarily different, between
0 and N − 1 inclusive. (For now k is an arbitrary positive integer; when
we apply these results in Section 10.2.3, it becomes the same k as in the
definitions of Section 10.2.1.) Assuming that N is sufficiently large (specif-
ically N > 2kr), the ijs can be shifted cyclically so that min(ij) ≥ r and
max(ij) ≤ N − r, ensuring that, if the ijs are interpreted as indices of cells

128 10. DISTRIBUTION OF TRANSITION DISTANCES

i1 i2 i3 i1i2 i3

i1 i2 i3 i1 i2 i3

i1 i2 i3

(a) (b)

(c) (d)

(e)

0 1 2 3 4 5 6 7 8 9 10

i1
i2

i3(f)

0 1 2 3 4 5 6 7 8 9 10

Figure 10.3. Examples of summation indices; see Exam-
ple 10.4. The values of i1, i2, i3 are the numbers of the cells
thus labelled. The neighbourhoods of the indices are shown.

in a CA lattice of size N , then none of the cells’ neighbourhoods cross the
lattice’s periodic boundary.

Partition the ijs according to overlapping neighbourhoods: two indices
are in the same partition if their neighbourhoods overlap, or if the neigh-
bourhood of the first overlaps with that of another member of the second’s
partition. More formally, define a binary relation ∼ by saying that im ∼ in
if and only if |im − in| ≤ 2r (i.e. if and only if im’s neighbourhood overlaps
with in’s), let ∼′ be the transitive closure of ∼, and partition the ijs into
their ∼′-equivalence classes.

Consider a partition i1, . . . , ic. Without loss of generality, assume that
the ijs are in nondecreasing order, so that the smallest and largest elements
in the partition are i1 and ic respectively. Associate with this partition
a sequence of nonnegative integers si1si1+1 . . . sic−1sic , such that sn is the
number of ijs with value n.

Example 10.4. Some examples of possible choices of ijs are illustrated in
Figure 10.3, for k = 3, r = 1 and N = 11.

In case (a), we have 〈i1, i2, i3〉 = 〈1, 3, 7〉. The partitions are 〈1, 3〉 and
〈7〉. The sequences associated with these partitions are 101 and 1 respec-
tively.

In cases (b) and (c), the ijs differ from case (a), but we still get two
partitions with sequences 101 and 1.

In case (d), the partitions are 〈1, 2〉 and 〈7〉, which have sequences 11
and 1 respectively.

In case (e), we have a single partition 〈1, 3, 4〉, with sequence 1011.
In case (f), the partitions are 〈1, 1〉 and 〈7〉. The corresponding sequences

are 2 and 1. ♦

10.2. MOMENTS 129

The sequences associated with the partitions of the ijs describe the pat-
terns of indices within the “blocks” (partitions) of indices whose neighbour-
hoods overlap, independent of the arrangement of those blocks on the lat-
tice. There are some restrictions on the sequences which can be obtained
this way: their first and last elements must be nonzero, and they cannot
contain subsequences of 2r or more consecutive 0s.

Lemma 10.5. Let i1, . . . , ik be integers between 0 and N − 1, and assume
N > 2kr. Let σ1, . . . , σn be the sequences associated with the partitions of
the ijs, as described above. Then

∑

x0∈S
· · ·

∑

xN−1∈S
f̄x(i1) . . . f̄x(ik) = |S|N pσ1 . . . pσn . (10.18)

We do not give a formal proof of this result (although it would be possible
to do so), but we justify it with an example:

Example 10.6. In Figure 10.3 (a), we have i1 = 1, i2 = 3 and i3 = 7. Thus
the left hand side of Equation 10.18 is

LHS =
∑

x0∈S
· · ·

∑

x10∈S
f̄x(1)f̄x(3)f̄x(7) . (10.19)

Now f̄x(i) depends only on xi−1, xi and xi+1, so f̄x(1)f̄x(3)f̄x(7) does not de-
pend on x5, x9 or x10. Therefore these three summations can be eliminated,
replacing each by a factor of

∑
x∈S 1 = |S|:

LHS = |S|3
∑

x0∈S
· · ·
∑

x4∈S

∑

x6∈S
· · ·
∑

x8∈S
f̄x(1)f̄x(3)f̄x(7) . (10.20)

Furthermore, f̄x(1)f̄x(3) does not depend on x6, x7, x8, nor f̄x(7) on x0, . . . , x4,
so the sum can be split into two:

LHS = |S|3

∑

x0∈S
· · ·
∑

x4∈S
f̄x(1)f̄x(3)




∑

x6∈S
· · ·
∑

x8∈S
f̄x(7)


 . (10.21)

As noted in Example 10.4, the case of Figure 10.3 (a) corresponds to
blocks with sequences 101 and 1. Thus the right hand side of Equation 10.18
is

RHS = |S|11 p101p1 . (10.22)

The definition of p-parameters gives

RHS = |S|11


 1
|S|5

∑

x0∈S
· · ·
∑

x4∈S
f̄x(1)f̄x(3)




 1
|S|3

∑

x0∈S
· · ·
∑

x2∈S
f̄x(1)


 .

(10.23)
After collecting the |S| terms and relabelling the xjs in the second sum, we
have LHS = RHS, so Equation 10.18 holds in this case. ♦

130 10. DISTRIBUTION OF TRANSITION DISTANCES

A similar argument holds for all other cases.

10.2.3. Raw moments of Hamming distance distributions

By Equation 10.3, the kth raw moment of the Hamming distances be-
tween configurations and their successors is

m′k =
1

|S|N
∑

u∈SN

dh(u, F (u))k . (10.24)

Substituting the definitions of the Hamming distance dh (Equation 10.2)
and f̄ (Equation 10.9), and splitting the sum over SN into N sums over S,
gives

m′k =
1

|S|N
∑

x0∈S
· · ·

∑

xN−1∈S

(
N−1∑

i=0

f̄x(i)

)k
. (10.25)

Raising a sum to the kth power yields the sum of all products of k-tuples of
the original summands:

(
N−1∑

i=0

f̄x(i)

)k
=

N−1∑

i1=0

· · ·
N−1∑

ik=0

f̄x(i1) . . . f̄x(ik) . (10.26)

Substituting this into Equation 10.25 and reordering the summations gives

m′k =
1

|S|N
N−1∑

i1=0

· · ·
N−1∑

ik=0


∑

x0∈S
· · ·

∑

xN−1∈S
f̄x(i1) . . . f̄x(ik)


 . (10.27)

Applying Lemma 10.5 to the expression in parentheses, we have

m′k =
N−1∑

i1=0

· · ·
N−1∑

ik=0

pσ1 . . . pσn , (10.28)

where σ1, . . . , σn are the sequences corresponding to the indices i1, . . . , ik,
as in Example 10.4. For each term in this sum, the total of all the ele-
ments of the sequences σ1, . . . , σn is k; assuming that N is sufficiently large
(N > 2kr), each possible such choice of sequences appears at least once.
Thus we can easily determine which products of p-parameters appear in
the expression for m′k, recalling that the valid choices for sequence σi have
nonzero first and last elements and must not contain 2r or more consecutive
0s. Algorithm 10.1 shows how this can be done.

Example 10.7. For a CA with r = 1, referring to Algorithm 10.1, we have

PSequences(1, 1) = {1} (10.29)

PSequences(2, 1) = {2, 11, 101} (10.30)

PSequences(3, 1) = {3, 21, 201, 12, 102, 111, 1011, 1101, 10101} (10.31)

10.2. MOMENTS 131

1: procedure PSequences(k, r)
2: output k
3: for j = 1, . . . , k − 1 do
4: for u ∈ PSequences(j, r) do
5: for z = 0, . . . , 2r − 1 do
6: output (k − j)0zu
7: procedure PProducts(k, r)
8: for u ∈ PSequences(k, r) do
9: output pu

10: for j = 1, . . . , k − 1 do
11: for u ∈ PSequences(j, r) do
12: for q ∈ PProducts(k − j, r) do
13: output pu × q
Algorithm 10.1: Listing the products of p-parameters that appear in the
expression for the raw moment m′k.

and so

PProducts(1, 1) = {p1} (10.32)

PProducts(2, 1) = {p2, p11, p101, p1p1} (10.33)

PProducts(3, 1) = {p3, p21, p201, p12, p102, p111, p1011, p1101, p10101,

p1p2, p1p11, p1p101, p1p1p1}. (10.34)

Therefore the expression for m′3 involves the products p3, p21, . . . , p1p101,
and p1p1p1.

Note that Algorithm 10.1 does not take into account that multiplication
is commutative, and so it often outputs the same product of p-parameters
multiple times (for example, PProducts(3, 1) outputs both p1p2 and p2p1).
These duplicates are omitted in this example. ♦

The question remains of how many times each product of p-parameters
appears.

10.2.4. Mean and variance

We can use the preceding results immediately to find expressions for the
mean and variance.

Theorem 10.8. For N > 2r, the mean Hamming distance is Np1.

Proof. From Equation 10.28, the mean is

µ = m′1 =
N−1∑

i1=0

pσ1 . . . pσn . (10.35)

There is only one way of choosing sequences σ1, . . . , σn whose elements sum
to k = 1, namely the single “sequence” 1. Thus pσ1 . . . pσn = p1 in all cases,

132 10. DISTRIBUTION OF TRANSITION DISTANCES

so we have

µ =
N−1∑

i1=0

p1 = Np1 (10.36)

as required. �

For example, ECA rule 110 has p1 = 3
8 , so the mean is µ = 3N

8 . In
Figure 10.1 we have N = 100, so the mean is 300

8 = 37.5.

Theorem 10.9. For N > 4r, the variance of the Hamming distance is

N
(
p2 + 2p11 + 2p101 + · · ·+ 2p102r−11 − (4r + 1)p2

1

)
, (10.37)

where 02r−1 denotes a string of 2r − 1 0s.

Proof. From Equation 10.28, the second raw moment is

m′2 =
N−1∑

i1=0

N−1∑

i2=0

pσ1 . . . pσn . (10.38)

The possible products of p-parameters for k = 2 are p2, p11, p101, . . . , p102r−11,
and p1p1. Fix i1, and consider how many choices of i2 yield each of these
products of p-parameters.

(1) To obtain p2, both indices must be the same. There is only one
choice of i2 which works, namely i2 = i1.

(2) To obtain p10z1 (for 0 ≤ z ≤ 2r − 1), the indices must be z + 1
cells apart (i.e. there must be a gap of z cells between the indices).
However, it does not matter whether i2 is z + 1 cells to the left of
i1, or z+ 1 cells to the right of i1. Thus there are two choices of i2,
namely i2 = i1 − (z + 1) and i2 = i1 + (z + 1). These two cases are
distinct for z ≤ 2r − 1, given that N is sufficiently large.

(3) We have accounted for 1 + 4r of the possible choices for i2. Thus
by elimination, the remaining N − 4r − 1 choices must yield the
product p1p1.

Thus

m′2 =
N−1∑

i1=0

(
p2 + 2p11 + 2p101 + · · ·+ 2p102r−11 + (N − 4r − 1)p2

1

)
(10.39)

= N
(
p2 + 2p11 + 2p101 + · · ·+ 2p102r−11 + (N − 4r − 1)p2

1

)
. (10.40)

By Equation 10.5, the variance (the second central moment) is

σ2 = m′2 − µ2 (10.41)

where µ is the mean. Substituting Equation 10.40 for m′2, and invoking
Theorem 10.8 to substitute for µ, gives the required expression. �

10.2. MOMENTS 133

Rule µ/N σ2/N Rule µ/N σ2/N Rule µ/N σ2/N
0 1/2 1/4 35 7/8 3/64 108 1/4 5/16
1 5/8 7/64 36 1/2 5/8 110 3/8 11/64
2 5/8 11/64 37 5/8 23/64 122 5/8 15/64
3 3/4 1/16 38 5/8 27/64 126 1/2 1/8
4 3/8 31/64 40 1/2 3/8 128 3/8 7/64
5 1/2 3/8 41 5/8 11/64 130 1/2 1/8
6 1/2 3/8 42 5/8 15/64 132 1/4 3/16
7 5/8 19/64 43 3/4 1/16 134 3/8 11/64
8 3/8 11/64 44 3/8 27/64 136 1/4 1/16
9 1/2 1/8 45 1/2 1/4 138 3/8 7/64
10 1/2 1/8 46 1/2 1/4 140 1/8 3/64
11 5/8 7/64 50 7/8 15/64 142 1/4 1/16
12 1/4 5/16 51 1 0 146 5/8 15/64
13 3/8 19/64 54 3/4 5/16 150 1/2 1/4
14 3/8 15/64 56 5/8 15/64 152 3/8 7/64
15 1/2 1/4 57 3/4 1/16 154 1/2 1/4
18 3/4 3/16 58 3/4 3/16 156 1/4 1/16
19 7/8 7/64 60 1/2 1/4 160 1/2 3/8
22 5/8 23/64 62 5/8 11/64 162 5/8 19/64
23 3/4 5/16 72 1/4 3/16 164 3/8 23/64
24 1/2 1/8 73 3/8 15/64 168 3/8 19/64
25 5/8 7/64 74 3/8 11/64 170 1/2 1/4
26 5/8 11/64 76 1/8 15/64 172 1/4 3/16
27 3/4 3/16 77 1/4 5/16 178 3/4 5/16
28 3/8 15/64 78 1/4 3/16 184 1/2 1/4
29 1/2 1/4 90 1/2 1/4 200 1/8 7/64
30 1/2 1/4 94 3/8 15/64 204 0 0
32 5/8 31/64 104 3/8 23/64 232 1/4 5/16
33 3/4 3/16 105 1/2 1/4
34 3/4 5/16 106 1/2 1/4

Table 10.2. Mean and variance of Hamming distances for
the 88 essentially different ECAs, computed using Theo-
rems 10.8 and 10.9.

Table 10.2 gives means and variances, computed using Theorems 10.8
and 10.9, for the 88 essentially different ECAs. Compare with the shapes of
the bell curves depicted in Figure 10.2.

10.2.5. Higher moments

It is easy to find an expression, in terms of p-parameters, for a partic-
ular raw moment on a particular number of cells N , by iterating over all
Nk choices of indices and keeping a tally of how often each product of p-
parameters arises. In this section, we couple this approach with some basic

134 10. DISTRIBUTION OF TRANSITION DISTANCES

combinatorics to find an expression for a particular raw moment, for all
(sufficiently large) values of N . In particular, we use this to investigate the
limiting behaviour of the raw moments as N tends to infinity.

The key question is this: how many choices of indices i1, . . . , ik yield a
given product of p-parameters? As shown in the proof of Theorem 10.9, this
question is relatively easy to answer in simple cases; however, that kind of
argument quickly becomes unworkable as k increases.

The following lemma is useful in counting choices of indices:

Lemma 10.10. Let S(a, b) be the number of distinct sequences of b non-
negative integers that sum to a. Then

S(a, b) =
(a+ b− 1)!
a!(b− 1)!

. (10.42)

Note that we consider two sequences to be distinct even if they consist
of the same elements in a different order.

Proof. Let y0, . . . , yb be a non-decreasing sequence of integers, with
y0 = 0 and yb = a. It follows that 0 ≤ yi ≤ a for all i. Note that we specify
“non-decreasing” rather than “increasing”, so consecutive yis may be equal.

The number of ways of choosing such a sequence is the number of ways
of choosing b − 1 elements (the numbers y1, . . . , yb−1) from a set of a + 1
elements (the integers between 0 and a inclusive), regardless of order but
with repetition (more succinctly, “a+ 1 choose b− 1 with repetition”). This
number is

((a+ 1) + (b− 1)− 1)!
(b− 1)!((a+ 1)− 1)!

=
(a+ b− 1)!
a!(b− 1)!

. (10.43)

Define a sequence x1, . . . , xb by xi = yi − yi−1. This sequence sums to
yb − y0 = a, and the xis are nonnegative since the sequence of yis is non-
decreasing. This mapping, between sequences y0, . . . , yb as defined above
and sequences x1, . . . , xb of nonnegative integers that sum to a, is bijective,
and so the numbers of distinct sequences in each case must be equal. The
result thus follows from Equation 10.43. �

Example 10.11. The number of ways of choosing 3 numbers that sum to
5 is

S(5, 3) =
(5 + 3− 1)!
5!(3− 1)!

= 21 . (10.44)

10.2. MOMENTS 135

Specifically, the choices are

0, 0, 5 1, 0, 4 2, 0, 3 3, 0, 2 4, 0, 1 5, 0, 0
0, 1, 4 1, 1, 3 2, 1, 2 3, 1, 1 4, 1, 0
0, 2, 3 1, 2, 2 2, 2, 1 3, 2, 0
0, 3, 2 1, 3, 1 2, 3, 0
0, 4, 1 1, 4, 0
0, 5, 0

(10.45)

The sequences of yis corresponding to these xis are

0, 0, 0, 5 0, 1, 1, 5 0, 2, 2, 5 0, 3, 3, 5 0, 4, 4, 5 0, 5, 5, 5
0, 0, 1, 5 0, 1, 2, 5 0, 2, 3, 5 0, 3, 4, 5 0, 4, 5, 5
0, 0, 2, 5 0, 1, 3, 5 0, 2, 4, 5 0, 3, 5, 5
0, 0, 3, 5 0, 1, 4, 5 0, 2, 5, 5
0, 0, 4, 5 0, 1, 5, 5
0, 0, 5, 5

(10.46)

♦

Example 10.12. For a CA with r = 1, how many choices of indices i1, . . . , i5
yield the product of p-parameters p101p11p1?

The first step is to distribute the five indices among the p-parameters.
We assume that i1 and i2 correspond to the first and second 1s in p101

respectively, i3 and i4 to the first and second 1s in p11, and i5 to the 1 in p1.
This is one of 5! possible choices, but we lose no generality in considering
this one specifically.

To find the actual values of the ijs, we must distribute the blocks

i1 i2 i5i4i3

over the lattice so that they do not overlap. Without loss of generality,
assume that the first block is positioned so that i1 = 1 and i2 = 3, i.e.
covering cells 0 to 4 inclusive.

0 1 2 3 4 5 6 N-1...

i1 i2

This is one of N possible choices for the position of this block. In any case,
we are left with N−5 cells over which to distribute the remaining two blocks.

Assume that the second block is to the left of the third; the alternative is
equivalent. We must now choose the number of cells between the right edge
of the first block (i.e. cell 4) and the left edge of the second block, and sim-
ilarly the number of cells between the second and third blocks. Both these

136 10. DISTRIBUTION OF TRANSITION DISTANCES

numbers must be nonnegative integers, and their sum must not exceedN−12
(the total number of uncovered cells once all three blocks are positioned).
The number of choices is precisely the number of ways of choosing three
nonnegative integers which sum to N − 12 exactly, which by Lemma 10.10
is

(N − 10)!
2(N − 12)!

=
1
2

(N − 10)(N − 11) . (10.47)

Thus, multiplying by 5! × N × 2 to account for previous assumptions,
there are

120N(N − 10)(N − 11) (10.48)

ways of choosing indices i1, . . . , i5 which yield p-parameters p101p11p1. ♦

In the general case, the situation may be more complex. For example, if
any of the p-parameters are repeated, then we must be particularly careful
not to count any of the choices of indices more than once. However, if we only
want to find the number of choices in terms of N up to a constant multiple,
the only relevant parts of this process are the choices of the gap lengths
between consecutive blocks, and the multiplication by N corresponding to
fixing the position of the first block. This leads to the following result:

Theorem 10.13. Consider the product of p-parameters

pj1,1...j1,L1
. . . pjb,1...jb,Lb

. (10.49)

Denote by L the total number of cells covered by the corresponding blocks, so
L = L1 + · · ·+ Lb + 2rb. The number of ways of choosing indices i1, . . . , ik
which yield these p-parameters is

cN(N − L+ b− 1)!
(N − L)!

, (10.50)

where c is some constant (c depends on the chosen p-parameters, but is
independent of N).

Corollary 10.14. The number of ways of choosing indices which yield a
product of b p-parameters is polynomial in N , with degree b and zero constant
term. In particular, the number of choices yielding a single p-parameter is
a multiple of N .

The number of choices can be found computationally for fixed N , by
iterating over all Nk choices of indices and counting how many of these
choices yield the desired p-parameters. Doing this for a single sufficiently
large N is sufficient to determine the constant c.

In principle it is possible to find a general expression for c by combina-
torics, rather than finding particular values by computation. However, we
have found the combinatorial approach to be prohibitively difficult, as it is

10.2. MOMENTS 137

all too easy to arrive at a result which looks correct but breaks down in
certain circumstances.

The following example illustrates how c may be found computationally:

Example 10.15. Fix r = 1, and let us find the second raw moment m′2.
(Recall that we have already done this by a different method in proving
Theorem 10.9.) The relevant products of p-parameters are p2, p11, p101 and
p2

1.
For N = 6, we can easily enumerate the Nk = 36 possibilities for the

indices i1, i2 and determine the p-parameter subscripts which correspond to
each:

i1 = 0 1 2 3 4 5
i2 = 0 2 11 101 1, 1 101 11

1 11 2 11 101 1, 1 101
2 101 11 2 11 101 1, 1
3 1, 1 101 11 2 11 101
4 101 1, 1 101 11 2 11
5 11 101 1, 1 101 11 2

(10.51)

Reading the coefficients from the number of times each sequence occurs in
the table, the value of m′2 for N = 6 is

6p2 + 12p11 + 12p101 + 6p2
1 . (10.52)

By Corollary 10.14, the coefficients of p2, p11 and p101 are multiples of
N . Since the coefficients for N = 6 are 6, 12 and 12 respectively, the general
coefficients are N , 2N and 2N respectively.

Consider the p2
1 term. In the notation of Theorem 10.13, we have L = 6

and b = 2. Thus the coefficient is
cN(N − 6 + 2− 1)!

(N − 6)!
= cN(N − 5) (10.53)

for some constant c. For N = 6 the coefficient is c × 6 × (6 − 5) = 6, so
c = 1.

Putting this together, we have

m′2 = N(p2 + 2p11 + 2p101 + (N − 5)p2
1) . (10.54)

This is consistent with Equation 10.40. ♦

10.2.6. Skewness and kurtosis for radius 1 CAs

The coefficients in the third and fourth raw moments for r = 1 are
enumerated in Tables 10.3 and 10.4. These allow us to find expressions for
the skewness and kurtosis, and thus determine how they behave in the limit
as N tends to infinity.

138 10. DISTRIBUTION OF TRANSITION DISTANCES

p-parameter subscripts Coefficient
1, 1, 1 N(N − 7)(N − 8)
1, 101 6N(N − 7)
1, 11 6N(N − 6)
1, 2 3N(N − 5)

10101 6N
1011 6N
102 3N
1101 6N
111 6N
12 3N
201 3N
21 3N
3 N

Table 10.3. Table of coefficients for the third raw moment,
for CAs with radius r = 1

Theorem 10.16. As N tends to infinity, the skewness of the Hamming
distances for ECAs tends to 0 (assuming that the variance is non-zero).

Proof. By Equations 10.5 and 10.6, the skewness (the third standard-
ised moment) is given by

γ1 =
m′3 − 3µm′2 + 2µ3

σ3
. (10.55)

We have already shown that σ2 is a multiple of N , so it suffices to show that
all terms in the numerator involving powers of N greater than 3

2 vanish.
The numerator is a polynomial in N of degree at most 3, so we need only
consider the N3 and N2 terms.

From Theorems 10.8 and 10.9, we have

µ3 = N3p3
1 (10.56)

and

µm′2 = Np1 ×N(p2 + 2p11 + 2p101 + (N − 5)p2
1) (10.57)

= N2p1(p2 + 2p11 + 2p101 − 5p2
1) +N3p3

1 . (10.58)

From Table 10.3, the coefficient of N3 in m′3 is p3
1. Thus the coefficient of

N3 in m′3 − 3µm′2 + 2µ3 is

p3
1 − 3p3

1 + 2p3
1 = 0 . (10.59)

From Table 10.3, the coefficient of N2 in m′3 is

− 15p3
1 + 6p1p101 + 6p1p11 + 3p1p2 . (10.60)

10.2. MOMENTS 139

p-parameter subscripts Coefficient
1, 1, 1, 1 N(N − 9)(N − 10)(N − 11)
1, 1, 101 12N(N − 9)(N − 10)
1, 1, 11 12N(N − 8)(N − 9)
1, 1, 2 6N(N − 7)(N − 8)

1, 10101 24N(N − 9)
1, 1011 24N(N − 8)
1, 102 12N(N − 7)
1, 1101 24N(N − 8)
1, 111 24N(N − 7)
1, 12 12N(N − 6)
1, 201 12N(N − 7)
1, 21 12N(N − 6)
1, 3 4N(N − 5)

101, 101 12N(N − 9)
101, 11 24N(N − 8)
101, 2 12N(N − 7)

1010101 24N
101011 24N
10102 12N
101101 24N
10111 24N
1012 12N
10201 12N
1021 12N
103 4N

11, 11 12N(N − 7)
11, 2 12N(N − 6)

110101 24N
11011 24N
1102 12N
11101 24N
1111 24N
112 12N
1201 12N
121 12N
13 4N
2, 2 3N(N − 5)

20101 12N
2011 12N
202 6N
2101 12N
211 12N
22 6N
301 4N
31 4N
4 N

Table 10.4. Table of coefficients for the fourth raw moment,
for CAs with radius r = 1

140 10. DISTRIBUTION OF TRANSITION DISTANCES

Thus the coefficient of N2 in m′3 − 3µm′2 + 2µ3 is

−15p3
1+6p1p101+6p1p11+3p1p2−3p1(p2+2p11+2p101−5p2

1)+0 = 0 . (10.61)

Hence the result. �

Theorem 10.17. As N tends to infinity, the kurtosis of the Hamming dis-
tances for ECAs tends to 3 (assuming that the variance is non-zero).

Proof. By Equations 10.5 and 10.6, the kurtosis (the fourth standard-
ised moment) is given by

γ2 =
m′3 − 4µm′3 + 6µ2m′2 − 3µ4

σ4
. (10.62)

The denominator is
(
σ2
)2 = N2

(
p1 + 2p11 + 2p101 + (N − 5)p2

1

)2
. (10.63)

We now examine the numerator. From Tables 10.3 and 10.4, it can be shown
that the coefficients of N4 and N3 are both zero, and the coefficient of N2

is
3
(
p1 + 2p11 + 2p101 + (N − 5)p2

1

)2
. (10.64)

so that the N2 term in the numerator is three times the denominator. Thus

γ2 =
3aN2 + bN + c

aN2
(10.65)

for some a, b, c constant with respect to N , and so γ2 tends to 3 as N tends
to infinity. �

Note that these results only show that the moments have the stated
values in the limit; for finite values of N , they may differ. This can be seen
in Figure 10.2: the skewness is a measure of a distribution’s symmetry about
its mean, and some of the distributions in Figure 10.2 are asymmetric and
thus have nonzero skewness.

10.2.7. Higher moments for radius 1 CAs

Finding the coefficients in the kth raw moment takes exponential time
with respect to k, so we are only able to do so for relatively small values of
k. The number of coefficients is also exponential with respect to k, so we
do not reproduce tables of coefficients here. However, by using the methods
described here to derive expressions for the moments and using symbolic
computation (Mathematica) to find their limits, we have verified that the
fifth and seventh standardised moments tend to 0 as N tends to infinity,
and the sixth standardised moment tends to 15, all of which are consistent
with the distribution being normal in the limit.

10.3. HAMMING DISTANCES AND PREIMAGE COUNTING 141

In summary, we have shown that the first seven standardised moments
of the distribution of Hamming distances are consistent with the first seven
standardised moments of a normal distribution, in the limit as the number of
cells N tends to infinity. This does not prove that the distribution is normal
in the limit; however, if we assume that the distributions are sufficiently well-
behaved, it shows that any difference between the characteristic functions
(Equation 10.7) must be at least of order t8. This suggests that even if the
distribution is not normal in the limit, it is “almost” normal at least.

10.3. Hamming distances and preimage counting

Consider a CA with state set S, and assume that 0, 1 ∈ S (this can
always be arranged by renaming states if necessary). Define a new local rule
f̄ by

f̄(x−r, . . . , xr) =





0 if f(x−r, . . . , xr) = x0

1 if f(x−r, . . . , xr) 6= x0 .
(10.66)

The corresponding global map F maps each cell to state 1 if that cell
has its state changed by F , or to state 0 otherwise. In other words,

dh(c, F (c)) =
∑

i∈L
F (c)[i] . (10.67)

For a configuration c to have dh(c, F (c)) = d, the configuration F (c) must
have exactly d cells in state 1 and the remainder in state 0. To put it another
way, c must be a preimage under F of a configuration with d cells in state 1.

Let P (d) denote the number of configurations c with dh(c, F (c)) = d

(P (d)/
∣∣SL∣∣ is the probability mass function for the distribution of Ham-

ming distances). Then P (d) is the sum of numbers of F -preimages for all
configurations with d cells in state 1 and the remainder in state 0. Sec-
tion 4.3 gives a method for finding these numbers of preimages. Specifically,
if D0 and D1 are the de Bruijn matrices (with respect to f̄) for states 0
and 1 respectively, then P (d) is the trace of the sum of all possible products
of d copies of D1 and N − d copies of D0:

P (d) = Tr




∑

i1,...,iN∈{0,1}
i1+···+iN =d

Di1 × · · · ×DiN


 (10.68)

In the limit as N tends to infinity, this expression involves an infinite sum
of infinite products of matrices. However, if Conjecture 10.1 is true and the
Hamming distances are normally distributed in the limit, then this expres-
sion (after appropriate translation and scaling by the mean and standard

142 10. DISTRIBUTION OF TRANSITION DISTANCES

20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

Hamming distance

F
re

qu
en

cy

Figure 10.4. Histograms of transition Hamming distances
for individual basins of attraction in ECA rule 110, with
N = 100 cells and 100,000 samples.

deviation) must tend to the probability density function for a normal distri-
bution.

As an aside, note that the parameter p1 for f is precisely Langton’s λ
parameter (Section 5.1) for f̄ with quiescent state 0.

10.4. Individual basins of attraction

That the Hamming distances always follow a normal (or almost normal)
distribution may seem somewhat surprising: especially for Turing complete
rules such as ECA rule 110, we might expect the distribution of transition
distances to be more interesting than this. However, the distributions stud-
ied so far span the entire configuration space, so it is conceivable that any
finer structure in particular regions of the configuration space (such as those
in which the CA is actually emulating a universal computer) is obscured.

We can obtain numerical results for the distributions of Hamming dis-
tances in individual basins of attraction, by sampling over the configura-
tion space, using the algorithm of Section 6.1 to determine which basin the
sampled configuration is in, and maintaining a histogram for each basin
encountered. Figure 10.4 shows a sample of the results.

10.5. MULTIPLE TRANSITIONS 143

These numerical results suggest that the Hamming distances within indi-
vidual basins have the same distribution, appropriately scaled, as the overall
configuration space.

Note that some basins in Figure 10.4 occur in pairs, with roughly the
same distribution. These pairs of basins are isomorphic in the transition
graph, and indeed the configurations in one basin are cyclic shifts by one
cell of the configurations in the other. Note that it is not necessarily the case
that isomorphic basins have the same distribution of transition distances,
although they do have the same distribution if the configurations in one
basin are cyclic shifts, or some other symmetry that preserves Hamming
distances, of the other.

If interesting structure is being obscured by uninteresting regions of con-
figuration space, then studying individual basins of attraction does not un-
cover this structure. Perhaps studying other subsets of the configuration
space (attractor cycles, reachable configurations, configurations at a certain
depth in the trees of the transition graph, individual trajectories) would
yield better results, but this is left as a subject for future work.

10.5. Multiple transitions

The previous sections discuss the distribution of dh(c, F (c)) as c ranges
over the configuration space. Instead of considering a single transition, we
may consider t transitions for any positive integer t. In other words, how is
dh(c, F t(c)) distributed?

If F is the global map of a CA with neighbourhood radius r, then F t

is the global map of a CA with neighbourhood radius rt. In other words,
multiple transitions of one CA can be thought of as a single transition of
another, “larger” CA. In particular, if Conjecture 10.1 holds and single
transition Hamming distances are normally distributed in the limit for all
CAs, then multiple transition distances are also normally distributed in the
limit.

How does the distribution of dh(c, F t(c)) vary with t? Some numerical
results are shown in Figure 10.5. Two classes of behaviour are apparent, as t
becomes large: either the distribution approaches the binomial distribution
with p = 1

2 (which can be seen by comparison with the distribution for
rule 0), or it does not. If it does not, it may tend to a different bell curve
distribution, or it may oscillate between two or more distributions.

Intuitively, there seem to be two cases in which we would expect the
distribution to approach the binomial distribution in the long term:

(1) If a rule is in Wolfram’s class 1, then F t(c) is a homogeneous config-
uration for large t. Thus the distribution of distances is precisely

144 10. DISTRIBUTION OF TRANSITION DISTANCES

Figure 10.5. “Histograms” of multiple transition Hamming
distances for all 88 essentially different ECAs. The number
of cells is 100, and the sample size is 2500. In each plot,
the horizontal axis denotes the number of transitions t, rang-
ing from 1 to 50, and the vertical axis denotes Hamming
distances from 0 to 100. The frequency of each Hamming
distance is represented by a shade of grey, from white (zero)
to black (maximum).

10.6. OTHER METRICS 145

the “underlying” distribution of configurations’ distances from a
homogeneous configuration, which is binomial.

(2) If a rule is “unpredictable”, i.e. in Wolfram’s class 3 (or possibly 4),
then we expect no apparent correlation between c and F t(c). Thus
the distribution of distances is the “underlying” distribution of dis-
tances between any two configurations chosen at random, which is
binomial.

This seems to suggest that only class 2 CAs should exhibit behaviour other
than approaching the binomial distribution. Comparing the results in Fig-
ure 10.5 to the Wolfram classes listed in Appendix B, this certainly looks
plausible, although many class 2 CAs also approach a binomial distribution.

10.6. Other metrics

There are numerous metrics, other than the Hamming distance, which
may be defined on a set of strings. Chapman [Cha06] lists thirty, and by no
means is this list exhaustive. This section gives some numerical results for
two metrics.

10.6.1. The hypercube metric

Let dk be the metric defined in Equation 5.12. Recall that the distance
between two configurations with respect to this metric is defined as 2−k

where, roughly speaking, k is the shortest distance from the origin to a cell
where the configurations differ.

Figure 10.6 shows the distribution of dk distances for rule 110, and Fig-
ures 10.7 and 10.8 show the distribution for all 88 essentially different ECAs.
As illustrated by the linear trends visible in Figure 10.8, the distribution for
dk ≤ 1

2 (i.e. log2 dk ≤ −1) seems to obey a power law. The point dk = 1 is
seemingly independent of this, and the frequency of dk = 1 may be higher
or lower than that of dk = 1

2 .
Under this metric, what is the underlying distribution of configurations’

distances from the all-zeroes configuration? Let p(k) denote the probability
that, for a given configuration c, dk(c, 0) = 2−k. First, note that dk = 20

precisely when cell 0 has state 1; thus p(0) = 1
2 . For k > 0, p(k) is the

probability that all cells N − k+ 1, . . . , N − 1, 0, . . . , k− 1 have state 0, but
either cell N − k or cell k, or both, have state 1. Thus

p(k) =
1

22k−1
× 3

4
=

3
22k+1

=
3
2

(
2−k
)2

. (10.69)

Notice that this does not depend onN ; however, the value ofN does place an
upper bound (namely N

2) on the values of k for which this argument works.

146 10. DISTRIBUTION OF TRANSITION DISTANCES

−7 −6 −5 −4 −3 −2 −1 0
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

log
2
 d

k

O
cc

ur
re

nc
es

Figure 10.6. Histogram of distances with respect to the
metric dk between configurations and their successors under
ECA rule 110. The number of cells is 100, and 10000 config-
urations were chosen at random.

Also notice that, as observed in relation to Figure 10.8, this probability does
indeed obey a power law with respect to dk = 2−k.

10.6.2. The Levenshtein distance

The Levenshtein distance dl between two strings is the minimum number
of edit operations required to transform one string into the other, where each
edit operation is an insertion, deletion or substitution of a single character.
The Hamming distance can be thought of as the number of substitution
operations required to transform one string into the other, so the Levenshtein
distance is always less than or equal to the Hamming distance.

A cyclic shift by one cell yields a Levenshtein distance of at most two,
as it is equivalent to deleting a character from one end of the string and
inserting it at the other. In contrast, the Hamming distance obtained by a
cyclic shift depends on the precise cell states, and is binomially distributed if
the cell states are random (the distribution being related to the probability
that adjacent cells have the same state).

Some numerical results for the Levenshtein distance for a single transi-
tion are plotted in Figure 10.9. Like the Hamming distances, the distribu-
tions are bell curves without exception. Also like the Hamming distances,
the underlying distribution of configurations’ distances from the zero con-
figuration is binomial; indeed, it is easy to see that dl(c, 0) = dh(c, 0) for all
configurations c (intuitively, there is no faster way to edit the zero configu-
ration into c than to apply a substitution at each nonzero cell).

10.6. OTHER METRICS 147

0
1

2
3

4
5

6
7

8
9

10

11
12

13
14

15
18

19
22

23
24

25

26
27

28
29

30
32

33
34

35
36

37

38
40

41
42

43
44

45
46

50
51

54

56
57

58
60

62
72

73
74

76
77

78

90
94

10
4

10
5

10
6

10
8

11
0

12
2

12
6

12
8

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
6

15
0

15
2

15
4

15
6

16
0

16
2

16
4

16
8

17
0

17
2

17
8

18
4

20
0

20
4

23
2

Figure 10.7. Histograms of dk distances for all 88 essen-
tially different ECAs. As in Figure 10.6, the number of cells
is 100 and the number of samples is 10000. In each case,
the logarithmic x-axis ranges from 2−49 to 20, with dk = 0
plotted as 2−50. The y-axes are scaled to accommodate the
data in each plot.

148 10. DISTRIBUTION OF TRANSITION DISTANCES

0
1

2
3

4
5

6
7

8
9

10

11
12

13
14

15
18

19
22

23
24

25

26
27

28
29

30
32

33
34

35
36

37

38
40

41
42

43
44

45
46

50
51

54

56
57

58
60

62
72

73
74

76
77

78

90
94

10
4

10
5

10
6

10
8

11
0

12
2

12
6

12
8

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
6

15
0

15
2

15
4

15
6

16
0

16
2

16
4

16
8

17
0

17
2

17
8

18
4

20
0

20
4

23
2

Figure 10.8. As Figure 10.7, but with logarithmic y-axes.

10.7. CONCLUSION 149

10.6.3. Discussion

The more complex definitions of these metrics as compared to the Ham-
ming distance makes their theoretical study rather more difficult. Fig-
ure 10.9 seems to show “bell curve” distributions for the Levenshtein dis-
tances, but the methods used to derive expressions for the moments of the
Hamming distance distributions, which rely on the fact that the Hamming
distance can be defined as a sum over the cells in the lattice, do not seem
easy to apply here.

The results presented in this section hint at a more general form of
Conjecture 10.1:

Conjecture 10.18. Let d be any metric on the configuration space of a
CA. In the limit as the number of cells tends to infinity, the distribution
of distances between configurations and their successors has the same shape
(for some reasonable definition of “shape”) as the underlying distribution of
the configuration space from the zero configuration.

10.7. Conclusion

We have empirical evidence that the distribution of transition distances
for CAs depends not on the CA itself, but on the underlying distribution of
configurations’ distances from the zero configuration. It is not clear whether
this is simply a result of “averaging” over the entire configuration space,
or something inherent in the nature of CAs. One can imagine that most
properties of a physical system would appear uninteresting if averaged over
the entire phase space. The numerical investigation of Section 10.4 is an
unsuccessful attempt to address this issue; the similar experiments suggested
in that section may be more fruitful.

There is no apparent correlation between transition distances and Wol-
fram classes. A normal distribution is parameterised by its mean and vari-
ance; as shown in Section 10.2.4, the mean and variance for the Hamming
distances can be expressed in terms of p-parameters. The p-parameters are
simple parameters on the local rule, somewhat reminiscent of Langton’s λ
parameter (Section 5.1), and so are unlikely to give a good indication of an
ECA’s Wolfram class.

It is not so surprising that transition distances should be a poor indi-
cator of Wolfram class: Wolfram classes explicitly relate to the long-term
dynamics of the CA, whereas a single transition is as short-term as can
be. Indeed, the distributions of Hamming distances for multiple transitions
(Section 10.5), particularly in the limit as the number of transitions grows
large, seems more promising from a classification perspective.

150 10. DISTRIBUTION OF TRANSITION DISTANCES

Figure 10.9. Histograms of transition Levenshtein dis-
tances for the 88 essentially different ECAs, on 100 cells,
from 2500 samples.

CHAPTER 11

Discussion

We have explored several global properties of cellular automata, includ-
ing numbers of automorphisms of transition graphs, numbers of preimages
for homogeneous configurations, and distances between successive configura-
tions. We have focused almost exclusively on the elementary CAs, although
many of the methods and results should generalise readily to CAs with larger
state sets, neighbourhoods, and/or dimensionality.

The aim of this thesis, as stated in Chapter 1, was to investigate what
conditions might be necessary and/or sufficient for a CA to fall into each of
Wolfram’s classes, the idea being that this may give insight into why those
classes of behaviour occur. The results in Chapter 7 suggest that chaotic
(class 3) behaviour of the type that creates, rather than merely preserves,
randomness arises from a lack of symmetry, whereas simpler (class 1 and 2)
behaviour arises from an abundance of symmetry. The relationship between
symmetry and class 4 behaviour remains unclear.

Wolfram’s classes are defined in terms of long-term behaviour, whereas
preimages and transition distances are distinctly short-term phenomena. In
light of this, perhaps it is not so surprising that those properties are not
good indicators of Wolfram class. This seems to suggest that classifica-
tion requires not just spatial globality (considering the entire lattice or the
entire configuration space), but also temporal globality (considering entire
trajectories rather than single transitions). Properties of transition graphs
and distances of multiple transitions (Section 10.5) are spatially and tem-
porally global, and seem to be the most promising indicators of Wolfram
class. Properties such as the entropy measures of Section 5.3 are temporally
global but spatially local, whereas Langton’s λ parameter (Section 5.1) is
both spatially and temporally local.

A recurring difficulty in studying global properties of the CA is the fact
that the size of the configuration space SL grows exponentially with the size
of the lattice L. As a result, we are only able to compute for relatively small
lattices, and even an orders-of-magnitude increase in computing resources
only allows an incremental increase in lattice size. However, this thesis
demonstrates some ways to circumvent this limitation:

151

152 11. DISCUSSION

(1) De Bruijn matrices (Section 4.3) allow the preimages of a configu-
ration to be counted in linear time.

(2) The reverse algorithm (Section 4.1) lists preimages of a configura-
tion. The time complexity is exponential in the worst case, but this
worst case is relatively rare.

(3) The distribution of transition distances can be approximated by
sampling over the configuration space (Section 10.1). In the case of
Hamming distances, the moments of the distribution can be found
by a combination of computational and algebraic methods (Sec-
tion 10.2), allowing us to find their limits as the number of cells
tends to infinity.

There are other possibilities in the special case of linear CAs:

(1) A modified version of the reverse algorithm (Section 4.2) lists preim-
ages of a configuration in linear time, even in the worst case.

(2) The transition graphs can often be described completely without
constructing them (Section 6.4).

(3) Following from the above, the automorphisms of the transition
graph can be counted much more efficiently than in the general
case (Section 8.1).

There seems to be a common theme to these optimisations: they either
only work for “simple” CAs (such as linear CAs or class 2 CAs), or they
allow the computation of “simple” properties that have little correlation with
Wolfram class. It seems logical that complex (class 3 or 4) behaviour should
be irreducible, and equally logical that CAs with such behaviour should not
admit reductions in the amount of computation required for their analysis.
Indeed, if this notion could be given a more rigorous foundation, it may
itself form the basis of a classification.

Obtaining a complete formal analogue of Wolfram’s classification re-
mains an open problem. Such a classification would be useful, not so much
for the ability to answer the question of which class a given CA is in, but to
answer why the CA is in that class. For this reason, approaches to classifi-
cation such as evolutionary computation or pattern recognition are not as
attractive as they may appear at first. If such a classification can be found,
it may give us insight into why some systems have more complex emergent
behaviour than others, and perhaps how to engineer systems that exhibit
such behaviour.

11. DISCUSSION 153

In summary, the main contributions of this thesis are as follows:

(1) A method for counting the automorphisms of a CA’s transition
graph (Section 7.3). Indeed, this method can be applied to any
functional graph.

(2) A more efficient method for counting automorphisms for ECA rule 90
(Theorem 8.5), which may be applicable to other linear CAs.

(3) The suggestion of links between symmetry and complexity:
(a) Certain chaotic CAs exhibit fewer automorphisms, and a slower

increase in number of automorphisms as the number of cells is
increased, than other CAs.

(b) The number of automorphisms for linear CAs is more sensitive
to changes in the number of cells than that for nonlinear CAs.

(4) Two methods for counting preimages of homogeneous configura-
tions of 1-dimensional CAs (Chapter 9). One of these methods can
also be applied to heterogeneous but spatially periodic configura-
tions (Section 9.3).

(5) A method for calculating moments of distributions of transition
Hamming distances for 1-dimensional CAs (Section 10.2).

(6) A conjecture that, in the limit as the number of cells approaches
infinity, the overall distribution of transition distances has the same
shape as the underlying distribution of the configuration space
(Conjecture 10.18).

Appendix

APPENDIX A

Mathematical prerequisites

A.1. Magmas, semigroups, monoids and groups

Two excellent references on this material are Fraleigh [Fra03] and Rot-
man [Rot00].

Definition A.1. Let X be a set. A binary operation ∗ on X is a function
from X2 to X. We write ∗ using infix notation; i.e. we write x∗y for ∗(x, y).

Definition A.2. Let X be a set, and let ∗ be a binary operation on X.
Then the pair (X, ∗) is a magma or X is a magma under ∗. Where the
operation ∗ is clear from context, we simply refer to the magma as X. The
order of the magma is the number of elements in X.

Definition A.3. Let (S, ∗) be a magma. We say that (S, ∗) is a semigroup
if it satisfies the associative property :

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S. (A.1)

Example A.4. Let X be a set. The set of all functions from X to itself
forms a semigroup under composition of functions. ♦

Definition A.5. Let (M, ∗) be a semigroup. We say that (M, ∗) is a monoid
if it has an identity element : an element e ∈M such that

e ∗ a = a = a ∗ e for all a ∈M. (A.2)

Example A.6. Let A be a non-empty set. The set of all words (in the sense
of formal language theory) over A forms a monoid under concatenation; the
identity element is the empty word. ♦

Definition A.7. Let (G, ∗) be a monoid with identity element e. We say
that (G, ∗) is a group if every element has an inverse: for every a ∈ G, there
exists a−1 ∈ G such that

a ∗ a−1 = e = a−1 ∗ a. (A.3)

Example A.8. The non-zero real numbers form a group under multiplica-
tion. The identity element is 1, and the inverse of x is 1

x . The same is true
for the non-zero rationals and complex numbers.

157

158 A. MATHEMATICAL PREREQUISITES

The real numbers form a group under addition. The identity element is
0, and the inverse of x is −x. The same is true for the integers, rationals
and complex numbers.

The n × n matrices with real entries and non-zero determinant form a
group under multiplication. ♦

Definition A.9. Let (X, ∗) be a magma, semigroup, monoid or group. We
say that (X, ∗) is commutative if

a ∗ b = b ∗ a for all a, b ∈ X. (A.4)

In the case of a group, we use the word abelian instead of commutative.

Example A.10. The groups described in Example A.8 (1) and (2) are
abelian, but the group described in Example A.8 (3) is not. ♦

Definition A.11. Let G be a group under ∗, and let X be a subset of G.
We say that X is a set of generators for G if, for every g ∈ G, we have

g = xλ1
1 ∗ xλ2

2 ∗ · · · ∗ xλm
m (A.5)

for some xi ∈ X and λi = ±1. In other words, every element of G can be
written as a combination of elements of X and their inverses.

Example A.12 (Symmetries of the square). Consider the square

a b

cd

A symmetry of the square is a geometrical transformation which maps
the square onto itself, leaving the shape and position unchanged. There are
eight such symmetries:

I, r, r2, r3, v, vr, vr2, vr3 (A.6)

where I is the identity, r is an anticlockwise rotation through 90◦ about the
centre of the square, and v is a reflection in the vertical axis through the
centre of the square.

A.2. RELATIONS 159

a b

cd

I

b c

da

r

c d

ab

r2

d a

bc

r3

b a

dc

v

c b

ad

vr

d c

ba

vr2

a d

cb

vr3

It is easy to see that

D4 =
{
I, r, r2, r3, v, vr, vr2, vr3

}
(A.7)

is a group under composition of functions. A set of generators for D4 is
{r, v}. ♦

A.2. Relations

Definition A.13. Let X be a set. A relation ∼ on X is a subset of X2.
We generally write x ∼ y to denote that (x, y) is an element of this subset.

Example A.14. The symbols =, <,>,≤,≥, 6=,≈ all denote relations on
sets of numbers. ♦

Definition A.15. An equivalence relation on a set X is a relation ∼ with
the following properties:

Reflexivity: x ∼ x for all x ∈ X;
Symmetry: If x ∼ y, then y ∼ x;
Transitivity: If x ∼ y and y ∼ z, then x ∼ z.

Example A.16. The motivating example of an equivalence relation is =
(equality). Another example on the integers is congruence modulo n. ♦

Definition A.17. Let ∼ be an equivalence relation on a set X, and let
x ∈ X. The ∼-class of x is the set of all elements related to x by ∼:

{y ∈ X : x ∼ y} . (A.8)

Example A.18. In the integers, the “congruence modulo 4”-class of 3 is

{. . . ,−5,−1, 3, 7, 11, . . .} (A.9)

♦

Remark A.19. Two ∼-classes are either disjoint or equal. Thus the distinct
∼-classes of X give a partitioning of X; that is, a family of subsets such that
every element of X is in exactly one subset.

160 A. MATHEMATICAL PREREQUISITES

A.3. Group actions and orbit counting

Definition A.20. Let G be a group, and let X be a set. Define a function
· : G×X → X. Say that G acts on X if the following two conditions hold:

(1) e · x = x for all x ∈ X, where e is the identity in G;
(2) (g ∗ h) · x = g · (h · x) for all x ∈ X and all g, h ∈ G.

Say that g fixes x, or x is fixed by g, if g · x = x.

Example A.21. Let G be a group of functions from X to X, under com-
position of functions. Then G acts on X, with the operation of function
application. ♦

Example A.22. Affix a purple or yellow bead to each vertex of a square.
The set of all configurations of beads is {p, y}4. The group D4 of symmetries
of the square acts on this set, with · defined in the natural way. ♦

Definition A.23. Let group G act on set X. Two elements x, y ∈ X are
G-equivalent, denoted x ∼G y, if y = g · x for some g ∈ G.

Remark A.24. It follows from the definition of a group that ∼G is an
equivalence relation.

Example A.25. Following on from Example A.22, the configurations
y p

pp

and

p p

py

are G-equivalent, as the second is obtained from the first by r ∈ D4. How-
ever, the configurations

y y

pp

and

y p

yp

are not G-equivalent, as there is no element of D4 that transforms the first
into the second. ♦

Definition A.26. Let group G act on set X. The orbits of X are the
∼G-classes of X.

Theorem A.27 (The orbit counting theorem). Let group G act on set X.
The number of distinct orbits among the elements of X is

1
|G|

∑

g∈G
χ(g) , (A.10)

A.4. RINGS AND FIELDS 161

where
χ(g) = |{x ∈ X : g · x = x}| (A.11)

is the number of elements of X fixed by g.

This result is often incorrectly attributed to Burnside; as a result, some
authors refer to it as “the lemma that is not Burnside’s”. It is more correctly
attributed to Cauchy or Frobenius.

Example A.28. Following on from Example A.22, how many essentially
different configurations of beads are there?

All elements of X are fixed by the identity transformation, so χ(I) = 16.
For a configuration to be fixed by r, the bead at a must be the same

colour as the bead at b, which must be the same colour as the bead at c, and
so on. In other words, all beads must be the same colour. Thus χ(r) = 2.
A similar argument shows that χ(r3) = 2.

For a configuration to be fixed by r2, bead a must be the same colour
as bead c, and bead b the same colour as bead d. Thus χ(r2) = 4. A similar
argument shows that χ(v) = χ(vr2) = 4.

For a configuration to be fixed by vr, bead a must be the same colour
as bead c; there are no restrictions on beads b and d. Thus χ(vr) = 8. A
similar argument shows that χ(vr3) = 8.

Substituting into Equation A.11 gives

16 + 2× 2 + 3× 4 + 2× 8
8

= 6 (A.12)

different configurations. In this example, it is easy to see that these config-
urations are

p p

pp

y y

yy

y p

pp

p y

yy

p y

py

p p

yy

♦

A.4. Rings and fields

Definition A.29. Let R be a set, and let + and × be binary operations on
R. We say R is a commutative ring if:

162 A. MATHEMATICAL PREREQUISITES

(1) (R,+) is an abelian group (Definitions A.7 and A.9):
(a) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R;
(b) a+ b = b+ a for all a, b ∈ R;
(c) There exists 0 ∈ R with a+ 0 = a for all a ∈ R;
(d) For each a ∈ R there exists −a ∈ R such that a+ (−a) = 0.

(2) (R,×) is a commutative monoid (Definitions A.5 and A.9):
(a) a× (b× c) = (a× b)× c for all a, b, c ∈ R;
(b) a× b = b× a for all a, b ∈ R;
(c) There exists 1 ∈ R with a× 1 = a for all a ∈ R.

(3) × distributes over +: a×(b+c) = (a×b)+(a×c) for all a, b, c ∈ R.

Definition A.30. We say that a ring R is a field if every element in R\{0}
has a multiplicative inverse; that is, for each a ∈ R \ {0} there exists a−1 ∈
R \ {0} such that a× a−1 = 1.

Example A.31. The motivating example of a commutative ring is the set of
integers under the usual operations of addition and multiplication; examples
of fields include the rationals and reals under addition and multiplication.

An example of a finite commutative ring is the set Zk of integers mod-
ulo k, under the usual operations of addition and multiplication modulo k.
Furthermore, Zp is a field if p is prime. ♦

A.5. Finite rings of polynomials

This appendix describes the algebraic construction of the commutative
rings of polynomials used in Section 3.2.

Definition A.32. Let R be a commutative ring, and let a ∈ R. The
principal ideal generated by a, denoted 〈a〉, is

〈a〉 = aR = {ar : r ∈ R} . (A.13)

Definition A.33. Let R be a commutative ring, and let 〈a〉 be a principal
ideal of R. The factor ring of R by 〈a〉, denoted R/〈a〉, is

R/〈a〉 = {r + 〈a〉 : r ∈ R} , (A.14)

where
r + 〈a〉 = {r + s : s ∈ 〈a〉} . (A.15)

Definition A.34. Let F be a field. We denote by F [x] the set of all poly-
nomials with coefficients in F :

F [x] =
{
a0 + a1x+ · · ·+ akx

k : k ≥ 0, ai ∈ F
}
. (A.16)

A.5. FINITE RINGS OF POLYNOMIALS 163

Let F be a field. It can be shown that F [x] is a commutative ring.
Choose a positive integer n, and consider the factor ring

RFn = F [x]/〈xn − 1〉. (A.17)

An element of RFn has the form

f(x) + 〈xn − 1〉 = {f(x) + h(x) : h(x) ∈ 〈xn − 1〉} (A.18)

We shall now use the following theorem:

Theorem A.35. Let F be a field, and let f(x), g(x) ∈ F [x] with g(x) 6= 0.
Then there exist unique polynomials q(x), r(x) ∈ F [x], with r = 0 or deg r <
deg g, such that

f(x) = q(x)g(x) + r(x). (A.19)

The polynomials q(x) and r(x) are the quotient and remainder resulting
from division of f(x) by g(x).

Let us apply Theorem A.35 to f(x) in (A.18), setting g(x) = xn−1. We
have

f(x) = (xn − 1)q(x) + r(x), (A.20)

where r(x) = 0 or deg r < deg xn − 1 = n. But (xn − 1)q(x) ∈ 〈xn − 1〉, so
we have

f(x) + 〈xn − 1〉 = r(x) + 〈xn − 1〉. (A.21)

This shows that the factor ring RFn has the form

{r(x) + 〈xn − 1〉 : r(x) ∈ F [x], r(x) = 0 or deg r < n} (A.22)

So the factor ring is isomorphic to the set of all polynomials of degree less
than n, and thus is finite if F is finite. Addition and multiplication of
polynomials is carried out in the usual way, but when polynomials of degree
n or more appear they are replaced with their remainder under division by
〈xn − 1〉. It turns out that this is exactly the same as simply replacing all
powers of x with their residue modulo n (i.e. replacing xan+b with xb):

Lemma A.36. Let a and b be nonnegative integers, with b < n. Then

xan+b + 〈xn − 1〉 = xb + 〈xn − 1〉. (A.23)

Proof. First, note that

xan+b = ((xn − 1) + 1)a xb, (A.24)

Expanding the binomial ((xn − 1) + 1)a term gives

xan+b = ((xn − 1)q(x) + 1)xb (A.25)

164 A. MATHEMATICAL PREREQUISITES

for some polynomial q(x). So we have

xan+b = (xn − 1)q′(x) + xb (A.26)

for some polynomial q′(x) = xbq(x). Now (xn − 1)q′(x) ∈ 〈xn − 1〉, so the
result (A.23) follows. �

Example A.37. Set F = Z2 and n = 4, and consider the polynomials used
in Example 3.3:

f(x) = x+ x2 + x3 (A.27)

g(x) = 1 + x2. (A.28)

Working in Z2[x], we have

f(x)× g(x) = (x+ x2 + x3)× (1 + x2) (A.29)

= (x+ x2 + x3) + (x3 + x4 + x5) (A.30)

= x+ x2 + x4 + x5. (A.31)

Now consider the corresponding elements in RZ2
4 :

(f(x) + 〈x4 − 1〉)× (g(x) + 〈x4 − 1〉) (A.32)

= [f(x)× g(x)] + 〈x4 − 1〉 (A.33)

= [x+ x2 + x4 + x5] + 〈x4 − 1〉 (A.34)

= [1 + x2 + 1 + x+ x4 + x5] + 〈x4 − 1〉 (A.35)

= [1 + x2 + (1 + x)(1 + x4)] + 〈x4 − 1〉 (A.36)

= [1 + x2] + 〈x4 − 1〉 (A.37)

since (1 + x)(1 + x4) = (1 + x)(x4 − 1) ∈ 〈x4 − 1〉. This is the same as the
answer obtained in Example 3.3. ♦

A.6. Metric spaces and topology

Definition A.38. Let M be a set. A function d : M2 → R is a metric on
M if:

(1) d(x, y) ≥ 0 for all x, y ∈M ;
(2) d(x, y) = 0 if and only if x = y;
(3) d(x, y) = d(y, x) for all x, y ∈M ;
(4) d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z ∈M (the triangle inequality).

If d is a metric on M , we say that (M,d) is a metric space.

A metric is a measure of “distance” between any two points in a set,
satisfying the properties we might expect of such a measure.

A.6. METRIC SPACES AND TOPOLOGY 165

Example A.39. The Euclidean metric de on RD is defined by

de((x1, . . . , xD), (y1, . . . , yD)) =
√

(y1 − x1)2 + · · ·+ (yD − xD)2 . (A.38)

This is simply the familiar measure of distance between points inD-dimensional
space, i.e. the D-dimensional analogue of Pythagoras’ Theorem. ♦

Example A.40. The Manhattan metric dm on RD is defined by

dm((x1, . . . , xD), (y1, . . . , yD)) = |y1 − x1|+ · · ·+ |yD − xD| . (A.39)

The Manhattan metric measures the shortest distance between two points
when travelling parallel to the coordinate axes. The name arises from the
fact that the D = 2 case measures the distance between two places in a city
whose roads follow a grid pattern. ♦

Example A.41. For a finite nonempty set X, the Hamming distance dh is
a metric on XD defined by

dh(x1 . . . xD, y1 . . . yD) = |{i ∈ {1, . . . , D} : xi 6= yi}| . (A.40)

In other words, the Hamming distance is the number of positions at which
the strings x1 . . . xD and y1 . . . yD differ. ♦

Remark A.42. If L ⊆ M and d is a metric on M , then d is also a metric
on L. In particular, the Euclidean and Manhattan metrics are also metrics
on ZD, and on subsets (finite or infinite) thereof.

Definition A.43. Let (M,d) be a metric space, and let x1, x2, x3, . . . be an
infinite sequence of elements of M . Say that x is the limit of the sequence
if xi grows arbitrarily close to x as i tends to infinity: for all ε > 0, there
exists n such that d(xi, x) < ε for all i ≥ n.

Definition A.44. Let M be a metric space, and X ⊆ M . Say X is dense
in M if every point in M is the limit of a sequence in X.

Example A.45. The set of rational numbers Q is dense in R, since every
real number is the limit of a sequence of rationals. ♦

Definition A.46. Let (M,d) be a metric space, let x ∈M and r ∈ R. The
open ball centred at x of radius r, denoted B(x, r), is the set of points in M
a distance less than r from x:

B(x, r) = {y ∈M : d(x, y) < r} (A.41)

Definition A.47. Let (M,d) be a metric space, and let X ⊆ M . Denote
by Xc the complement of X, defined as the set of those elements of M that
are not in X.

166 A. MATHEMATICAL PREREQUISITES

(1) A point x ∈ M is an interior point of X if there exists r > 0 such
that B(x, r) ⊆ X.

(2) A point x ∈ M is an exterior point of X if there exists r > 0 such
that B(x, r) ⊆ Xc.

(3) A point x ∈M is a boundary point of X if it is neither an interior
nor an exterior point of X.

Note that X contains all its interior points, but none of its exterior
points. It may contain none, some or all of its boundary points.

Definition A.48. Let (M,d) be a metric space, and let X ⊆M .

(1) Say that X is open if it does not contain any of its own boundary
points; that is, if every point in X is an interior point.

(2) Say that X is closed if it contains all of its own boundary points.
(3) Say that X is clopen if it is both closed and open, i.e. if it has no

boundary points.

Example A.49. Consider the metric space R with the Euclidean metric.

(1) The subset {x ∈ R : 0 < x < 1} is open;
(2) The subset {x ∈ R : 0 ≤ x ≤ 1} is closed;
(3) The subset {x ∈ R : 0 ≤ x < 1} is neither open nor closed;
(4) The “subsets” ∅ and R are clopen. (In general, for any metric space

M , the “subsets” ∅ and M are clopen.)

In each of the first three cases, the set of interior points is {x ∈ R : 0 < x < 1}
and the set of boundary points is {0, 1}. ♦

Theorem A.50. In a metric space, the union of any (finite or infinite)
collection of open sets is also an open set. The intersection of any finite
collection of open sets is an open set; the intersection of an infinite collection
of open sets may or may not be open.

Definition A.51. Let X be a set, and let T be a collection of subsets of X.
Then X is a topological space, with topology T , if the following conditions
hold:

(1) ∅, X ∈ T ;
(2) The union of any subset (finite or infinite) of T is also in T ;
(3) The intersection of any finite subset of T is also in T .

The sets in T are called the open sets of X.

Example A.52. Every metric space is a topological space, with open sets
as in Definition A.48. ♦

A.7. GRAPH THEORY 167

Definition A.53. The discrete topology on a set X is defined by letting
every subset of X be open, so that the collection T consists of all subsets of
X.

Note that the discrete topology can be defined for any set X.

A.7. Graph theory

Definition A.54. A (directed) graph or digraph is a pair G = (V, E), where
V is the set of vertices or nodes, and E ⊆ V2 is the set of edges. An edge
directed from vertex x to vertex y is represented by an element (x, y) ∈ E ,
and is often denoted x→ y.

Definition A.55. A bipartite graph is a graph whose vertices can be par-
titioned into two sets L and R, such that the edge set is a subset of L× R
(i.e. all edges are directed from a vertex in L to a vertex in R).

Definition A.56. Consider a graph G = (V, E), with V = {v1, . . . , vn}. The
adjacency matrix A of G is the n× n matrix defined by

Aij =





1 if (vi, vj) ∈ E
0 otherwise,

(A.42)

where Aij denotes the entry in row i, column j of A.

Definition A.57. If G = (L∪R, E) is a bipartite graph with L = {l1, . . . , ln}
and R = {r1, . . . , rm}, the adjacency matrix A is alternatively defined as the
n×m matrix with

Aij =





1 if (li, rj) ∈ E
0 otherwise.

(A.43)

APPENDIX B

Table of elementary cellular automata

This table lists the 88 essentially different ECAs, choosing the rule with
the smallest number from each equivalence class. The table shows the fol-
lowing information:

(1) The rule number in decimal notation.
(2) The rule number in binary notation.
(3) The rule’s image under the reflection transformation (Equation 2.11).

If the rule is its own reflection (so that reflection is a symmetry in
the sense of Definition 7.3), a box is drawn around the rule number.

(4) As (3), but for the conjugation transformation (Equation 2.10).
(5) As (3), but for the composition of the reflection and conjugation

transformations.
(6) If the rule is linear (Chapter 3), or linear plus a constant term, the

“Linear” column gives an expression for f(x, y, z). If the rule is
nonlinear, this column is blank.

(7) Space-time diagram showing 25 steps of the evolution from an ini-
tial configuration assigning state 1 to a single cell.

(8) Space-time diagram showing 50 steps of the evolution from a ran-
domly generated initial configuration, on the periodic lattice Z100.
The same random initial configuration is used for each rule.

(9) The value of Langton’s λ parameter (Section 5.1) obtained by
choosing 0 as the quiescent state. If choosing 0 yields the value
λ, choosing 1 yields 1− λ.

(10) The value of Wuensche’s Z parameter (Section 5.2).
(11) The CA’s Wolfram class, determined as described in Section 2.5.

Due to the subjective nature of Wolfram’s classification, this should
not be considered as authoritative, but merely as an indication.

(12) Any remarks or references into the text.

169

1
7
0

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

0 00000000 0 255 255 0 0.0 0.0 1 Zero rule

1 00000001 1 127 127 0.125 0.25 2

2 00000010 16 191 247 0.125 0.25 2

3 00000011 17 63 119 0.25 0.5 2

4 00000100 4 223 223 0.125 0.25 2

5 00000101 5 95 95 0.25 0.5 2

6 00000110 20 159 215 0.25 0.5 2

7 00000111 21 31 87 0.375 0.75 2

8 00001000 64 239 253 0.125 0.25 1

9 00001001 65 111 125 0.25 0.5 2

10 00001010 80 175 245 0.25 0.5 2

11 00001011 81 47 117 0.375 0.75 2

12 00001100 68 207 221 0.25 0.5 2

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A
1
7
1

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

13 00001101 69 79 93 0.375 0.75 2

14 00001110 84 143 213 0.375 0.75 2

15 00001111 85 15 85 x+ 1 0.5 1.0 2 In Z (§7.4)

18 00010010 18 183 183 0.25 0.5 3

19 00010011 19 55 55 0.375 0.625 2

22 00010110 22 151 151 0.375 0.75 3

23 00010111 23 23 23 0.5 0.5 2

24 00011000 66 231 189 0.25 0.5 2

25 00011001 67 103 61 0.375 0.75 2

26 00011010 82 167 181 0.375 0.75 2

27 00011011 83 39 53 0.5 0.75 2

28 00011100 70 199 157 0.375 0.75 2

29 00011101 71 71 29 0.5 0.5 2

1
7
2

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

30 00011110 86 135 149 0.5 1.0 3 In C (§7.4); chaotic

32 00100000 32 251 251 0.125 0.25 1

33 00100001 33 123 123 0.25 0.5 2

34 00100010 48 187 243 0.25 0.5 2

35 00100011 49 59 115 0.375 0.625 2

36 00100100 36 219 219 0.25 0.5 2

37 00100101 37 91 91 0.375 0.75 2

38 00100110 52 155 211 0.375 0.75 2

40 00101000 96 235 249 0.25 0.5 1

41 00101001 97 107 121 0.375 0.75 2

42 00101010 112 171 241 0.375 0.75 2

43 00101011 113 43 113 0.5 0.5 2

44 00101100 100 203 217 0.375 0.75 2

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A
1
7
3

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

45 00101101 101 75 89 0.5 1.0 3 In C (§7.4); chaotic

46 00101110 116 139 209 0.5 0.5 2

50 00110010 50 179 179 0.375 0.625 2

51 00110011 51 51 51 y + 1 0.5 1.0 2 Exchanges 0 and 1

54 00110110 54 147 147 0.5 0.75 4

56 00111000 98 227 185 0.375 0.75 2

57 00111001 99 99 57 0.5 0.75 2

58 00111010 114 163 177 0.5 0.75 2

60 00111100 102 195 153 x+ y 0.5 1.0 3 In Z (§7.4)

62 00111110 118 131 145 0.625 0.75 2

72 01001000 72 237 237 0.25 0.5 2

73 01001001 73 109 109 0.375 0.75 3

74 01001010 88 173 229 0.375 0.75 2

1
7
4

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

76 01001100 76 205 205 0.375 0.625 2

77 01001101 77 77 77 0.5 0.5 2

78 01001110 92 141 197 0.5 0.75 2

90 01011010 90 165 165 x+ z 0.5 1.0 3 In Z (§7.4); also §3.4, §8.2

94 01011110 94 133 133 0.625 0.75 2

104 01101000 104 233 233 0.375 0.75 2

105 01101001 105 105 105 x+ y + z + 1 0.5 1.0 3 In Z (§7.4)

106 01101010 120 169 225 0.5 1.0 3 In C (§7.4)

108 01101100 108 201 201 0.5 0.75 2

110 01101110 124 137 193 0.625 0.75 4 Turing complete (§2.8)

122 01111010 122 161 161 0.625 0.75 3

126 01111110 126 129 129 0.75 0.5 3

128 10000000 128 254 254 0.125 0.25 1

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A
1
7
5

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

130 10000010 144 190 246 0.25 0.5 2

132 10000100 132 222 222 0.25 0.5 2

134 10000110 148 158 214 0.375 0.75 2

136 10001000 192 238 252 0.25 0.5 1

138 10001010 208 174 244 0.375 0.75 2

140 10001100 196 206 220 0.375 0.625 2

142 10001110 212 142 212 0.5 0.5 2

146 10010010 146 182 182 0.375 0.75 3

150 10010110 150 150 150 x+ y + z 0.5 1.0 3 In Z (§7.4)

152 10011000 194 230 188 0.375 0.75 2

154 10011010 210 166 180 0.5 1.0 2 In Z (§7.4)

156 10011100 198 198 156 0.5 0.75 2

160 10100000 160 250 250 0.25 0.5 1

1
7
6

B
.

T
A

B
L

E
O

F
E

L
E

M
E

N
T

A
R

Y
C

E
L

L
U

L
A

R
A

U
T

O
M

A
T

A

Rule number Equivalent rules Linear Space-time diagrams Parameters Wolfram
Dec. Binary Refl. Conj. Both f(x, y, z) Single Random λ Z class Remarks

162 10100010 176 186 242 0.375 0.75 2

164 10100100 164 218 218 0.375 0.75 2

168 10101000 224 234 248 0.375 0.75 1

170 10101010 240 170 240 z 0.5 1.0 2 Left shift rule

172 10101100 228 202 216 0.5 0.75 2

178 10110010 178 178 178 0.5 0.5 2

184 10111000 226 226 184 0.5 0.5 2

200 11001000 200 236 236 0.375 0.625 2

204 11001100 204 204 204 y 0.5 1.0 2 Identity rule

232 11101000 232 232 232 0.5 0.5 2

APPENDIX C

Transition graphs for ECAs on Z10

This appendix shows transition graphs for the 88 essentially different
ECAs, excluding rule 0 and the identity rule 204, on the periodic lattice Z10.
For each rule, the Wolfram class (determined as described in Section 2.5)
and the longest transient length (maximum distance of a configuration from
its cycle) are given. Below each basin is a pair m, p, where m is the number
of isomorphic copies of this basin and p is the length of the cycle.

Rule 1 (class 2, max transient 1)

15, 2
1, 2 10, 2 10, 2 10, 2 10, 2 5, 2

Rule 2 (class 2, max transient 1)

1, 10 1, 1 1, 10 1, 10 1, 5 1, 10

Rule 3 (class 2, max transient 1)

1, 20 1, 20
1, 20

1, 2 3, 20 1, 20 1, 10 1, 20
1, 5

1, 20

3, 20 1, 20

Rule 4 (class 2, max transient 1)

10, 1 10, 1 47, 1 20, 1 25, 1 10, 1 1, 1

177

178 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 5 (class 2, max transient 1)

2, 1 25, 2 10, 2 20, 2 10, 2 10, 2 5, 1 50, 2 10, 2 1, 2

10, 1

Rule 6 (class 2, max transient 4)

2, 5

2, 10

1, 1 2, 5 2, 1

2, 10
1, 10

2, 10

2, 10
2, 10

Rule 7 (class 2, max transient 9)

1, 20

2, 1

1, 20
1, 2

1, 20

1, 5

Rule 8 (class 1, max transient 2)

1, 1

Rule 9 (class 2, max transient 8)

1, 2
2, 15

2, 10 2, 5

Rule 10 (class 2, max transient 1)

1, 5 2, 10 1, 1 6, 10 1, 5 3, 10

C. TRANSITION GRAPHS FOR ECAS ON Z10 179

Rule 11 (class 2, max transient 4)

1, 10 2, 10
2, 5 2, 10

2, 10
2, 10

2, 10

1, 2
1, 10

Rule 12 (class 2, max transient 1)

20, 1 10, 1 10, 1 20, 1 2, 1 10, 1 5, 1 1, 1 10, 1 15, 1

20, 1

Rule 13 (class 2, max transient 8)

10, 1
2, 1

1, 2
5, 1

Rule 14 (class 2, max transient 4)

1, 5 1, 10
2, 10

2, 1

2, 10

1, 1 5, 10

1, 10

2, 10 2, 5

Rule 15 (class 2, max transient 0)

99, 10 2, 1 1, 2 6, 5

180 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 18 (class 3, max transient 5)

1, 1
5, 2 10, 2 5, 6 5, 4

Rule 19 (class 2, max transient 2)

5, 2 10, 2
5, 2 10, 2 10, 2

10, 2
1, 2 10, 2

Rule 22 (class 3, max transient 7)

10, 4 1, 1
2, 1

10, 6
5, 4

Rule 23 (class 2, max transient 4)

10, 2
5, 2

10, 2 10, 2
2, 1

1, 2
10, 2

15, 2

Rule 24 (class 2, max transient 2)

1, 5 1, 10 1, 10
1, 1

1, 10
1, 10

Rule 25 (class 2, max transient 12)

1, 20 1, 20 1, 30
1, 15

1, 30 1, 2

C. TRANSITION GRAPHS FOR ECAS ON Z10 181

Rule 26 (class 2, max transient 7)

1, 5
5, 6

2, 20

2, 20
1, 20

2, 20 2, 20

2, 20
1, 20 1, 1

Rule 27 (class 2, max transient 5)

1, 10
1, 20

1, 20
1, 20

1, 20
3, 20

1, 20

1, 20
1, 20

1, 5 1, 20 1, 2 1, 20 1, 20

Rule 28 (class 2, max transient 9)

2, 1 10, 2 5, 2 10, 2
1, 1

5, 2

Rule 29 (class 2, max transient 1)

2, 1 30, 2 10, 2 95, 2 10, 2 5, 2 25, 2 46, 2

Rule 30 (class 3, max transient 46)

1, 5

2, 1 1, 1

2, 15

182 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 32 (class 1, max transient 5)

1, 1

1, 2

Rule 33 (class 2, max transient 5)

1, 2
5, 2

10, 2 10, 2 5, 2 10, 2 1, 2

10, 2
10, 2

Rule 34 (class 2, max transient 1)

1, 10 1, 5 1, 10 2, 10
1, 2

2, 10 1, 10 1, 1 1, 10 1, 10

1, 5 2, 10

Rule 35 (class 2, max transient 5)

1, 10
1, 20

2, 2 4, 20
1, 20

1, 10
1, 20

1, 5
3, 20

1, 5 3, 20

Rule 36 (class 2, max transient 2)

1, 1 20, 1 10, 1 15, 1

C. TRANSITION GRAPHS FOR ECAS ON Z10 183

Rule 37 (class 2, max transient 13)

10, 2 10, 2 1, 2
5, 2

Rule 38 (class 2, max transient 2)

2, 10
1, 1

2, 5 2, 10 2, 10 4, 10
8, 10

1, 10

Rule 40 (class 1, max transient 7)

1, 5 1, 10 1, 2
1, 1

Rule 41 (class 2, max transient 13)

1, 15
2, 2 1, 10

2, 40

1, 5

2, 20

Rule 42 (class 2, max transient 1)

1, 2
1, 5 3, 10

21, 10
8, 10 5, 10 1, 1 3, 5

2, 10 2, 10

1, 10

184 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 43 (class 2, max transient 3)

2, 2 8, 10

4, 10

4, 5
4, 10

4, 10 2, 10

Rule 44 (class 2, max transient 5)

10, 1 10, 1 1, 1 10, 1 5, 1 10, 1

Rule 45 (class 3, max transient 16)

1, 2 4, 60 1, 30 2, 15

1, 430

Rule 46 (class 2, max transient 2)

1, 5
1, 1

1, 10 1, 10 1, 10
1, 10

Rule 50 (class 2, max transient 5)

10, 2
1, 2

10, 2
5, 2

1, 1
10, 2 10, 2

15, 2

Rule 51 (class 2, max transient 0)

512, 2

C. TRANSITION GRAPHS FOR ECAS ON Z10 185

Rule 54 (class 4, max transient 10)

10, 4
5, 4 2, 30 1, 1

Rule 56 (class 2, max transient 5)

1, 10 1, 10
1, 10 1, 10

1, 10 2, 10
1, 5

1, 1 1, 5
3, 10

1, 5
1, 10 1, 2

1, 10

Rule 57 (class 2, max transient 11)

2, 5
2, 10

1, 2

1, 2

Rule 58 (class 2, max transient 7)

1, 5 1, 2 1, 20

1, 1 1, 5

1, 10

Rule 60 (class 3, max transient 2)

1, 1
8, 30 1, 15

186 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 62 (class 2, max transient 17)

10, 3
1, 1 1, 5

10, 3

5, 3

1, 20

10, 3

Rule 72 (class 2, max transient 2)

10, 1 10, 1 10, 1
1, 1 5, 1 10, 1

Rule 73 (class 3, max transient 8)

10, 8 10, 3
10, 1

10, 2
1, 2

10, 3
5, 2

5, 2

Rule 74 (class 2, max transient 6)

2, 10
2, 10 1, 10

1, 15

2, 10 1, 5

1, 1
1, 10

1, 30
2, 10

Rule 76 (class 2, max transient 1)

2, 1 180, 1 75, 1 111, 1 25, 1 50, 1

Rule 77 (class 2, max transient 4)

10, 1
1, 2

2, 1
30, 1 20, 1 20, 1 20, 1 20, 1

C. TRANSITION GRAPHS FOR ECAS ON Z10 187

Rule 78 (class 2, max transient 9)

2, 1 10, 1 1, 1
5, 1

Rule 90 (class 3, max transient 1)

1, 1 40, 6 5, 3

Rule 94 (class 2, max transient 7)

2, 1
5, 2

10, 1
5, 1

5, 2
20, 2 5, 6 10, 3

1, 1
10, 2

Rule 104 (class 2, max transient 7)

5, 1
1, 1

10, 1
10, 1

1, 2

Rule 105 (class 3, max transient 0)

2, 2 170, 6

Rule 106 (class 3, max transient 17)

2, 205

1, 2 11, 10

1, 15

1, 1 2, 5

188 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 108 (class 2, max transient 2)

5, 1 10, 2 10, 1 5, 2 35, 2
1, 1 10, 1 75, 1

10, 1 20, 2 10, 2 10, 2 10, 1
10, 2

Rule 110 (class 4, max transient 9)

2, 25
10, 5

2, 15
1, 1

Rule 122 (class 3, max transient 6)

10, 2

5, 2
1, 1

1, 2 5, 6 5, 4

Rule 126 (class 3, max transient 6)

1, 1
5, 2 5, 6

10, 2 5, 4

Rule 128 (class 1, max transient 5)

1, 1
1, 1

Rule 130 (class 2, max transient 5)

1, 10 1, 10
1, 1

1, 5 1, 10 1, 10

1, 1

C. TRANSITION GRAPHS FOR ECAS ON Z10 189

Rule 132 (class 2, max transient 4)

5, 1 10, 1 10, 1 10, 1
1, 1

18, 1 30, 1
10, 1

10, 1 10, 1 10, 1

Rule 134 (class 2, max transient 5)

2, 10
2, 5 4, 1

2, 10
1, 10

2, 5

2, 10 2, 10

2, 10

Rule 136 (class 1, max transient 9)

1, 1

1, 1

Rule 138 (class 2, max transient 1)

1, 5 1, 5 1, 10
1, 1

7, 10
1, 1 4, 10 3, 10

1, 5 2, 10

2, 10 7, 10

190 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 140 (class 2, max transient 8)

10, 1
10, 1

4, 1
10, 1 5, 1 10, 1 20, 1

10, 1

10, 1
10, 1

15, 1

10, 1

Rule 142 (class 2, max transient 3)

4, 5
4, 10

4, 1

4, 10

10, 10
4, 10

Rule 146 (class 3, max transient 5)

10, 2

5, 6

1, 1
1, 1

5, 2 5, 4

Rule 150 (class 3, max transient 0)

20, 3 4, 1 160, 6

Rule 152 (class 2, max transient 9)

1, 10

1, 1

1, 10

1, 1

1, 5 1, 10 1, 10

Rule 154 (class 2, max transient 1)

30, 20 19, 10 1, 1 1, 1 2, 5 4, 40
5, 6

C. TRANSITION GRAPHS FOR ECAS ON Z10 191

Rule 156 (class 2, max transient 8)

5, 2 10, 2
2, 1

2, 1 10, 2
5, 2

Rule 160 (class 1, max transient 4)

1, 1
1, 1

1, 2

Rule 162 (class 2, max transient 4)

1, 10
1, 5

1, 5
1, 10

2, 1

1, 10 1, 10

1, 10
3, 10

1, 10
1, 2

2, 10

Rule 164 (class 2, max transient 4)

5, 1
10, 1 1, 1

10, 1 1, 1
10, 1 10, 1

5, 6

Rule 168 (class 1, max transient 8)

1, 1
11, 10 1, 1 1, 2 2, 5

192 C. TRANSITION GRAPHS FOR ECAS ON Z10

Rule 170 (class 2, max transient 0)

99, 10 2, 1 1, 2 6, 5

Rule 172 (class 2, max transient 8)

1, 5 10, 1
1, 10 1, 1

1, 10
1, 1 1, 10 10, 1

5, 1 1, 10 10, 1 10, 1

Rule 178 (class 2, max transient 4)

10, 2
5, 2

10, 2 10, 2
2, 1

1, 2
10, 2

15, 2

Rule 184 (class 2, max transient 4)

2, 5
1, 2

8, 10 2, 1

2, 10

2, 5
4, 10

8, 10

Rule 200 (class 2, max transient 1)

1, 1 10, 1 10, 1 121, 1 40, 1 10, 1 60, 1 5, 1 20, 1

Rule 232 (class 2, max transient 4)

10, 1 20, 1
2, 1

30, 1 20, 1 20, 1 20, 1 1, 2

APPENDIX D

Transition graphs for ECAs on Z11

This appendix shows transition graphs for the 88 essentially different
ECAs, excluding rule 0 and the identity rule 204, on the periodic lattice
Z11. Please refer to the notes at the beginning of Appendix C.

Rule 1 (class 2, max transient 1)

11, 2 11, 2
11, 2 11, 2 33, 2 1, 2 11, 2 11, 2

Rule 2 (class 2, max transient 1)

1, 1 1, 11 1, 11 1, 11 2, 11 1, 11

Rule 3 (class 2, max transient 1)

1, 22 1, 2 3, 22 1, 11
2, 22

1, 22 2, 22
1, 11

1, 22 2, 22

1, 22 1, 22 1, 22 2, 22 3, 22 1, 22

Rule 4 (class 2, max transient 1)

66, 1 11, 1 11, 1 11, 1 11, 1 1, 1 44, 1 22, 1 22, 1

Rule 5 (class 2, max transient 1)

1, 2 22, 2 11, 2 22, 2 22, 2 11, 2 11, 1 11, 2 11, 2 33, 2

11, 2 11, 2 33, 2 11, 1 11, 2 22, 2

193

194 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 6 (class 2, max transient 10)

1, 22
1, 22 1, 22

1, 22 1, 22
1, 1

Rule 7 (class 2, max transient 10)

1, 22 1, 22
1, 22

1, 22
1, 2

1, 11

Rule 8 (class 1, max transient 2)

1, 1

Rule 9 (class 2, max transient 11)

1, 22
1, 2 1, 22

Rule 10 (class 2, max transient 1)

1, 11 2, 11 1, 11 1, 11 1, 11 2, 11 1, 1 1, 11 2, 11 4, 11

3, 11

D. TRANSITION GRAPHS FOR ECAS ON Z11 195

Rule 11 (class 2, max transient 4)

1, 22
1, 2

1, 22
1, 22

1, 22
1, 22

1, 11

1, 22
1, 22

1, 22
1, 22

Rule 12 (class 2, max transient 1)

22, 1 33, 1 22, 1 44, 1 11, 1 22, 1 11, 1 11, 1 11, 1 12, 1

Rule 13 (class 2, max transient 9)

11, 1
1, 2

11, 1

Rule 14 (class 2, max transient 5)

3, 22
4, 22 1, 11 1, 11

1, 1

1, 22 1, 22

1, 11

Rule 15 (class 2, max transient 0)

1, 2 93, 22

196 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 18 (class 3, max transient 6)

1, 1
2, 11 11, 4

11, 2

Rule 19 (class 2, max transient 2)

22, 2
11, 2 11, 2 1, 2 11, 2 11, 2 11, 2 11, 2

11, 2

Rule 22 (class 3, max transient 9)

11, 4
2, 11

1, 1
11, 5

Rule 23 (class 2, max transient 5)

11, 2 11, 2 33, 2
1, 2

11, 2
11, 2 11, 2

11, 2

Rule 24 (class 2, max transient 2)

1, 11
1, 11

1, 11 1, 11 1, 11
1, 1

1, 11

D. TRANSITION GRAPHS FOR ECAS ON Z11 197

Rule 25 (class 2, max transient 17)

1, 11 1, 33
1, 22

1, 2

1, 22

Rule 26 (class 2, max transient 8)

1, 44
1, 88 1, 44

1, 22

1, 44
1, 11

1, 88

1, 88

1, 1 1, 88 1, 33
1, 44

Rule 27 (class 2, max transient 6)

1, 22
1, 22

1, 22 1, 22
1, 22 1, 22

1, 22 1, 22
1, 11 2, 22

1, 22
1, 22

1, 22
1, 22

1, 2

1, 22 1, 22
1, 22

1, 11
1, 22 2, 22

1, 22

198 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 28 (class 2, max transient 9)

11, 2 11, 2
11, 2

1, 1
11, 2 11, 2

Rule 29 (class 2, max transient 1)

66, 2 11, 2 165, 2 22, 2 11, 2 22, 2 44, 2 67, 2

Rule 30 (class 3, max transient 55)

1, 154
11, 17

1, 1

Rule 32 (class 1, max transient 6)

1, 1

Rule 33 (class 2, max transient 6)

22, 2
1, 2 11, 2 11, 2

11, 2
11, 2 11, 2 11, 2

11, 2

D. TRANSITION GRAPHS FOR ECAS ON Z11 199

Rule 34 (class 2, max transient 1)

1, 11 2, 11 1, 11 1, 11 1, 11 2, 11 1, 1 1, 11 2, 11 4, 11

3, 11

Rule 35 (class 2, max transient 5)

1, 2 4, 22 1, 11

1, 22 1, 22
1, 11

1, 11
1, 22

4, 22
7, 22

1, 11
2, 22

1, 22

Rule 36 (class 2, max transient 2)

11, 1 11, 1 22, 1 11, 1 1, 1 11, 1

Rule 37 (class 2, max transient 12)

2, 33
11, 2 11, 2

11, 2 1, 2

Rule 38 (class 2, max transient 2)

2, 22 2, 22
2, 22 1, 22 1, 22 1, 22 1, 22 4, 22

1, 22
1, 1

200 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 40 (class 1, max transient 7)

2, 11
1, 1

Rule 41 (class 2, max transient 10)

2, 11

1, 44 11, 11

1, 2

Rule 42 (class 2, max transient 1)

8, 11 2, 11 13, 11 1, 11 7, 11
36, 11 1, 1 1, 11 1, 11 4, 11

1, 11

Rule 43 (class 2, max transient 4)

2, 22
1, 2

2, 22
1, 22

3, 22

1, 22

6, 11

2, 11

2, 11
8, 11

Rule 44 (class 2, max transient 6)

11, 1 11, 1 11, 1 1, 1
11, 1 11, 1 11, 1

Rule 45 (class 3, max transient 0)

1, 2 1, 11 1, 935 11, 5 1, 979 1, 66

D. TRANSITION GRAPHS FOR ECAS ON Z11 201

Rule 46 (class 2, max transient 2)

1, 11
1, 11

1, 11 1, 11 1, 11
1, 1

1, 11

Rule 50 (class 2, max transient 5)

22, 2 11, 2
11, 2

11, 2
1, 1

11, 2
11, 2

22, 2

Rule 51 (class 2, max transient 0)

1024, 2

Rule 54 (class 4, max transient 16)

11, 4 1, 1 2, 11
2, 99

Rule 56 (class 2, max transient 5)

3, 11
4, 11 1, 11

1, 11
2, 11

2, 11
1, 11

2, 11

1, 1

1, 11
1, 11

1, 11 1, 11

202 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 57 (class 2, max transient 11)

1, 2
2, 11

2, 11

Rule 58 (class 2, max transient 9)

1, 22 1, 22

1, 1

1, 11 1, 11 1, 11

Rule 60 (class 3, max transient 1)

3, 341 1, 1

Rule 62 (class 2, max transient 14)

11, 3

11, 3
11, 3

1, 22 11, 3 1, 11

1, 1 11, 3 11, 3
1, 22 11, 3

Rule 72 (class 2, max transient 2)

11, 1 11, 1 11, 1
11, 1 11, 1 1, 1 11, 1

D. TRANSITION GRAPHS FOR ECAS ON Z11 203

Rule 73 (class 3, max transient 6)

11, 8

11, 2
11, 2

11, 1 11, 2 22, 3
11, 3 1, 2

11, 5 11, 12
11, 3

Rule 74 (class 2, max transient 9)

1, 11
1, 22 1, 11 1, 11 1, 22

1, 1

1, 22

1, 11 1, 11
1, 11

1, 33

1, 22

Rule 76 (class 2, max transient 1)

11, 1 11, 1 297, 1 154, 1 210, 1 55, 1 77, 1

Rule 77 (class 2, max transient 4)

22, 1 44, 1 1, 2 22, 1 44, 1
22, 1 22, 1 22, 1

Rule 78 (class 2, max transient 9)

11, 1 11, 1 1, 1

Rule 90 (class 3, max transient 1)

33, 31 1, 1

204 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 94 (class 2, max transient 8)

1, 1 11, 2
11, 2

11, 1
11, 2

11, 2 11, 1

11, 3

Rule 104 (class 2, max transient 7)

11, 1
11, 1 1, 1

11, 1

Rule 105 (class 3, max transient 0)

33, 62 1, 2

Rule 106 (class 3, max transient 73)

18, 11 1, 1

1, 176

Rule 108 (class 2, max transient 2)

11, 1
77, 2

11, 1 11, 1 33, 1 110, 1
22, 2 11, 1

1, 1 44, 2 11, 2
11, 2

11, 1 11, 2 11, 2

D. TRANSITION GRAPHS FOR ECAS ON Z11 205

Rule 110 (class 4, max transient 20)

11, 7
1, 1

1, 110

Rule 122 (class 3, max transient 9)

2, 11
1, 1

11, 2 11, 4

Rule 126 (class 3, max transient 6)

1, 1 2, 11
11, 2

11, 4

Rule 128 (class 1, max transient 5)

1, 1

1, 1

Rule 130 (class 2, max transient 5)

1, 11
1, 11

1, 1

1, 11 1, 11
1, 11

1, 1

1, 11

206 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 132 (class 2, max transient 5)

11, 1 22, 1 23, 1 11, 1 11, 1 11, 1 22, 1 11, 1 11, 1

1, 1
11, 1 11, 1 11, 1 33, 1

Rule 134 (class 2, max transient 11)

1, 22
1, 22

2, 1

1, 22 1, 22 1, 22

Rule 136 (class 1, max transient 10)

1, 1

1, 1

Rule 138 (class 2, max transient 1)

5, 11 1, 11 10, 11 12, 11
2, 1

4, 11
3, 11

1, 11 1, 11 7, 11

Rule 140 (class 2, max transient 9)

11, 1 11, 1
22, 1 22, 1 11, 1 11, 1

2, 1

11, 1
11, 1

11, 1
11, 1 11, 1

11, 1
33, 1 11, 1

D. TRANSITION GRAPHS FOR ECAS ON Z11 207

Rule 142 (class 2, max transient 4)

4, 22 4, 11
1, 22

2, 1 3, 22

1, 22

6, 11
4, 11

2, 11
2, 11

Rule 146 (class 3, max transient 6)

11, 4 11, 2

1, 1
2, 11 1, 1

Rule 150 (class 3, max transient 0)

2, 1 66, 31

Rule 152 (class 2, max transient 9)

1, 11 1, 11
1, 11

2, 1

1, 11 1, 11

1, 11

Rule 154 (class 2, max transient 0)

27, 44 15, 22 2, 1 6, 88

208 D. TRANSITION GRAPHS FOR ECAS ON Z11

Rule 156 (class 2, max transient 8)

11, 2
2, 1

11, 2 11, 2
22, 2

Rule 160 (class 1, max transient 10)

1, 1

1, 1

Rule 162 (class 2, max transient 5)

4, 11 1, 11
1, 11

2, 11
3, 11

2, 1

1, 11

2, 11
1, 11

1, 11 1, 11
1, 11

Rule 164 (class 2, max transient 10)

11, 1
11, 1

11, 1 12, 1
11, 1 11, 1 1, 1

Rule 168 (class 1, max transient 9)

1, 1
1, 1 18, 11

Rule 170 (class 2, max transient 0)

186, 11 2, 1

D. TRANSITION GRAPHS FOR ECAS ON Z11 209

Rule 172 (class 2, max transient 9)

2, 11 11, 1 11, 1 1, 11 1, 11 11, 1 1, 11
2, 1

11, 1
1, 11 11, 1

11, 1

Rule 178 (class 2, max transient 4)

22, 2 11, 2 2, 1
11, 2 11, 2 11, 2

11, 2 22, 2

Rule 184 (class 2, max transient 4)

12, 11 2, 1 12, 11

2, 11
6, 11

2, 11
2, 11

Rule 200 (class 2, max transient 1)

22, 1 44, 1 199, 1 11, 1 66, 1 11, 1 11, 1 11, 1 1, 1 11, 1

99, 1

Rule 232 (class 2, max transient 5)

22, 1 22, 1 22, 1 22, 1
2, 1

22, 1 22, 1 66, 1

APPENDIX E

Computing cycle lengths and multiplicities for

ECA rule 90

The following Mathematica code implements Martin et al’s [MOW84]
algorithm for finding cycle lengths and multiplicities for ECA rule 90, as
used in Section 8.2. In the absence of comments, function and variable
names match the notation of [MOW84].

1 D2 [M] := D2 [M] = 2ˆIntegerExponent [M, 2]

2

3 (∗ Fast (log−t ime) s i m u l a t i o n o f r u l e 90 , see Sec t ion 3.3 ∗)

4 Rule90Power2 [i n i t i a l , power] := BitXor [

5 RotateLeft [i n i t i a l , Mod[2 ˆ (power−1) , Length [i n i t i a l]]] ,

6 RotateRight [i n i t i a l , Mod[2 ˆ (power−1) , Length [i n i t i a l]]]]

7

8 Rule90Fast [i n i t i a l , s t e p] := Block [{ b i t s , s teps , c f g } , (

9 b i t s = IntegerDigits [step , 2] ;

10 s t ep s = b i t s ∗ Range [Length [b i t s] , 1 , −1];

11 c f g = i n i t i a l ;

12 Do[I f [s > 0 , c f g = Rule90Power2 [c fg , s]] , { s , s t ep s }] ;

13 c f g

14)]

15

16 BigPi [M] := BigPi [M] =

17 I f [M == D2 [M] , 1 ,

18 I f [EvenQ [M] , 2∗BigPi [M/ 2] ,

19 Catch [

20 c f g = Append [ConstantArray [0 ,M−1] , 1] ;

21 c f g = BitXor [RotateLeft [c f g] , RotateRight [c f g]] ;

22 b igP iStar = 2ˆMultiplicativeOrder [2 ,M,{1 ,−1}] − 1 ;

23 Do[

24 I f [Rule90Fast [c fg , d] == cfg , Throw [d]]

25 , {d , Divisors [b i gP iStar]}]

26]]

27]

28

29 (∗ F a c t o r L i s t r e t u r n s a l i s t o f { f a c t o r , power} l i s t s

30 We tak e the f i r s t e lement o f each p a i r (the /@) , and g e t r i d

o f any cons tant f a c t o r s (the S e l e c t)

31 ∗)

32 Cd [d] := Select [

33 # [[1]] & /@ FactorList [Cyclotomic [d , x] , Modulus −> 2] ,

34 Exponent[# ,x] > 0 &

35]

211

212 E. COMPUTING CYCLE LENGTHS AND MULTIPLICITIES FOR ECA RULE 90

36

37 Cdi [d , i] := Cd [d] [[i]]

38

39 Ttothepi [p i , M] := Ttothepi [pi , M] =

40 Rule90Fast [Append [ConstantArray [0 ,M−1] , 1] , p i] . xˆRange [M

−1 ,0 ,−1]

41

42 TtothepimodCditotheD2minuss [p i , d , i , s , M] :=

TtothepimodCditotheD2minuss [pi , d , i , s ,M] = (

43 PolynomialRemainder [Ttothepi [pi ,M] , Cdi [d , i] ˆ (D2 [M]− s) , x

, Modulus−>2]

44)

45

46 (∗ Find the s m a l l e s t p i such t h a t (x+xˆ−1)ˆ p i i s congruent to 1

∗)

47 P id i s [d , i , s ,M] := Pid i s [d , i , s ,M] = Catch [

48 Do[

49 I f [PolynomialRemainder [TtothepimodCditotheD2minuss [pi ,

d , i , s ,M] − 1 , Cdi [d , i] ˆ (D2 [M]− s) , x , Modulus−>2]

== 0 ,

50 Throw [p i]

51]

52 , {pi , Divisors [BigPi [M]] }]

53]

54

55 CycleLengths [M] := I f [M == D2 [M] , {1} , (

56 p i d i s s = Union @@ Reap [

57 Do[

58 Do[

59 Do[

60 Sow [P id i s [d , i , s ,M]]

61 , { s , 0 , D2 [M]}]

62 , { i , EulerPhi [d] / MultiplicativeOrder [2 , d]}]

63 , {d , Select [Divisors [M/D2 [M]] , # != 1 &]}]

64] [[2]] ;

65 Union [(LCM @@ #)& /@ Subsets [p i d i s s ,{1 ,Length [p i d i s s] }]]

66)]

67

68 Vrd [r , d ,M] := I f [r == D2 [M] , 1 ,

69 (

70 ord = MultiplicativeOrder [2 , d] ;

71 2ˆ(ord ∗(D2 [M]− r)) − 2ˆ(ord ∗(D2 [M]−r−1))

72)

73]

74

75 P o s s i b l e r d i s [M , p i] := Block [{ d i s = {} , r s = {} , r d i s = {} ,

f i n a l r d i s = {} } ,

76 Do[

77 For [i =1, i <= EulerPhi [d] / MultiplicativeOrder [2 , d] , i

++,

78 AppendTo [d i s , {d , i }] ;

79 AppendTo [rs , O ldPos s ib l e rd i [d , i ,M, p i]]

E. COMPUTING CYCLE LENGTHS AND MULTIPLICITIES FOR ECA RULE 90 213

80]

81 , {d , Select [Divisors [M/D2 [M]] , # != 1 &]}] ;

82 r d i s = Tuples [r s] ;

83 Do[

84 p i s = {} ;

85 For [j =1, j<=Length [d i s] , j ++,

86 {d , i } = d i s [[j]] ;

87 r = r s [[j]] ;

88 AppendTo [p i s , P id i s [d , i , r ,M]] ;

89] ;

90 I f [LCM @@ p i s == pi , AppendTo [f i n a l r d i s , r s]]

91 , { rs , r d i s }] ;

92 {dis , f i n a l r d i s }
93]

94

95 (∗ A s e t o f r d i s i s on ly p o s s i b l e i f the lcm o f the

corresponding p i d i s i s e q u a l to the d e s i r e d p i ∗)

96

97 OldPos s ib l e rd i [d , i , M , p i] := Block [{ r s = {} } ,

98 For [r =0, r<=D2 [M] , r++,

99 I f [PolynomialRemainder [TtothepimodCditotheD2minuss [pi ,

d , i , r ,M] − 1 , Cdi [d , i] ˆ (D2 [M]− r) , x , Modulus−>2]

== 0 ,

100 AppendTo [rs , r]

101] ;

102] ;

103 r s

104]

105

106 (∗ The main funct ion , r e t u r n s a l i s t o f { l e ng th , m u l t i p l i c i t y }
p a i r s . ∗)

107 C y c l e M u l t i p l i c i t i e s [M] := I f [M == D2 [M] , {{1 ,1}} , (

108 mults = {} ;

109 l e n s = CycleLengths [M] ;

110 Do[

111 {dis , r d i s } = P o s s i b l e r d i s [M, p i] ;

112 mult = 0 ;

113 Do[

114 prodV = 1 ;

115 For [j =1, j<=Length [d i s] , j ++,

116 {d , i } = d i s [[j]] ;

117 r = r s [[j]] ;

118 prodV = prodV ∗ Vrd [r , d ,M] ;

119] ;

120 mult = mult + prodV ;

121 , { rs , r d i s }] ;

122 AppendTo [mults , {pi , mult/ p i }] ;

123 , {pi , l e n s }] ;

124 mults

125)]

APPENDIX F

Tables of results for Chapter 9

Table F.1: String lengths for ECAs (see Section 9.1.1)

q = 0 q = 1
Rule Permitted l0 Permitted l1 Behaviour Permitted l0 Permitted l1 Behaviour

1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
0 • • • • • • Exponential Constant
1 • • • • • Exponential Constant
2 • • • • Exponential Constant
3 • • • • Exponential Constant
4 • • • • • Exponential • Constant
5 • • • • Exponential • Constant
6 • • • Exponential • Constant
7 • • • Exponential • Constant
8 • • • • Exponential Constant
9 • • • Exponential Constant

2
1
5

2
1
6

F
.

T
A

B
L

E
S

O
F

R
E

S
U

L
T

S
F

O
R

C
H

A
P

T
E

R
9

Table F.1: String lengths for ECAs (continued)

q = 0 q = 1
Rule Permitted l0 Permitted l1 Behaviour Permitted l0 Permitted l1 Behaviour

1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
10 • • Period 2 Constant
11 • • Period 2 Constant
12 • • • Constant • Constant
13 • • Constant • Constant
14 • Constant • Constant
15 • Constant • Constant
18 • • • • Exponential • Constant
19 • • • • Exponential • • Constant
22 • • • Exponential • • Period 3
23 • • • Exponential • • • Exponential
24 • • Period 2 Constant
25 • • Period 2 Constant
26 • • Period 2 • Constant
27 • • Period 2 • • Constant
28 • Constant • Constant
29 • Constant • Constant
30 • Constant • • Period 3
32 • • • • • Exponential • Constant

F
.

T
A

B
L

E
S

O
F

R
E

S
U

L
T

S
F

O
R

C
H

A
P

T
E

R
9

2
1
7

Table F.1: String lengths for ECAs (continued)

q = 0 q = 1
Rule Permitted l0 Permitted l1 Behaviour Permitted l0 Permitted l1 Behaviour

1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
33 • • • • Exponential • Constant
34 • • • Constant • Constant
35 • • • Constant • Constant
36 • • • • Exponential • • Period 2
37 • • • Exponential • • Period 2
38 • • Constant • • Period 2
40 • • • Exponential • Constant
41 • • Period 3 • Constant
42 • Constant • Constant
43 • Constant • Constant
44 • • Constant • • Period 2
45 • Constant • • Period 2
46 Constant • • Period 2
50 • • • Constant • • Constant
51 • • • Constant • • • Constant
54 • • Constant • • • Exponential
56 • Constant • Constant
57 • Constant • Constant

2
1
8

F
.

T
A

B
L

E
S

O
F

R
E

S
U

L
T

S
F

O
R

C
H

A
P

T
E

R
9

Table F.1: String lengths for ECAs (continued)

q = 0 q = 1
Rule Permitted l0 Permitted l1 Behaviour Permitted l0 Permitted l1 Behaviour

1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
58 • Constant • • Constant
60 Constant • • Period 2
62 Constant • • • Exponential
72 • • • • Exponential • Constant
73 • • • Exponential • Constant
74 • • Period 2 • Constant
76 • • • Constant • • Constant
77 • • Constant • • Constant
78 • Constant • • Constant
90 • • Period 2 • • Period 4
94 • Constant • • • Exponential
104 • • • Exponential • • Period 3
105 • • Period 3 • • Period 3
106 • Constant • • Period 3
108 • • Constant • • • Exponential
110 Constant • • • Exponential
122 • Constant • • • Exponential
126 Constant • • • • Exponential

F
.

T
A

B
L

E
S

O
F

R
E

S
U

L
T

S
F

O
R

C
H

A
P

T
E

R
9

2
1
9

Table F.1: String lengths for ECAs (continued)

q = 0 q = 1
Rule Permitted l0 Permitted l1 Behaviour Permitted l0 Permitted l1 Behaviour

1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
128 • • • • • Exponential Constant
130 • • • Exponential Constant
132 • • • • Exponential • Constant
134 • • Period 3 • Constant
136 • • • • Exponential Constant
138 • • Period 2 Constant
140 • • • Constant • Constant
142 • Constant • Constant
146 • • • Exponential • Constant
150 • • Period 3 • • Period 3
152 • • Period 2 Constant
154 • • Period 2 • Constant
156 • Constant • Constant
160 • • • • Exponential • Constant
162 • • Constant • Constant
164 • • • Exponential • • Period 2
168 • • • Exponential • Constant
170 • Constant • Constant

2
2
0

F
.

T
A

B
L

E
S

O
F

R
E

S
U

L
T

S
F

O
R

C
H

A
P

T
E

R
9

Table F.1: String lengths for ECAs (continued)

q = 0 q = 1
Rule Permitted l0 Permitted l1 Behaviour Permitted l0 Permitted l1 Behaviour

1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
172 • • Constant • • Period 2
178 • • Constant • • Constant
184 • Constant • Constant
200 • • • • Exponential • • Constant
204 • • • Constant • • • Constant
232 • • • Exponential • • • Exponential

F. TABLES OF RESULTS FOR CHAPTER 9 221

Table F.2: Characteristic polynomials for ECAs. The poly-
nomials are ordered by their roots of largest magnitude (see
Table F.3), and so that the polynomials are grouped by the
classes of behaviour given in Table F.3, but other than that
the ordering (and thus the numbering) is arbitrary.

ci Polynomial
c1 λ4

c2 λ4 − λ3

c3 λ4 − 2λ3 + λ2

c4 λ4 − λ2

c5 λ4 − λ3 − λ2 + λ

c6 λ4 − 2λ3 + 2λ− 1
c7 λ4 − λ
c8 λ4 − λ3 − λ+ 1
c9 λ4 − 1
c10 λ4 − λ− 1
c11 λ4 − λ2 − λ
c12 λ4 − λ3 − λ2 + 1
c13 λ4 − λ3 − 1
c14 λ4 − λ3 − λ
c15 λ4 − 2λ3 + λ2 − λ+ 1
c16 λ4 − λ3 − λ2

c17 λ4 − 2λ3 + λ

c18 λ4 − λ3 − λ− 1
c19 λ4 − 2λ3 + λ2 − 1
c20 λ4 − λ2 − 2λ− 1
c21 λ4 − 2λ3 + λ2 − λ
c22 λ4 − λ3 − λ2 − λ
c23 λ4 − 2λ3

222 F. TABLES OF RESULTS FOR CHAPTER 9

Table F.3: Roots of characteristic polynomials for ECAs

ci Cartesian form Modulus Argument/π Behaviour

c1

0
0
0
0

0
0
0
0

0
0
0
0

Constant

c2

1
0
0
0

1
0
0
0

0
0
0
0

Constant

c3

1
1
0
0

1
1
0
0

0
0
0
0

Constant

c4

1
−1
0
0

1
1
0
0

0
1
0
0

Period 2

c5

1
1
−1
0

1
1
1
0

0
0
1
0

Period 2

c6

1
1
1
−1

1
1
1
1

0
0
0
1

Period 2

c7

−1
2 +

√
3

2 i

−1
2 −

√
3

2 i

1
0

1
1
1
0

2
3

−2
3

0
0

Period 3

c8

−1
2 +

√
3

2 i

−1
2 −

√
3

2 i

1
1

1
1
1
1

2
3

−2
3

0
0

Period 3

c9

1
i

−i
−1

1
1
1
1

0
1
2

−1
2

1

Period 4

F. TABLES OF RESULTS FOR CHAPTER 9 223

Table F.3: Roots of characteristic polynomials for ECAs
(continued)

ci Cartesian form Modulus Argument/π Behaviour

c10

1.22074
−0.24813 + 1.03398i
−0.24813− 1.03398i

−0.72449

1.22074
1.06334
1.06334
0.72449

0
0.57497
−0.57497

1

Exponential

c11

1.32472
−0.66236− 0.56228i
−0.66236 + 0.56228i

0

1.32472
0.86884
0.86884

0

0
−0.77596
0.77596

0

Exponential

c12

1.32472
1

−0.66236− 0.56228i
−0.66236 + 0.56228i

1.32472
1

0.86884
0.86884

0
0

−0.77596
0.77596

Exponential

c13

1.38028
0.21945 + 0.91447i
0.21945− 0.91447i

−0.81917

1.38028
0.94044
0.94044
0.81917

0
0.42503
−0.42503

1

Exponential

c14

1.46557
−0.23279− 0.79255i
−0.23279 + 0.79255i

0

1.46557
0.82603
0.82603

0

0
−0.59094
0.59094

0

Exponential

c15

1.46557
1

−0.23279− 0.79255i
−0.23279 + 0.79255i

1.46557
1

0.82603
0.82603

0
0

−0.59094
0.59094

Exponential

c16

1+
√

5
2

1−
√

5
2

0
0

1+
√

5
2√
5−1
2

0
0

0
1
0
0

Exponential

c17

1+
√

5
2

1
1−
√

5
2

0

1+
√

5
2

1√
5−1
2

0

0
0
1
0

Exponential

224 F. TABLES OF RESULTS FOR CHAPTER 9

Table F.3: Roots of characteristic polynomials for ECAs
(continued)

ci Cartesian form Modulus Argument/π Behaviour

c18

1+
√

5
2

i

−i
1−
√

5
2

1+
√

5
2

1
1√
5−1
2

0
1
2

−1
2

1

Exponential

c19

1+
√

5
2

1
2 −

√
3

2 i
1
2 +

√
3

2 i
1−
√

5
2

1+
√

5
2

1
1√
5−1
2

0
−1

3
1
3

1

Exponential

c20

1+
√

5
2

−1
2 +

√
3

2 i

−1
2 −

√
3

2 i
1−
√

5
2

1+
√

5
2

1
1√
5−1
2

0
2
3

−2
3

1

Exponential

c21

1.75488
0.12256− 0.74486i
0.12256 + 0.74486i

0

1.75488
0.75488
0.75488

0

0
−0.44809
0.44809

0

Exponential

c22

1.83929
−0.41964− 0.60629i
−0.41964 + 0.60629i

0

1.83929
0.73735
0.73735

0

0
−0.69272
0.69272

0

Exponential

c23

2
0
0
0

2
0
0
0

0
0
0
0

Exponential

F. TABLES OF RESULTS FOR CHAPTER 9 225

Table F.4: Characteristic polynomials of de Bruijn matrices
for ECAs

Rule charD0 charD1 Rule charD0 charD1

0 c23 c1 56 c3 c1

1 c22 c2 57 c2 c2

2 c17 c1 58 c3 c1

3 c16 c2 60 c3 c4

4 c21 c1 62 c3 c11

5 c18 c2 72 c17 c1

6 c15 c1 73 c12 c2

7 c14 c2 74 c6 c1

8 c17 c1 76 c3 c1

9 c12 c2 77 c2 c2

10 c6 c1 78 c3 c1

11 c5 c2 90 c6 c9

12 c3 c1 94 c3 c10

13 c2 c2 104 c15 c7

14 c3 c1 105 c8 c8

15 c2 c2 106 c3 c7

18 c17 c1 108 c3 c11

19 c16 c2 110 c3 c11

22 c15 c7 122 c3 c10

23 c14 c14 126 c3 c20

24 c6 c1 128 c22 c2

25 c5 c2 130 c12 c2

26 c6 c1 132 c14 c2

27 c5 c2 134 c8 c2

28 c3 c1 136 c16 c2

29 c2 c2 138 c5 c2

30 c3 c7 140 c2 c2

32 c21 c1 142 c2 c2

33 c14 c2 146 c12 c2

34 c3 c1 150 c8 c8

35 c2 c2 152 c5 c2

36 c19 c4 154 c5 c2

37 c13 c5 156 c2 c2

38 c3 c4 160 c18 c2

40 c15 c1 162 c2 c2

41 c8 c2 164 c13 c5

226 F. TABLES OF RESULTS FOR CHAPTER 9

Table F.4: Characteristic polynomials of de Bruijn matrices
for ECAs (continued)

Rule charD0 charD1 Rule charD0 charD1

42 c3 c1 168 c14 c2

43 c2 c2 170 c2 c2

44 c3 c4 172 c2 c5

45 c2 c5 178 c2 c2

46 c3 c4 184 c2 c2

50 c3 c1 200 c16 c2

51 c2 c2 204 c2 c2

54 c3 c11 232 c14 c14

Bibliography

[Ada02] Andrew Adamatzky, editor. Collision-Based Computing. Springer, 2002.

[Bae02] John Baez. Noether’s Theorem in a nutshell. http://math.ucr.edu/home/

baez/noether.html, 2002.

[BCG82] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways

for your mathematical plays, volume 2. Academic Press, 1982.

[Boy03] Tim Boykett. Towards a Noether-like conservation law theorem for one dimen-

sional reversible cellular automata. http://arxiv.org/abs/nlin/0312003,

2003.

[Bur70] Arthur W. Burks, editor. Essays on Cellular Automata. University of Illinois

Press, 1970.

[CDS95] Dragoš M. Cvetković, Michael Doob, and Horst Sachs. Spectra of Graphs. Jo-

hann Ambrosius Barth, third edition, 1995.

[Cha06] Sam Chapman. String similarity metrics for information integration. http:

//www.dcs.shef.ac.uk/~sam/stringmetrics.html, 2006.

[Coo04] Matthew Cook. Universality in elementary cellular automata. Complex Sys-

tems, 15(1):1–40, 2004.

[CR91] Douglas M. Campbell and David Radford. Tree isomorphism algorithms:

Speed vs. clarity. Mathematics Magazine, 64(4):252–261, 1991.

[CY88] Karel Culik II and Sheng Yu. Undecidability of CA classification schemes.

Complex Systems, 2:177–190, 1988.

[dB46] Nicolaas Govert de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch.

Proceedings, 49:758–764, 1946.

[Epp] David Eppstein. Wolfram’s classification of cellular automata. http://www.

ics.uci.edu/~eppstein/ca/wolfram.html.

[FHP86] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-

Stokes equation. Physical Review Letters, 56(14):1505–1508, Apr 1986.

[Flo67] Robert W. Floyd. Nondeterministic algorithms. Journal of the ACM,

14(4):636–644, 1967.

[Fra03] John B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, seventh

edition, 2003.

[Gam06] Emily Gamber. Equicontinuity properties of D-dimensional cellular automata.

Topology Proceedings, 30(1):197–222, 2006.

[Gan60] Felix R. Gantmacher. Matrix Theory, volume I. Chelsea, 1960.

[Gar70] Martin Gardner. Mathematical games: The fantastic combinations of John

Conway’s new solitaire game “life”. Scientific American, 223:120–123, 1970.

[GDH07] Stéphane Gobron, François Devillard, and Bernard Heit. Retina simulation

using cellular automata and GPU programming. Machine Vision and Appli-

cations, 18(6):331–342, 2007.

[Gle88] James Gleick. Chaos. Vintage, 1988.

227

http://math.ucr.edu/home/baez/noether.html
http://math.ucr.edu/home/baez/noether.html
http://arxiv.org/abs/nlin/0312003
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://www.ics.uci.edu/~eppstein/ca/wolfram.html
http://www.ics.uci.edu/~eppstein/ca/wolfram.html

228 BIBLIOGRAPHY

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system

and its applications to software engineering. Software — Practice and Experi-

ence, 30(11):1203–1233, 2000.

[GT88] Harold N. Gabow and Robert E. Tarjan. A linear-time algorithm for finding

a minimum spanning pseudoforest. Information Processing Letters, 27(5):259–

263, 1988.

[Har69] Frank Harary. Graph Theory. Addison-Wesley, 1969.

[Hol98] John H. Holland. Emergence: From chaos to order. Oxford University Press,

1998.

[HT91] Tetsuya Hattori and Shinji Takesue. Additive conserved quantities in discrete-

time lattice dynamical systems. Physica D, 49:295–322, 1991.

[JD06] Iztok Jeras and Andrej Dobnikar. Algorithms for computing preimages of cellu-

lar automata configurations. http://www.rattus.info/al/files/preimages.

pdf, 2006.

[Joh01] Steven Johnson. Emergence: The connected lives of ants, brains, cities and

software. Penguin, 2001.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31(1):7–15, 1989.

[Knu69] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumer-

ical Algorithms. Addison Wesley, 1969.

[Kůr97] Petr Kůrka. Languages, equicontinuity and attractors in cellular automata.

Ergodic Theory and Dynamical Systems, 17:417–433, 1997.

[Lam98] Lui Lam, editor. Nonlinear Physics for Beginners: Fractals, chaos, solitons,

pattern formation, cellular automata and complex systems. World Scientific,

1998.

[Lan90] Chris G. Langton. Computation at the edge of chaos: Phase transitions and

emergent computation. Physica D, 42:12–37, 1990.

[LP90] Wentian Li and Norman Packard. The structure of the elementary cellular

automata rule space. Complex Systems, 4:281–297, 1990.

[LPL90] Wentian Li, Norman H. Packard, and Chris Langton. Transition phenomena

in cellular automata rule space. Physica D, 45:77–94, 1990.

[McI90] Harold V. McIntosh. Linear cellular automata via de Bruijn diagrams. http:

//delta.cs.cinvestav.mx/~mcintosh/comun/cf/debruijn.pdf, 1990.

[MH05] Carsten Marr and Marc-Thorsten Hütt. Topology regulates pattern formation

capacity of binary cellular automata on graphs. Physica A, 354:641–662, 2005.

[MOW84] Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram. Algebraic proper-

ties of cellular automata. Communications in Mathematical Physics, 93:219–

258, 1984.

[OdOO01] Gina M. B. Oliveira, Pedro P. B. de Oliveira, and Nizam Omar. Definition

and application of a five-parameter characterization of one-dimensional cellular

automata rule space. Artificial Life, 7:277–301, 2001.

[Ost08] Stephen Ostermiller. Finding a loop in a singly linked list. http://

ostermiller.org/find_loop_singly_linked_list.html, 2008.

[Ped92] John Pedersen. Decision problems for cellular automata and their semigroups.

In MFCS ’92: Proceedings of the 17th International Symposium on Mathe-

matical Foundations of Computer Science, number 629 in Lecture Notes in

Computer Science, pages 421–429. Springer-Verlag, 1992.

http://www.rattus.info/al/files/preimages.pdf
http://www.rattus.info/al/files/preimages.pdf
http://delta.cs.cinvestav.mx/~mcintosh/comun/cf/debruijn.pdf
http://delta.cs.cinvestav.mx/~mcintosh/comun/cf/debruijn.pdf
http://ostermiller.org/find_loop_singly_linked_list.html
http://ostermiller.org/find_loop_singly_linked_list.html

BIBLIOGRAPHY 229

[Pos47] Emil L. Post. Recursive unsolvability of a problem of Thue. Journal of Symbolic

Logic, 12(1):1–11, 1947.

[Pow07] Edward Powley. Mathematical properties of cellular automata. Qualifying dis-

sertation, Department of Computer Science, University of York, 2007.

[Pow08] Edward Powley. Quad prize submission: Simulating elementary CAs with Trid

CAs, 2008. To appear in Journal of Cellular Automata.

[PP02] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables

and Stochastic Processes. McGraw-Hill, fourth edition, 2002.

[PS08] Edward Powley and Susan Stepney. Automorphisms of transition graphs for a

linear cellular automaton. In Andrew Adamatzky, Ramon Alonso-Sanz, Anna

Lawniczak, Genaro Juarez Martinez, Kenichi Morita, and Thomas Worsch,

editors, proceedings of Automata 2008: Theory and Applications of Cellular

Automata, pages 55–68. Luniver Press, 2008.

[PS09a] Edward J. Powley and Susan Stepney. Automorphisms of transition graphs

for elementary cellular automata. Journal of Cellular Automata, 4(2):125–136,

2009.

[PS09b] Edward J. Powley and Susan Stepney. Automorphisms of transition graphs for

linear cellular automata. Journal of Cellular Automata, 4(4):293–310, 2009.

[PS09c] Edward J. Powley and Susan Stepney. Counting preimages of homogeneous

configurations in 1-dimensional cellular automata. Journal of Cellular Au-

tomata, 2009. In press.

[PS09d] Edward J. Powley and Susan Stepney. Distribution of Hamming distances for

cellular automaton transitions. Complex Systems, 2009. Submitted.

[PW85] Norman H. Packard and Stephen Wolfram. Two-dimensional cellular au-

tomata. Journal of Statistical Physics, 38(5):901–946, March 1985.

[Ral82] Anthony Ralston. De Bruijn sequences — a model example of the interac-

tion of discrete mathematics and computer science. Mathematics Magazine,

55(3):131–143, 1982.

[Ren02] Paul Rendell. Turing univerality of the game of life. In Adamatzky [Ada02],

chapter 18.

[Rot00] Joseph J. Rotman. A First Course in Abstract Algebra. Prentice-Hall, second

edition, 2000.

[Sil06] Stephen Silver. Life lexicon home page. http://www.argentum.freeserve.co.

uk/lex_home.htm, 2006.

[Smi71] Alvy Ray Smith, III. Simple computation-universal cellular spaces. Journal of

the ACM, 18(3):339–353, 1971.

[STCS02] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg Snider. FPGA

implementation of neighborhood-of-four cellular automata random number

generators. In FPGA ’02: Proceedings of the 2002 ACM/SIGDA tenth inter-

national symposium on Field-programmable gate arrays, pages 106–112. ACM,

2002.

[Sut09] Klaus Sutner. Classification of cellular automata. In Encyclopedia of Complex-

ity and Systems Science. Springer, 2009.

[TM87] Tommaso Toffoli and Norman Margolus. Cellular Automata Machines. MIT

Press, 1987.

http://www.argentum.freeserve.co.uk/lex_home.htm
http://www.argentum.freeserve.co.uk/lex_home.htm

230 BIBLIOGRAPHY

[Tof08] Tommaso Toffoli. Background for the Quad prize. http://uncomp.uwe.ac.uk/

automata2008/files/quad.pdf, 2008. To appear in Journal of Cellular Au-

tomata.

[TS90] Daisuke Takahashi and Junkichi Satsuma. A soliton cellular automaton. Jour-

nal of the Physical Society of Japan, 59(10):3514–3519, 1990.

[vNB66] John von Neumann and A. W. Burks. Theory of self-reproducing automata.

University of Illinois Press, 1966.

[WL92] Andrew Wuensche and Mike Lesser. The Global Dynamics of Cellular Au-

tomata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular

Automata. Addison Wesley, 1992.

[Wol83] Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of Mod-

ern Physics, 55(3):601–644, 1983.

[Wol84] Stephen Wolfram. Universality and complexity in cellular automata. Physica

D, 10:1–35, 1984.

[Wol86a] Stephen Wolfram. Random sequence generation by cellular automata. Ad-

vances in Applied Mathematics, 7:123–169, 1986.

[Wol86b] Stephen Wolfram, editor. Theory and Applications of Cellular Automata.

World Scientific, 1986.

[Wol94] Stephen Wolfram. Cellular Automata and Complexity: Collected Papers. West-

view Press, 1994.

[Wue97] Andrew Wuensche. Attractor basins of discrete networks. D.Phil thesis, Uni-

versity of Sussex, 1997.

[Wue02] Andrew Wuensche. Finding gliders in cellular automata. In Adamatzky

[Ada02], chapter 13, pages 381–410.

http://uncomp.uwe.ac.uk/automata2008/files/quad.pdf
http://uncomp.uwe.ac.uk/automata2008/files/quad.pdf

	Chapter 1. Introduction
	Part 1. Literature review
	Chapter 2. Cellular automata
	2.1. Definition and dynamics
	2.2. Example: Conway's Game of Life
	2.3. 1-dimensional CAs and elementary CAs
	2.4. Essentially different rules
	2.5. Classification
	2.6. Speed of propagation
	2.7. Gliders
	2.8. Turing completeness

	Chapter 3. Linear cellular automata
	3.1. Definition
	3.2. As polynomials
	3.3. Fast simulation of linear CAs
	3.4. Properties of ECA rule 90
	3.5. Summary

	Chapter 4. Preimages
	4.1. The reverse algorithm
	4.2. The reverse algorithm for linear CAs
	4.3. Counting preimages with de Bruijn matrices

	Chapter 5. Other properties of cellular automata
	5.1. Langton's lambda parameter
	5.2. Wuensche's Z parameter
	5.3. Word entropy and Shannon entropy
	5.4. The common descendent problem
	5.5. Equicontinuity and sensitive dependence

	Part 2. New results
	Chapter 6. Transition graphs
	6.1. Finding the attractor
	6.2. Testing for isomorphisms
	6.3. Drawing transition graphs
	6.4. Transition graphs for linear CAs

	Chapter 7. Counting automorphisms of transition graphs
	7.1. Automorphisms
	7.2. Symmetries
	7.3. Counting automorphisms
	7.4. Numerical results
	7.5. Splitting the expression
	7.6. Conclusion

	Chapter 8. Counting automorphisms for linear CAs
	8.1. Counting automorphisms
	8.2. Example: elementary rule 90
	8.3. Numerical results for rule 90
	8.4. Conclusion

	Chapter 9. Preimages of homogeneous configurations
	9.1. String lengths
	9.2. De Bruijn matrices
	9.3. Preimages of heterogeneous periodic configurations
	9.4. Conclusion

	Chapter 10. Distribution of transition distances
	10.1. Numerical results
	10.2. Moments
	10.3. Hamming distances and preimage counting
	10.4. Individual basins of attraction
	10.5. Multiple transitions
	10.6. Other metrics
	10.7. Conclusion

	Chapter 11. Discussion

	Appendix
	Appendix A. Mathematical prerequisites
	A.1. Magmas, semigroups, monoids and groups
	A.2. Relations
	A.3. Group actions and orbit counting
	A.4. Rings and fields
	A.5. Finite rings of polynomials
	A.6. Metric spaces and topology
	A.7. Graph theory

	Appendix B. Table of elementary cellular automata
	Appendix C. Transition graphs for ECAs on Z10
	Appendix D. Transition graphs for ECAs on Z11
	Appendix E. Computing cycle lengths and multiplicities for ECA rule 90
	Appendix F. Tables of results for Chapter 9
	Bibliography

