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Massive Parallelism – breaking the von Neumann paradigm: 
 

The real world exhibits concurrency at all levels of scale – from atomic, through human, to 
astronomic. This concurrency is endemic. Central points of control do not remain stable for long. 
Most of the novel paradigms identified in the GC7 description paper hint at something stronger – 
namely that central points of control actively work against the logic and efficiency of whatever it is 
that is we are trying to control/model/understand and that, in the long term, we must give up on it. 
The case in this submission is that it is necessary to give up on it now, that it is possible to do so, 
that it will be profitable to do so and that pushing through this particular gateway, by the 
mainstream computing community, will help set up the mindset for the much grander challenges 
outlined for this ‘journey’. 
  
In present day computer engineering, concurrency is not considered a fundamental concept – to 
be used everyday with the same fluency as we might use object-orientation or while-loops. It is 
taught, almost universally, only as an advanced topic and only to be used when there are no 
other ways to obtain specific performance targets. Examples include the reduction of response 
times to external interrupts/commands (whilst long running background computations are 
continuing), or the speed-up of completion times for large-scale scientific or engineering 
calculations (through the use of multi-processors). 
 
Standard concurrency technologies are based on multiple threads of execution plus various 
kinds of locks to control the sharing of data between them. Get the locking wrong and systems 
will mysteriously corrupt themselves or deadlock. Received wisdom from decades of practice is 
that concurrency is very hard, and we are advised to steer well clear if at all possible [1]. 
 
In addition to these logical problems, there are also performance problems. Standard thread 
management imposes significant overheads in the form of additional memory demands (to 
maintain thread state) and run time (to allocate and garbage-collect thread state, to switch 
processor context between states, to recover from cache misses resulting from switched 
contexts, and to execute the protocols necessary for the correct and safe operation of locks). 
Even when using only `lightweight' threads, applications need to limit their implementations to 
only a few hundred threads per processor – beyond which performance catastrophically 
collapses (usually as a result of memory thrashing). 

 
Modern computing already faces a dilemma: it is driven by ever-increasing demands for system 
functionality, performance, responsiveness, inter-operability, dynamics, safety, and security. Yet 
our standard concurrency models and tools, which ought to be fundamental in addressing these 
demands, throw up serious new problems that act against them. As a result, concurrency is used 
on a relatively small scale, where its analysis is (just) manageable and the performance benefits 
outweigh the overheads. 
 
But the problems – and our ambitions, even now – are much bigger than this. For example, air 
traffic control over the UK requires the management of far greater concurrency than standard 
practice will directly and safely and simply allow. Common web services need to be able to 
conduct business with tens of thousands of clients simultaneously. Modelling even the simplest 
biological organisms quickly takes us into consideration of millions of concurrently active, 
autonomous, and interacting, agents. Limited by such constraints, we have to compromise on the 
degree of concurrency in our application design and implementation. Those compromises add 
significant complexity that, combined with the semantic instability of the concurrency 
mechanisms we do practice, lead to mistakes and the poor quality, late delivery and over-budget 
systems that are accepted as normal – for now – by our industry and its customers. 
 
This submission suggests some ways for leaving these constraints behind. 
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Hypothesis to be Tested: 
 

All computer systems have to model the real world, at some appropriate level of abstraction, if 
they are to receive information (data, signals, etc.) and feedback useful information (reports, 
control, etc.). To make that modelling easier, we should expect concurrency to play a 
fundamental rôle in the design and implementation of systems, reflecting the reality of the 
environment in which they are embedded. This does not currently seem to be the case. 
 
Our thesis is that computer science has taken at least one wrong turn. Concurrency should be a 
natural way to design any system above a minimal level of complexity. It should simplify and 
hasten the construction, commissioning, and maintenance of systems; it should not introduce the 
hazards that are evident in modern practice; it should be employed as a matter of routine. 
Natural mechanisms should map into simple engineering principles with low cost and high 
benefit. Our hypothesis is that this is possible. 
 
We propose a computational framework, based on established ideas of process algebra, to test 
the truth of the above hypothesis. It will be accessible from current computing environments 
(platforms, operating systems, languages) but will provide a foundation for novel ones in the 
future. It will integrate the best ideas from Hoare’s CSP[2] and Milner’s π-calculus[3], though this 
will require additional work on the theory. 
 
CSP has a compositional and denotational semantics, which means that it allows modular and 
incremental development (refinement) even for concurrent components. In turn, this means that 
we get no surprises when we run processes in parallel (since their points of interaction have to 
be explicitly handled by all parties to these interactions). This is simply not the case for standard 
threads-and-locks concurrency, which have no formal denotational semantics and by which we 
get surprised all the time. 
 
However, we need some extensions to describe certain new dynamics – and this is where we 
turn to the π-calculus. Specifically, we want to allow networks of processes to evolve, to change 
their topologies, to cope with growth and decay without losing semantic or structural integrity. We 
want to address the mobility of processes, channels and data and understand the relationships 
between these ideas.  We want to retain the ability to reason about such systems, preserving the 
concept of refinement. 
 
The framework has to provide highly efficient practical realisations of this extended model. Its 
success in opening up the long term horizons of GC7 will be a long term test of the above 
hypothesis. Shorter term tests will be the development of demonstrators (relevant to a broad 
range of computer applications – including those that are of concern to GC1, GC4 and GC6) with 
the following characteristics: 
 

• they will be as complex as needed – and no more (e.g. through the concurrency in the 
design being directly delivered by the concurrency in the implementation); 

• they will be scalable both in performance and function;  [Note: by functional scalability, we 
mean that the cost of incremental enhancement depends only on the scale of that 
enhancement – not upon the scale of the system being enhanced. The latter is the 
present state-of-the-art and is a major reason behind system delay and eventual failure.] 

• they will be amenable to formal specification and verification; 
• notwithstanding the above, the concurrency models (and mechanisms) in their design 

(and implementation) will be practical for everyday use by non-specialists – concurrency 
becomes a fundamental element in the toolkit of every professional computer engineer; 

• they will make maximum use of the underlying computation platform (through significantly 
reduced overheads for the management of concurrency – including the response times to 
interrupts). 

 
Current State of our Framework: 

 
Over the past ten years, our group[4] at Kent has been devoted to laying the foundations for such 
a framework. We have developed – and released as open source – concurrency packages for 
the Java (JCSP), C (CCSP), C++ (C++CSP) and J# (J#CSP) programming languages [5-9]. Despite 
their names, they all provide the mobile dynamics fed in from the π-calculus (although it is easy 
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to mis-program them, since their base languages do not have a clue as to what is happening). 
We have also advanced the original CSP programming language, occam, to do the same – but 
with some major safety and performance benefits (because the base language does know what 
is happening). An overview of the current state and potential of this language (christened, for the 
moment, occam-π) is given below. More detailed overviews of this work (on JCSP and occam-π) 
can be found on-line at [10]. 

 
occam-π is a sufficiently small language to allow experimental modification and extension, whilst 
being built on a language of proven industrial strength.  It integrates the best features of CSP and 
the π-calculus, focussing them into a form whose semantics is intuitive and amenable to 
everyday engineering by people who are not specialised mathematicians – the mathematics is 
built into the language design, its compiler, run-time system and tools (so that users benefit 
automatically from that foundation). The new dynamics broadens its area of direct application to 
a wide field of industrial, commercial and scientific practice. 
  
occam-π runs on modern computing platforms and has much of the flexibility of Java and C, 
whilst at the same time retaining all the safety guarantees of classical occam (e.g. against 
aliasing and parallel usage errors) and the lightness of its concurrency mechanisms. It supports 
the dynamic allocation of processes, data and channels, their movement across channels and 
their automatic de-allocation (without the need for garbage collection, which otherwise invalidates 
real-time guarantees) [11-15]. We have extended the range of static safety checks so that 
aliasing errors and race hazards are not possible in occam-π systems, despite the new 
dynamics. This means that subtle side-effects between component processes cannot exist, 
which impacts (positively) on the general scalability and dependability of systems. The mobility 
and dynamic construction of processes, channels and data opens up a wealth of new design 
options that will let us follow nature more closely – with network structures evolving at run-time. 
Apart from the logical benefits derived from such directness and flexibility, there will be numerous 
gains for application efficiency. 
 
Performance overheads for all occam-π concurrency mechanisms are mostly unit time, with the 
order of between 50 and 150 nanoseconds on modestly powered PCs (1GHz). Memory 
overheads are also very light: no more than 8 words per process. This means that dynamic 
systems evolving hundreds of thousands of (non-trivial) processes are already practical on single 
processors. Those processes can be implementing complex behaviour with time and space 
overheads for managing the concurrency minimal (less than 10%). Further, occam-π networks 
can naturally span many machines – the concurrency model does not change between internal 
and external concurrency.  Application networks up to millions of serious processes then become 
viable (e.g. on modest clusters of laptops). The continuing progress of Moore's Law likely over 
the next few years means that networks of tens of millions of (non-trivial) processes will become 
possible. 
 
A formal denotational semantics for occam-π mobile processes, based on Hoare and Jifeng’s 
Unified Theory of Programming [16], has been drafted by Jim Woodcock (also at Kent) and one 
of his students (Xingbei Tang). However, these mobiles have not yet been implemented by the 
occam-π compiler and kernel, although we believe this will be straightforward. This contrasts to 
the status of mobile channel-ends, which are fully supported by the current system but for which 
a denotational semantics is still being researched. 
 

One Model Application: 
 

With colleagues at Royal Holloway and at York, we are interested in questions about 
dependability and evolution for novel embedded networks that may become viable during the 
next 10-20 years: Nanite Assemblers. These are active devices that manipulate their world (e.g. 
a human body) at the nanoscopic level, but which cause macroscopic effects (e.g. through 
cooperating to assemble artefacts ‘cell’ by ‘cell’). In order to be effective, vast numbers of such 
nanites are needed, and these numbers may grow exponentially as they assemble copies of 
themselves. We need the capabilities to design, model, program and control complex and 
dynamic networks of these exotic machines, and to give credible assurance that they behave 
properly. As with swarm intelligence and ant colony algorithms, much of the interesting behaviour 
of a host of nanites comes from emergent properties. 
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Hierarchical networks of communicating processes are particularly suitable for these problems. 
But the languages used to support modelling and simulation must be simple, formal, and 
dynamic, and have a high-performance implementation. The models of such complex system 
must be as simple as possible. The models must be amenable to manipulation and formal 
reasoning. The topologies of these networks will evolve dramatically, as they support growth and 
decay that comes from nanites moving, splitting, and combining. Individual nanites must not only 
be mobile, they must also be aware of their own location and the proximity of their neighbours. 
Finally, simulations will require very large numbers of processes, so their implementation had 
better have very low overheads. 
 
A good candidate for modelling and programming such systems is occam-π: it is robust and 
lightweight, and has sound theoretical support. We know how to construct systems to the order 
of 106 processes on modest processor resources, exhibiting rich behaviours in useful run-times. 
This is enough to make a start on our journey. 
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