
An exemplar of  Accurate Approximation Computation ---- a GC7 subtopic 
 

A Bayesian computer 
D.Partridge,T.C.Bailey,R.M.Everson,A.Hernandes,W.J.Krzanowski,J.E.Fieldsend and V.Schetinin, The 
Critical Systems Group, School of Engineering, Computer Science and Mathematics,University of Exeter 
 
Real-world classification tasks are a rich source of problems for which traditional approaches to the 
development of a computational solution do not easily apply; the main difficulties are: 
1. The task is defined by a set of data (input-output pairs) rather than by an abstract specification --- they 

are data-defined problems. 
2. It is usually not possible, nor expected, nor required that an implementation be `correct’ in the 

traditional sense, i.e. that every valid input will be correctly classified. Indeed, it may be that certain 
valid inputs do not have an unequivocally correct classification. 

Such problems vary from classification of persons in a database as likely to purchase a given product, in 
which case very small success rates can be commercially valuable, and misclassifications amount to no 
more than a reduction in profit.  At the other extreme, an air-traffic control collision avoidance problem 
may demand 100% success (to within a demanding probabilistic bound) for potential collision inputs and 
involve major loss of life when dangerous situations are misclassified. 
 
We propose one manifestation of accurate approximation computation (AAC) that might offer an optimal 
computational solution to a wide variety of such data-defined classification tasks.  
 
 
 

AAC fundamentals1 
 

basic quantities not discrete values but probability 
densities 

coherent strategy for combining probabilistic 
components 

results not  correct/incorrect but accurately approximate 

 
statistics rather than formal logic

 
 
 
 
 
 
 
 
 
In this AAC strategy an unknown input generates not a discrete classification (or even a set of discrete 
classifications such as a multiclassifier system, MCS, might produce) but a probability distribution over 
each of the target classes. This set of distributions constitutes a precise approximation to the classification 
of the input data which may be further interpreted to yield a (possibly probabilistic) discrete classification 
outcome --- i.e. a classical classification of the input. 
 
 One way to view classification problems is that they involve the fitting of a mathematical model to the 
data, and different models give rise to different classifier systems (e.g. k nearest neighbours, knn, or 
multilayer perceptrons, MLP). Each model contains adjustable parameters (e.g. k, the number of nearest 
neighbours, in the knn model, and the number of hidden units and hidden layers in an MLP). Thus the 
fitting of a model involves techniques for optimizing the particular model parameter values from the 
information contained in (sub)set of the available data --- the training data.  Having set the parameter 
values, we have a classifier for this data such that for any valid input we obtain a predicted classification. 
 
The AAC strategy to be described uses Bayes’ rule. Thus the output of our computation is 
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1 Abstracted from “A Science of Approximate Computation”, appendix to GC7 “Journeys in Non-Classical 
Computation” 



classified as target class, y given a set of training data, D, and a classifier model M(θ) parameterized by the 
vector of parameters,θ.  Bayes’ rule gives the posterior density over the model parameters θ, ),|( MDp θ   
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 for which we need to define prior probabilities over the 

parameters, θ . With the posterior density over θ on hand we can integrate out the dependence 

upon the model parameters ∫= θθθ M)dD,|M)p(,,|() xyp,,|( MDxyp , and so obtain a 

probability distribution for the input vector (conditioned on both the training data and the classifier model 
type) for each of the target classes, the ys. 
 
For this we require a Bayesian machine which can be envisaged as a classifier in terms of the following 
inputs and outputs, when y is composed of Q classes. 
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A number of limited-scope (virtual) Bayesian computers do exist (e.g.BUGS, see http://www.mrc-
bsu.cam.ac.uk/bugs/references/bugs-core-papers.shtml), but in general many of the desired integrals are 
analytically insoluble (not to mention the necessity for real computational continua, such as the real 
numbers). Markov Chain Monte Carlo (MCMC) methods are one classical technique used to sample 
distributions in a way that focuses the sampling in areas of high probability thus providing a means 
efficient approximation to the desired integrals.  The well-founded bases of both Bayes’ theorem and 
MCMC methods underwrites the validity of the classification probability distributions generated, and the 
distributions provide a basis for the `confidence’ associated with each classification result.  The outcome is 
that MCMC methods permit us to draw samples  from )(iθ ),|( MDp θ  so that is 
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This classical simulation of a generalized Bayesian computer is computationally expensive (it is only recent 
hardware advances that have moved such strategies into the realms of practicality). The sampling is 
massive, as it must be to generate accurate continuous distributions from a set of data points, but the reward 
is the extra information contained in such soft solutions as opposed to the poverty of information and 
brittleness of a single categorical result (or indeed a set of such results when generated by an ad hoc MCS). 
 
It is true that this distribution is constructed from a large number of discrete classification results, but this 
interchange from discrete to continuous and vice versa occurs repeatedly throughout computational 
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hierarchies (e.g. the continuous output of a sum-and-squash function that is the output of an MLP may be 
thresholded to yield a categorical classification; the fundamental continuity of the real numbers is typically 
discretized when they enter a computation).  Discrete or continuous is more a matter of interpretational 
convenience, or level of interpretation, than it is an inherent property of a representation.  
 
A recent paper (Wegner and Eberbach, 2004) outlines three “superTuring” models of computation --- 
Interaction Machines, the π-calculus for evolutionary computation and the $-calculus for robotics --- as 
examples of areas that cannot properly be described using Turing Machines ( TM) and algorithms.  The 
essential weakness of the TM with respect to the proposed superTuring models is that the TM is a closed 
model.  Our proposed departure from the TM model is required because of the discrete exactness that is a 
foundation of the TM model. 
 
So, although our output distributions are composed of thousands of discrete results and our computational 
base is a standard Turing machine running classical algorithms, we view the computational system as a 
virtual Bayesian computer that integrates over continua and computes probability distributions.  This 
discrete classical basis is no more than a convenient way to simulate the (currently) necessary MCMC 
approximations to the desired Bayesian machine that would support a direct implementation of this 
particular approach to AAC. Even in this Bayesian-MCMC virtual machine the fine-grained discrete 
computations lack meaning as individuals (e.g. a point probability plucked from a Markov chain); it is only 
the totality, the shape of the continuous distribution that a large number of such points represent, that is a 
meaningful/useful outcome. 
 
Some examples: the following outputs have been selected from results of applying the above computational 
scheme to a variety of the UCI Machine Learning database files.  Further details may be found elsewhere 
(Partridge et al., 2003). For these illustrations, M(θ)=Pknn(k,β) and p(k)=U{1,…,kmax} and p(β)=U(0,∞); 
full technical details can be found in Denison et al.. 2002. The first illustration shows distributions of the 7 
classes for the Image data. As can be seen none of the distributions appear to strongly favour any of the 
classes and this output was classified as UNSURE using our uncertainty envelope approach (Fieldsend et 
al. 2003).  
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Illustrated below is the output for the 2 classes of the Wisconsin data.  As can be seen, these particular 
distributions clearly favour the classification given on the right-hand side (note: for a two class problem 
only one distribution is necessary because the two distributions will be mirror images, as illustrated). Using 
our uncertainty envelop idea to further interpret the Wisconsin data, we obtained 88.6% SURE correct and 
11.4% UNSURE which can be compared to 98.3% correct using best classifier (Partridge et al., 2003). 
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