

Submission to : ‘Journeys in Non-Classical Computation’ (GC7)
Title : ‘Through the Concurrency Gateway’
From : Peter Welch, University of Kent Computing Laboratory

Massive Parallelism – breaking the von Neumann paradigm:

The real world exhibits concurrency at all levels of scale – from atomic, through human, to
astronomic. This concurrency is endemic. Central points of control do not remain stable for long.
Most of the novel paradigms identified in the GC7 description paper hint at something stronger –
namely that central points of control actively work against the logic and efficiency of whatever it is
that is we are trying to control/model/understand and that, in the long term, we must give up on it.
The case in this submission is that it is necessary to give up on it now, that it is possible to do so,
that it will be profitable to do so and that pushing through this particular gateway, by the
mainstream computing community, will help set up the mindset for the much grander challenges
outlined for this ‘journey’.

In present day computer engineering, concurrency is not considered a fundamental concept – to
be used everyday with the same fluency as we might use object-orientation or while-loops. It is
taught, almost universally, only as an advanced topic and only to be used when there are no
other ways to obtain specific performance targets. Examples include the reduction of response
times to external interrupts/commands (whilst long running background computations are
continuing), or the speed-up of completion times for large-scale scientific or engineering
calculations (through the use of multi-processors).

Standard concurrency technologies are based on multiple threads of execution plus various
kinds of locks to control the sharing of data between them. Get the locking wrong and systems
will mysteriously corrupt themselves or deadlock. Received wisdom from decades of practice is
that concurrency is very hard, and we are advised to steer well clear if at all possible [1].

In addition to these logical problems, there are also performance problems. Standard thread
management imposes significant overheads in the form of additional memory demands (to
maintain thread state) and run time (to allocate and garbage-collect thread state, to switch
processor context between states, to recover from cache misses resulting from switched
contexts, and to execute the protocols necessary for the correct and safe operation of locks).
Even when using only `lightweight' threads, applications need to limit their implementations to
only a few hundred threads per processor – beyond which performance catastrophically
collapses (usually as a result of memory thrashing).

Modern computing already faces a dilemma: it is driven by ever-increasing demands for system
functionality, performance, responsiveness, inter-operability, dynamics, safety, and security. Yet
our standard concurrency models and tools, which ought to be fundamental in addressing these
demands, throw up serious new problems that act against them. As a result, concurrency is used
on a relatively small scale, where its analysis is (just) manageable and the performance benefits
outweigh the overheads.

But the problems – and our ambitions, even now – are much bigger than this. For example, air
traffic control over the UK requires the management of far greater concurrency than standard
practice will directly and safely and simply allow. Common web services need to be able to
conduct business with tens of thousands of clients simultaneously. Modelling even the simplest
biological organisms quickly takes us into consideration of millions of concurrently active,
autonomous, and interacting, agents. Limited by such constraints, we have to compromise on the
degree of concurrency in our application design and implementation. Those compromises add
significant complexity that, combined with the semantic instability of the concurrency
mechanisms we do practice, lead to mistakes and the poor quality, late delivery and over-budget
systems that are accepted as normal – for now – by our industry and its customers.

This submission suggests some ways for leaving these constraints behind.

 1

Hypothesis to be Tested:

All computer systems have to model the real world, at some appropriate level of abstraction, if
they are to receive information (data, signals, etc.) and feedback useful information (reports,
control, etc.). To make that modelling easier, we should expect concurrency to play a
fundamental rôle in the design and implementation of systems, reflecting the reality of the
environment in which they are embedded. This does not currently seem to be the case.

Our thesis is that computer science has taken at least one wrong turn. Concurrency should be a
natural way to design any system above a minimal level of complexity. It should simplify and
hasten the construction, commissioning, and maintenance of systems; it should not introduce the
hazards that are evident in modern practice; it should be employed as a matter of routine.
Natural mechanisms should map into simple engineering principles with low cost and high
benefit. Our hypothesis is that this is possible.

We propose a computational framework, based on established ideas of process algebra, to test
the truth of the above hypothesis. It will be accessible from current computing environments
(platforms, operating systems, languages) but will provide a foundation for novel ones in the
future. It will integrate the best ideas from Hoare’s CSP[2] and Milner’s π-calculus[3], though this
will require additional work on the theory.

CSP has a compositional and denotational semantics, which means that it allows modular and
incremental development (refinement) even for concurrent components. In turn, this means that
we get no surprises when we run processes in parallel (since their points of interaction have to
be explicitly handled by all parties to these interactions). This is simply not the case for standard
threads-and-locks concurrency, which have no formal denotational semantics and by which we
get surprised all the time.

However, we need some extensions to describe certain new dynamics – and this is where we
turn to the π-calculus. Specifically, we want to allow networks of processes to evolve, to change
their topologies, to cope with growth and decay without losing semantic or structural integrity. We
want to address the mobility of processes, channels and data and understand the relationships
between these ideas. We want to retain the ability to reason about such systems, preserving the
concept of refinement.

The framework has to provide highly efficient practical realisations of this extended model. Its
success in opening up the long term horizons of GC7 will be a long term test of the above
hypothesis. Shorter term tests will be the development of demonstrators (relevant to a broad
range of computer applications – including those that are of concern to GC1, GC4 and GC6) with
the following characteristics:

• they will be as complex as needed – and no more (e.g. through the concurrency in the
design being directly delivered by the concurrency in the implementation);

• they will be scalable both in performance and function; [Note: by functional scalability, we
mean that the cost of incremental enhancement depends only on the scale of that
enhancement – not upon the scale of the system being enhanced. The latter is the
present state-of-the-art and is a major reason behind system delay and eventual failure.]

• they will be amenable to formal specification and verification;
• notwithstanding the above, the concurrency models (and mechanisms) in their design

(and implementation) will be practical for everyday use by non-specialists – concurrency
becomes a fundamental element in the toolkit of every professional computer engineer;

• they will make maximum use of the underlying computation platform (through significantly
reduced overheads for the management of concurrency – including the response times to
interrupts).

Current State of our Framework:

Over the past ten years, our group[4] at Kent has been devoted to laying the foundations for such
a framework. We have developed – and released as open source – concurrency packages for
the Java (JCSP), C (CCSP), C++ (C++CSP) and J# (J#CSP) programming languages [5-9]. Despite
their names, they all provide the mobile dynamics fed in from the π-calculus (although it is easy

 2

to mis-program them, since their base languages do not have a clue as to what is happening).
We have also advanced the original CSP programming language, occam, to do the same – but
with some major safety and performance benefits (because the base language does know what
is happening). An overview of the current state and potential of this language (christened, for the
moment, occam-π) is given below. More detailed overviews of this work (on JCSP and occam-π)
can be found on-line at [10].

occam-π is a sufficiently small language to allow experimental modification and extension, whilst
being built on a language of proven industrial strength. It integrates the best features of CSP and
the π-calculus, focussing them into a form whose semantics is intuitive and amenable to
everyday engineering by people who are not specialised mathematicians – the mathematics is
built into the language design, its compiler, run-time system and tools (so that users benefit
automatically from that foundation). The new dynamics broadens its area of direct application to
a wide field of industrial, commercial and scientific practice.

occam-π runs on modern computing platforms and has much of the flexibility of Java and C,
whilst at the same time retaining all the safety guarantees of classical occam (e.g. against
aliasing and parallel usage errors) and the lightness of its concurrency mechanisms. It supports
the dynamic allocation of processes, data and channels, their movement across channels and
their automatic de-allocation (without the need for garbage collection, which otherwise invalidates
real-time guarantees) [11-15]. We have extended the range of static safety checks so that
aliasing errors and race hazards are not possible in occam-π systems, despite the new
dynamics. This means that subtle side-effects between component processes cannot exist,
which impacts (positively) on the general scalability and dependability of systems. The mobility
and dynamic construction of processes, channels and data opens up a wealth of new design
options that will let us follow nature more closely – with network structures evolving at run-time.
Apart from the logical benefits derived from such directness and flexibility, there will be numerous
gains for application efficiency.

Performance overheads for all occam-π concurrency mechanisms are mostly unit time, with the
order of between 50 and 150 nanoseconds on modestly powered PCs (1GHz). Memory
overheads are also very light: no more than 8 words per process. This means that dynamic
systems evolving hundreds of thousands of (non-trivial) processes are already practical on single
processors. Those processes can be implementing complex behaviour with time and space
overheads for managing the concurrency minimal (less than 10%). Further, occam-π networks
can naturally span many machines – the concurrency model does not change between internal
and external concurrency. Application networks up to millions of serious processes then become
viable (e.g. on modest clusters of laptops). The continuing progress of Moore's Law likely over
the next few years means that networks of tens of millions of (non-trivial) processes will become
possible.

A formal denotational semantics for occam-π mobile processes, based on Hoare and Jifeng’s
Unified Theory of Programming [16], has been drafted by Jim Woodcock (also at Kent) and one
of his students (Xingbei Tang). However, these mobiles have not yet been implemented by the
occam-π compiler and kernel, although we believe this will be straightforward. This contrasts to
the status of mobile channel-ends, which are fully supported by the current system but for which
a denotational semantics is still being researched.

One Model Application:

With colleagues at Royal Holloway and at York, we are interested in questions about
dependability and evolution for novel embedded networks that may become viable during the
next 10-20 years: Nanite Assemblers. These are active devices that manipulate their world (e.g.
a human body) at the nanoscopic level, but which cause macroscopic effects (e.g. through
cooperating to assemble artefacts ‘cell’ by ‘cell’). In order to be effective, vast numbers of such
nanites are needed, and these numbers may grow exponentially as they assemble copies of
themselves. We need the capabilities to design, model, program and control complex and
dynamic networks of these exotic machines, and to give credible assurance that they behave
properly. As with swarm intelligence and ant colony algorithms, much of the interesting behaviour
of a host of nanites comes from emergent properties.

 3

 4

Hierarchical networks of communicating processes are particularly suitable for these problems.
But the languages used to support modelling and simulation must be simple, formal, and
dynamic, and have a high-performance implementation. The models of such complex system
must be as simple as possible. The models must be amenable to manipulation and formal
reasoning. The topologies of these networks will evolve dramatically, as they support growth and
decay that comes from nanites moving, splitting, and combining. Individual nanites must not only
be mobile, they must also be aware of their own location and the proximity of their neighbours.
Finally, simulations will require very large numbers of processes, so their implementation had
better have very low overheads.

A good candidate for modelling and programming such systems is occam-π: it is robust and
lightweight, and has sound theoretical support. We know how to construct systems to the order
of 106 processes on modest processor resources, exhibiting rich behaviours in useful run-times.
This is enough to make a start on our journey.

References and URLs:

[1] H. Muller and K. Walrath. Threads and Swing (final section): Why did we implement Swing this way?

www.java.sun.com/products/jfc/tsc/articles/threads/threads1.html. 2000.
[2] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[3] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.
[4] P.H. Welch et al. Concurrency Research Group. www.cs.kent.ac.uk/research/groups/crg/. 2004.
[5] P.H. Welch. CSP for Java (JCSP) Home Page. www.cs.ukc.ac.uk/projects/ofa/jcsp/. 2004.
[6] P.H. Welch, J. R. Aldous and J. Foster. CSP Networking for Java (JCSP.net). Computational Science –

ICCS 2002, pp. 695--708. Springer-Verlag, April 2002.
[7] P.H. Welch and B. Vinter. Cluster Computing and JCSP Networking. Communicating Process Architectures

2002, Concurrent Systems Engineering Series (60) pp. 203-- 222. IOS Press, 2002.
[8] N.C.C. Brown and P.H. Welch. An Introduction to the C++CSP Library. Communicating Process

Architectures 2003, Concurrent Systems Engineering Series (61) pp. 139--156. IOS Press, 2003.
[9] Quickstone Technology Ltd. xCSP Home Page. www.quickstone.com/xcsp/. 2004.
[10] P.H. Welch. IFIP WG2.4 (Peter Welch's page). www.cs.kent.ac.uk/projects/ofa/ifip/. 2004.
[11] P.H. Welch and F.R.M. Barnes. KRoC Home Page. www.cs.kent.ac.uk/projects/ofa/kroc/. 2004.
[12] P.H. Welch and F.R.M. Barnes. Prioritised Dynamic Communicating and Mobile Processes. IEE

Proceedings Software, 150(2), April 2003. www.iee.org/Publish/Journals/ProfJourn/Proc/SEN/Preprints.cfm
[13] P.H. Welch and F.R.M. Barnes. Mobile Data, Dynamic Allocation, and Zero Aliasing: an occam

Experiment. CPA 2001, Concurrent Systems Engineering Series (59) pp. 243-- 264. IOS Press, 2001.
[14] M. Schweigler, F.R.M. Barnes and P.H. Welch. Flexible, Transparent, and Dynamic occam Networking

with KRoC.net. Communicating Process Architectures 2003, Concurrent Systems Engineering Series (61)
pp. 199-- 224. IOS Press, 2003.

[15] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. RMoX: a Raw Metal occam Experiment. Communicating
Process Architectures 2003, Concurrent Systems Engineering Series (61) pp. 269--288. IOS Press, 2003.

[16] C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall, 1999.

http://www.java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://www.cs.kent.ac.uk/research/groups/crg/
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/
http://www.quickstone.com/xcsp/
http://www.cs.kent.ac.uk/projects/ofa/ifip/
http://www.cs.kent.ac.uk/projects/ofa/kroc/
http://www.iee.org/Publish/Journals/ProfJourn/Proc/SEN/Preprints.cfm

	Massive Parallelism – breaking the von Neumann pa
	Hypothesis to be Tested:
	Current State of our Framework:
	One Model Application:
	References and URLs:

