Introduction

A workshop was held at the Department of Computer Science, University of York, on Tuesday 30 September 2003, to discuss ways to progress the nascent Grand Challenge, including submitting a Network proposal to EPSRC. Below are my record of the workshop, produced from notes taken at the time, and some subsequent thoughts, with a fairly arbitrary structure imposed after the event. This is a record of a group discussion – I have made no attempt to attribute the individual sources of ideas.

Attendees

Andy Adamatsky – U. West of England – CAs, reaction-diffusion computers
Tetsuya Asai – Hokkaido University – reaction-diffusion computers, nanotechnology
Jim Austin – U. York (CS) – neural-inspired architectures
Sam Braunstein – U. York (CS) – quantum computation, foundations of information theory
John Clark – U. York (CS) – evolutionary computation in crypto/security/testing
Richard Greaves – U. York (Biology) – protein structure
Mark Hylton – EPSRC – Novel Computation
Colin Johnson – U. Kent – bio-inspired computing
Julian Miller – U. York (Electronics) – emergent computation, bio-inspired, quantum
Mark Neal – U. Wales Aberystwyth
Derek Partridge – U. Exeter – precise approximate computing
Vic Rayward-Smith – U. East Anglia – optimisation, robustness, emergence
Rob Smith – U. West of England – complex systems, evolutionary computing
Susan Stepney – U. York (CS) – emergence, self-organisation, nanotechnology
Jon Timmis – U. Kent – bio-inspired computing, immune systems
Andy Tyrrell – U. York (Electronics) – adaptive/evolving/healing/replicating hw
Klaus-Peter Zauner – U. Southampton – protein structure, molecular computation

Complex Systems and Novel Computation

• There is a need to open up the narrow concept of CS
 • Early CS was very broad, then narrowed to the “classical” view of Universal Turing Machines that merely need more and more speed
 • Even the CS notion of Formal Methods is very limited
 • mathematics is a much wider subject area
 • statistics
 • We need a clear definition of “computation”, a general model encompassing all forms
 • Otherwise our domain is everything
 • Protein folding is not effectively computable – but proteins do it!
 • Three bodies can solve the Three Body problem
 • Need an analytic, not synthetic, definition – currently we talk about things we build – it’s difficult to point at something and say “it’s computing”
 • What about non-halting Turing machines, where you look at the tapes as they run?
• If we exclude the trivial self-computation, and have some encoding/decoding of inputs/outputs, and let the laws of physics “just do it” (not forcing the trajectory) – that’s computation – analogue computation
 • There also needs to be a compressed form, a representation, some idea of “programming”
• Maybe a series of articles on “computing without brains or computers”
• We need to move away from TMs. People invent a novel paradigm, then show it is possible to implement a TM with it. We don’t need another TM!
 • We can be interested in special-purpose devices, they don’t all have to be Universal.
 • Time is not part of the Turing paradigm – interaction with real time unpredictable environment is important – you cannot pay the price of a Virtual Machine
 • But it can be fun to build a TM out of weird stuff
 • TMs “converge” – continual innovation / change needs to go outside the paradigm
 • Even within Turing computation there are lots of hard problems
 • AIS, GAs, NNs – may still be TMs underneath, but they are still interesting – because we think about them differently
• Classical CS is good at “computing ballistic tables”, but not good at soft, AI tasks – and more speed just won’t help
 • But there is an external perception that more speed is all we need
 • Sub-challenges of things we can’t do at the moment
 • Smaller, focussed challenges, like the “RSA challenges”, with prizes? (Money, or just GC “credits”) – eg “factor 100 digit numbers using a GA”, “design a homeostatic system”
 • There are Data Mining competitions
 • A “most interesting computation” challenge – like “The Great Egg Race”
 • “Autonomous Robot Wars”
 • Not only do we need it, we’re getting it because it can’t be stopped! The Web has a substantial descriptive element
• NY and Italian power cuts – emergence happens!
• Need recognition that the classical approach is seriously incomplete
 • the idea that “if you do it correctly, that’s all you need” will never happen in practice
 • the paradigm of “what we want is the right answer” is the problem
 • I don’t expect my human companions to be 100% reliable/accurate
 • We want fuzzier ideas, of “competence”
 • biology is never clean or optimal, but is self-sustaining
 • Google is teaching that optimality isn’t necessary – as long as the answer is there ion the first page or two, it doesn’t have to be the “Am I feeling lucky” one
 • requires an acceptance of constant level of “light” failures
• With Neural computing – it was very exciting in the early days – we solved all the easy problems – now we are left with the hard problems – they are fundamental, but need hard work
• Problems of monocultures
• CS is taught as an engineering subject – it needs to be something else
 • CS is problem driven – we spend very little time doing “science”
 • There is a clear distinction between Chemistry (science) and Chemical Engineering – CS is rather like alchemy – we need an analytic science to backup the synthetic engineering
• Major problem – we don’t know what techniques work where
 • No Free Lunch theorems
 • Find conditions under which the NFL assumptions don’t hold – where Bayesian learning occurs
 • Characterise the problems that bio-inspired algorithms are good at
• Classical sw development: start with a spec, then target a “big enough” platform—what about starting with very limited resources—what’s the best you can do?
 • Very low power (ubiquitous devices)
 • Very few qubits (small quantum computers)
 • What if I have something doing a computation, and I keep removing bits—can it still do the same computation (cf the scene removing chunks from HAL in *2001: a Space Odyssey*)

• (Simulating) these techniques can eat all the classical computing power there is
 • we need to “soften the interface” to High Performance Computing

• Importance of the environment
 • Robot simulations have a very restricted environment—real robots behave differently—wheels skid, etc—have to cope with water, leaves, mud
 • Robots should be able to exploit the environment, not just “avoid” it
 • The Internet is a sufficiently complex environment for sw robots
 • Can we use properties of the Internet to do a computation? [Someone has already done calculations using packet header information]

• We will need the techniques of the GC to solve, or “do”
 • We are a service GC!

A Network Proposal

Input from EPSRC

EPSRC support Network grants, for ~£60k/2 years. These grants can cover coordinator salary, workshops, travel, etc, but are not for doing research.

A Network grant proposal should cover (at least):

• Aims and objectives
• Relationship to other activities—especially Novel Computation clusters, Quantum IRC
• Timing—why now?
• Deliverables

There is also other funding, for Public Awareness of Science, for PhD summer schools, …

We should decide whether the Network is pure CS, or inter-disciplinary. [It was agreed that we definitely want an interdisciplinary activity.]

Discussion

• There is a need for an umbrella network
 • Capture the knowledge from the Novel Computation projects as they run
 • Also covers Quantum Computation, and other areas
 • Links to European initiatives, SFI, etc— and raise out international profile
 • Clear statement of what we intend to do, like
 • “to understand and develop a science of non-Turing computation”
 • “to broaden the definition of computation beyond the Turing Machine paradigm”
 • “to restore computing to the broadest vision of Turing and Von Neumann” (away from the impoverished models of today)

• What do we want to achieve? We can all get together and brainstorm, but what next?
 • Identify and understand the big problems
 • Establish a common language for CS and biologists
• Educational aspect
 • Resource sharing
 • developing Open Source simulations, toolsets
 • identification of resources, things already done, things needed
 ▪ develop “responsive mode”-style bids to plug the gaps (infrastructure projects
 need to have a research component, to mollify referees, but backing from a
 large diverse community should also help)
 • Teaching CS people about real science practice (experimental design, etc)
 • Showing the next generation that CS is a fun area – bring the excitement back
 • There is no public awareness of advances in CS – it’s “finished” – it used to be rocket
 science, now you get better graphics on a home games console
 • People now expect so little of computers – where is the “intelligent assistant” that I
 can talk to and solve problems with?
 • The CS school syllabus is very dull! – an ‘A’ Level in Complexity?
 • As are many undergraduate CS courses
 • Populist book
 • Seriously explain the benefits and potential of a true understanding of complexity and
 emergence
 • Promote Non-Classical Computation as a valid area of study
 • Currently, people just “blunder” into it from random backgrounds
 • Do something for the British Association for the Advancement of Science
• People
 • We need the right people to contribute to the proposal, not just CS
 • Biologists, physicists, mathematicians, philosophers, sociologists, psychologists, …
 • Industrialists
 • Go for an initial team, with activities planned to cover all the issues
 • Stream at suitable International Conferences
 • Workshops, annual, 30–40 attendees
 ▪ Focussed objective for each workshop
 ▪ “Dagstuhl”-like, eg Cumberland Lodge, Newton Institute – need to book well
 in advance
 ▪ sessions timetabled 8–12, 5–8 to allow the afternoons for networking, discussions, etc
 • More frequent, smaller scale, more highly focussed research meetings, 5–6 attendees
 ▪ Need to commit a reasonable amount of time, 3–4 days, to get full benefit
 ▪ travel and accommodation for “mini-sabbaticals”, a week at another institution
• Infrastructure
 • Technical support / web site / workshop admin
• Ways to encourage radical thinking
 • “Thinking outside the box outside the box”
 • Host a series of “green papers”, ideas that cant get published conventionally (where “green” is
 a reference to the colour of the ink used…)
 • “Concepts” workshops
 • Develop a community that supports whacky thinking in this CS area
 • Referees who believe Non-Classical Computation is worth funding
 • Natural Sciences foundations change very slowly, but CS runs on a “memetic timescale”